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Abstract. Institutions regulate societies. Comprising Searle’s con-
stitutive counts-as rules, “A counts-as B in context C”, an institu-
tion ascribes from brute and institutional facts (As), a social reality
comprising institutional facts (Bs) conditional on the social reality
(contexts Cs). When brute facts change an institution evolves from
one social reality to the next. Rule changes are also regulated by
rule-modifying counts-as rules ascribing rule change in the past/pre-
sent/future (e.g. a majority rule change vote counts-as a rule change).
Determining rule change legality is difficult, since changing counts-as
rules both alters and is conditional on the social reality, and in some
cases hypothetical rule-change effects (e.g. not retroactively criminal-
ising people). However, without a rigorous account of rule change
ascriptions, AI agents cannot support humans in understanding the
laws imposed on them. Moreover, advances in automated governance
design for socio-technical systems, are limited by agents’ ability to un-
derstand how and when to enact institutional changes. Consequently,
we answer “when do rule changes count-as legal rule changes?” in a
temporal setting with a novel formal framework.

1 Introduction

Institutions regulate and govern society and have been widely for-
malised (see Andrighetto et al. [2013]). Institutions construct a de-
scriptive and prescriptive social reality from brute facts with Searle’s
(Searle [1969, 2005]) counts-as rules, “A counts-as B in context C”.
When the brute facts change an institution’s social reality evolves ac-
cording to counts-as rules. Counts-as rules can also be modified over
time. In legal systems, secondary counts-as rules ascribe rule change
(Biagioli [1997]). We view these rules as rule-modifying counts-as
rules - “A counts-as modifying a rule in context C”.

Yet, it is difficult to determine which rule changes can be made
according to rule-modifying counts-as rules. Rules build the social
reality, ascribe rule changes conditional on the social reality, and are
also subject to being changed. This affects which rule changes are
possible in the first place, for example:

• A group of people voting to change a rule counts-as a legal rule
change if they constitute the government. A rule change can affect
the social reality by redefining it (e.g. who counts-as being in
government); rule changes are conditional on the built social reality.

• The UK government voted to retroactively require UK residents
in a business partnership abroad to pay tax ([Fin, 2008, Sec. 58]),
criminalising people in the past. Criminalising retroactive modifi-
cations are impossible according to the European Convention of
Human Rights ([Council of Europe, 1953, Art. 7]). Rule change
affects the social reality (e.g. criminalising people in the past);
rule change is conditional on its hypothetical effects (e.g. being
impossible if it would criminalise people in the past).
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• A monarch or parliament can change laws. The monarch enacts a
law obliging all fences are painted white. The parliament retroac-
tively repeals the power for the monarch to enact laws, reversing
the fence-painting law enactment. Retroactive rule change affects
past rule-modifying counts-as rules; past rule modifications can be
unravelled due to retroactive modifications.

An interdependency exists between the counts-as rules that con-
struct a social reality and rule-modifying counts-as rules. Changing
counts-as rules affects the past/present/future social reality and can
change the modifications which happened in the past up until the
present; rule modifications are conditional on the past/present/future
social reality and the hypothetical rule change effects. Whether a rule
change counts-as a legal rule change requires assessing the social
reality in which the change takes place and the potential rule change
effects, thus affecting whether a rule change is legal in the first place.

A defeasible logic for rule change over time has been proposed
(Governatori et al. [2005]; Governatori and Rotolo [2010]). But, cru-
cially, not for rule change ascribed by counts-as rules accounting for
the interdependency between changing rules and building a social
reality. In (Boella and van der Torre [2004]) counts-as rules that regu-
late rule modifications are formalised, but not in a temporal setting.
Yet, there has been little attention paid to formalising rule change reg-
ulated by counts-as rules in a temporal setting. This limits endeavours
in AI to assist human agents in understanding the laws that govern
them. Moreover, whilst AI agents are increasingly used to synthesise
normative systems (Morales et al. [2014, 2015]), they are held back
in enacting institutional rule changes by not understanding how and
when laws can be changed.

This raises the question, in a temporal setting - when do rule
changes count-as legal rule changes? We address this question with
a novel formalisation for past/present/future institution rule change
ascribed by counts-as rules. Our desiderata being that if a rule change
is legal then it occurs, and otherwise it does not and the institution
continues to operate ‘as usual’. In particular, taking into account the
interdependency between ascribing rule change and changing rules.
We posit that the most recent rule modifications take precedent and po-
tentially change past modifications. We extend rules commonly found
in the literature from being conditional on the present, to the past,
different institution versions and hypothetical rule change effects.

We continue with our approach (2). Then we introduce the formal-
ism, comprising a representation (3) and semantics (4). The frame-
work is applied to five case studies (5). Finally, we discuss related
work (6) and conclusions (7).

2 Approach

This paper formalises institutional rule change in a temporal setting.
Foundational reasoning is required for institutions in a temporal set-
ting, on which our framework is built. We require reasoning about
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counts-as rules, “A counts-as B in context C”, of two types. Firstly,
rules that ascribe institutional events from other institutional events or
observable events (brute facts) conditional on the social reality. For
example, “the event we call a person paying tax (brute) counts-as
paying tax (institutional)”, and “paying tax (institutional) counts-as
fulfilling your duties (institutional)”. Secondly, rules which ascribe
institutional fluents (institutional facts describing the state of affairs)
from institutional events and cause the social reality (institutional
state) to change. For example, “signing a business declaration counts-
as initiating you are a business partner”. We require reasoning for
counts-as rules that cause events to occur and the institutional state to
change, which the InstAL (Institution Action Language) framework
(Cliffe et al. [2007]; Cliffe [2007]) provides. Crucially, InstAL lacks
representation and reasoning for rule change ascription.

We extend InstAL’s institutions with counts-as rules that ascrip-
tively regulate rule changes and counts-as rules that themselves are
modifiable. Rule modifications activate/deactivate rules in the past/pre-
sent/future, analogous to enacting regulatory changes. Rule-modifying
counts-as rules, “an event A counts-as a rule-modifying event B in
context C”, ascribe past/present/future rule modifications.

Unlike in InstAL, in this paper institutions evolve dually: 1. when
a rule change is ascribed by counts-as rules, the institution evolves to
the next version potentially comprising different (active) counts-as
rules at different time points, and 2. when observable events occur,
each institution version evolves from one state to the next.

For example, an institution starts at version one, only comprising
rules which enable rules to be added. A rule is added to the institution
on Monday, stating that the tax year’s start causes an obligation to
pay tax. Thus, on the Monday the institution evolves to version two,
where the tax rule becomes active on the Monday, at which point
version two becomes the current version. On Tuesday it is the first
tax year month, both versions evolve to a new state, in version two
the new state contains an obligation to pay tax, but not in version
one since the tax rule was activated in version two. Each institution
version evolves from state to state, and the institution evolves from
one current version to the next when rule change events occur.

Contexts in counts-as rules are extended from being conditional
on the present state to also past institution versions and states. This
supports representing rule change conditional on its potential retroac-
tive effects. For example, a condition on rule change not criminalising
people in a version’s past compared to the previous version’s past.
To summarise, we extend institutions to evolve along rule version
and state timelines according to counts-as rules conditional on past
versions and states, and potential rule change effects.

3 Representation

We begin with representing institutions which regulate their own
temporal rule modifications.

Definition 1. Institution An institution is a tuple I = 〈E ,F ,C,G,Δ〉.
Institutions are distinguished with a superscript (e.g. Iuk =
〈Euk,Fuk,Cuk,Guk,Δuk〉). Σ = 2F denotes all states for I .

Where:

1. E = Eobs ∪Einst ∪Emod is a finite set of events comprising:

• Observable events Eobs and institutional events Einst.

• Rule modification events Emod = {mod(op, id, t) | op ∈
{act,deact}, id ∈ ID, t ∈ N} - a rule with the identifier id (the
identifier set being ID) is activated/deactivated (op) at a time t.

2. F = Fdom ∪Fract is a finite set of fluents describing the:

• Domain Fdom.

• Active rules Fract = {active(id) | id ∈ ID} identified as id.

3. X is the set of all contexts ϕ expressible in the following grammar
for fluents f ∈ F :

ϕ ::= � | f | ¬ϕ | ϕ ∧ϕ | ϕ ∨ϕ | ϕ → ϕ | P |
PrS(ϕ) | PaS(ϕ) | PrV(φ) | PaV(φ)

φ ::= ϕ | NS(ϕ)

Each expression’s informal meaning is the usual for propositional
logic symbols. The operators bear truth in the following cases:
(a) P if the context is retroactive (i.e. the state in which P operates
on is at a time before the version to which it belongs becomes
the current version), and (b) if ϕ is true in: the previous state
(PrS(ϕ)), all past states (PaS(ϕ)), the same state in the previous
version (PrV(ϕ)), the same state in all past versions (PaV(ϕ)), and
the next state (NS(ϕ)).The next state operator is restricted to past
versions, meaning rules are never conditional on the actual future.

4. G : X × 2E → 2Einst - is the event generation function where
G(X ,E) is an event set caused by the events that occur (E) when
the context X holds.

5. C :X ×E → 2Fdom ×2Fdom is the state consequence function where
for a context X ∈X and an event e ∈ E the consequence function’s
result is notated C(X ,e) = 〈C↑(X ,e),C↓(X ,e)〉 s.t. the initiated
fluent set is C↑(X ,e) and the terminated fluent set is C↓(X ,e)

6. Δ ⊆ F is the initial institution state

For example, the following rule states that if Ada is found guilty
(g(ada)) then she becomes a criminal (crim(ada)). That is, the fluent
crim(ada) is initiated by the event of being found guilty according to
the consequence function (C↑).

C↑(�,g(ada))  crim(ada)

A government rule change (gmod(act, id, t))) that does not retroac-
tively criminalise people counts-as a legal rule change. The condition
is in all past retroactive states someone is not a criminal (crim(ada))
if in the previous version (prior to rule change) they were not.

G(PaS(P → PrV(¬crim(ada))→¬crim(ada))),

{gmod(act, id, t)})  act(id, t)

In order to reason about modifying specific institutional rules, we tie
rule identifiers to the institutional rules they represent. Specifically
we map the inputs and single outputs of G and C to identifiers (i.e. not
the whole set of events or initiated/terminated fluents).

Definition 2. Rule Identifier Function A rule identifier function for
an event generation function G : X ×2E → 2Einst is ridG : X ×2E ×
Einst → ID. The rule identifier functions for a consequence function
C : X ×E → 2Fdom ×2Fdom are ridC↑

: X ×E×Fdom → ID and ridC↓
:

X ×E ×Fdom → ID.

So, the previous rule criminalising Ada has the ID crim0 =
rid↑(�,g(ada),crim(ada)). Examples/case studies omit this function.

4 Semantics

This section defines institution semantics, following InstAL’s method
using just sets and functions, with the following considerations.

Observable events cause an institution rule version to transition
from state to state by generating transitioning events according to
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the event generation function G and initiating and terminating fluents
according to the consequence function C. An institution transitions
from one version of rules to another when rule modifying events are
generated by the event generation function G.

An institutional interpretation represents this dual evolution as a
tuple M = 〈R,V 〉 where: 1. V = 〈V0, ...,Vj〉 is a tuple of versions each
comprising a state and event set sequence up to length k with typical el-
ement Vv = 〈Sv,Ev〉. The state sequence for v is Sv = 〈Sv:0, ...,Sv:k+1〉
with typical element Sv:i ∈ Σ and the event set sequence (the events
transitioning between states) is Ev = 〈Ev:0, ...,Ev:k〉 with typical ele-
ment Ev:i ⊆ E . States denoted Sv:i and event sets Ev:t are denoted
with the version v to which they belong and their time instant i.
2. R : [0,k] → [0, j] is a function stating which institution version
is the current version for a given time.

R also represents when rule change events occurring in a version
can change that version’s rules. Rule modification events only change
version rules if the institution has not already evolved to a later version.
For example, if on Monday a rule is added, then the institution evolves
to a new current version where that rule is actually added on Monday.
When the version evolves, previous versions become obsolete from
then onwards (e.g. Monday) meaning their rules are not changeable.
If R(i)≤ v then an event occurring in version v at time i can modify
rules in v since the version is not yet obsolete.

The semantics are defined with respect to the interpretation M =
〈R,V 〉, an institution I = 〈E ,F ,C,G,Δ〉, the set of all institutional
interpretations I, and an observable event trace et = 〈O0, ...,Ok〉.

4.1 Institutional Change

Counts-as rules, causing institution state and version change, are con-
ditional on a context being modelled by the state in an interpretation.

Definition 3. Modelling Context For all X ∈ X and f ∈ F , context
models 〈M,Sv:t〉 |= X is defined for �, ∨ and → w.r.t. ¬ and ∧ as
usual and for the other symbols as:

〈M,Sv:t〉 |= f ⇔ f ∈ Sv:t (3.1)

〈M,Sv:t〉 |= ¬ψ ⇔ 〈M,Sv:t〉 �|= ψ (3.2)

〈M,Sv:t〉 |= ψ ∧φ ⇔ 〈M,Sv:t〉 |= ψ and
〈M,Sv:t〉 |= φ (3.3)

〈M,Sv:t〉 |= P ⇔ R(t)< v (3.4)

〈M,Sv:t〉 |= PrS(ψ) ⇔ 〈M,Sv:t−1〉 |= ψ (3.6)

〈M,Sv:t〉 |= PaS(ψ) ⇔ ∀t ′ ∈ [0, t −1] : 〈M,Sv:t−1〉 |= ψ (3.7)

〈M,Sv:t〉 |= PrV(ψ) ⇔ 〈M,Sv−1:t〉 |= ψ (3.8)

〈M,Sv:t〉 |= PaV(ψ) ⇔ ∀v′ ∈ [0,v−1] : 〈M,Sv′−1:t〉 |= ψ (3.9)

〈M,Sv:t〉 |= NS(ψ) ⇔ 〈M,Sv:t+1〉 |= ψ (3.10)

Semantics are as usual for modelling a fluent (3.1), weak negation
(3.2) and conjunction (3.3). A state is retroactive if at that time the
version is not the current version but it will be in the future (3.4) - for
example, if on a Wednesday the institution evolves to a new version,
then anything occurring on the Monday is retroactive to the new
version (i.e. occurring in the version’s past). States model formula
as expected for a previous state (3.6), all previous states (3.7), the
previous version (3.8), all past versions (3.9) and the next state (3.10).

An event ‘B’ occurs when transitioning to a new state in a version
according to a rule - “A counts-as B in context C” (G) - if an event ‘A’
occurs, the context ‘C’ is modelled by the state and the counts-as rule
itself is active in the version’s state. Events occurring in response to
observable events E are formalised as an event generation operation.

Definition 4. Event Generation Operation The event generation op-
eration GR : Σ×2E ×I→ 2E is defined such that GR(Sv:t ,E,M) = E ′
iff E ′ only satisfies the following conditions:

E ⊆ E ′ (4.1)

∃X ∈ X ,e ⊆ E,e′ ∈ G(X ,e)∩Einst : id = ridG(X ,e,e′),
〈M,Sv:t〉 |= X ∧active(id) ⇒ e′ ∈ E ′ (4.2)

∃X ∈ X ,e ⊆ E,e′ ∈ G(X ,e)∩Emod : id = ridG(X ,e,e′),
〈M,Sv:t〉 |= X ∧active(id),R(t) �= v ⇒ e′ ∈ E ′ (4.3)

∃X ∈ X ,e ⊆ E,e′ ∈ G(X ,e)∩Emod : id = ridG(X ,e,e′),
〈M,Sv:t〉 |= X ∧active(id),R(t) = v ⇒ (e′ ∈ E ′ or e′ �∈ E ′) (4.4)

Any fixed point reached after iterative applications of GR is denoted
as GRω (Sv:t ,E,M).

Events that have occurred still occur (4.1). If an active rule states
an event e causes an event e′ in a context modelled by the state, then
e can cause e′ to occur depending on e′’s type. Specifically, whether
e′ is a type that could cause an inconsistency (e.g. removing rules that
ascribe rule modifications, for more on the paradox of rule change see
Suber [1990]). An event e′ always occurs if it is a non-rule-modifying
institutional event (4.2) or occurs when the version is obsolete and
it cannot modify rules (4.3). Rule modifying events in non-obsolete
versions can cause rule changes and a potential paradox. So they
optionally occur in a non-obsolete version where they can cause rule
change and/or a paradox (4.4). Hence, GR is multi-valued.

Iterating the event generation operation until a fixed point is reached
obtains all events which occur. At least one fixed point is guaranteed.

Lemma 1. For any set of events E ⊆ E , interpretation M and state
Sv:t ∈ Σ there exists a fixed point GRω (Sv:t ,E,M).

Proof sketch. GR always has a monotonically increasing value (w.r.t.
set inclusion) and a finite domain.

An institution version transitions between states, driven by event
occurrences, according to a state transition operation.

Definition 5. State Transition Operation The state transition oper-
ation TR : Σ×2E × I→ 2E is defined for a state Sv:t , a set of events
Ev:t and an interpretation M as:
TR(Sv:t ,Ev:t ,M) =

{ f | f ∈ Sv:t ∩TERM(Sv:t ,Ev:t ,M) or (5.1)

f ∈ INIT(Sv:t ,Ev:t ,M)} (5.2)

where:
INIT(Sv:t ,Ev:t ,M) =

{ f |∃e ∈ Ev:t ,X ∈ X : id = ridC↑
(X ,e, f ),

f ∈ C↑(X ,e)∩Fdom,〈M,Sv:t〉 |= X ∧active(id) or (5.3)

∃t ′ ∈ [0,k],�t ′′ ∈ [t ′,k] : id = ridC↑
(X ,e, f ),

R(t ′)≤ v,R(t ′′)≤ v,mod(act, id, t) ∈ Ev:t ′ ,

mod(deact, id, t) ∈ Ev:t ′′ , f = active(id)} (5.4)

TERM(Sv:t ,Ev:t ,M) =

{ f |∃e ∈ Ev:t ,X ∈ X : id = ridC↓
(X ,e, f ),

f ∈ C↓(X ,e)∩Fdom,〈M,Sv:t〉 |= X ∧active(id) or (5.5)

∃t ′ ∈ [0,k],�t ′′ ∈ [t ′,k] : id = ridC↓
(X ,e, f )

R(t ′)≤ v,R(t ′′)≤ v,mod(deact, id, t) ∈ Ev:t ′ ,

mod(act, id, t) ∈ Ev:t ′′ , f = active(id)} (5.6)
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Transitioning from one state to the next follows common-sense
inertia - a fluent holds in a new state if it held in the previous state
and was not terminated (5.1) or it was initiated in the previous state
(5.2). A domain fluent is initiated/terminated if an event causes it to
be according to a rule defined by the state consequence function C
that is active in the current state with a condition (context) that is
modelled in the state (5.3 for initiation and 5.5 for termination). A
fluent denoting an active rule is initiated/terminated in a state if a rule
activating/deactivating event occurs at a time when the version is not
obsolete and no contradictory deactivation/activation event occurs at a
later time when the version is not obsolete (5.4 for activating rules and
5.6 for deactivating rules). The most recent modifications in a version
take precedent if they occur when the version is a non-obsolete version
and simultaneous contradictory rule modifications are cancelled.

4.2 Models

Now we define when an interpretation is an institutional model for an
observable event set trace. An institutional interpretation is, broadly
speaking, an institutional model for an observable event set trace iff:
1. each version evolves according to the event generation and state
transition operations, and 2. the institution evolves from one version to
another when rules are modified. However, the event generation oper-
ation is multi-valued since rule modifications are optional. Thus, there
are potentially multiple candidate event sets for transitioning between
states and therefore multiple interpretations to select as models.

We want to maximise the rule modification events that are not self-
contradicting (e.g. not applying modifications that retroactively re-
move a rule making retroactive rule removal possible). Interpretations
are prioritised, denoted as <, based on maximising rule modifications.
An interpretation has higher priority over another if at the earliest time
in the earliest version in which the interpretation differ it contains a
superset of rule modifying events compared to the ‘same’ set for the
lower priority interpretation.

Definition 6. Prioritised Interpretation Let M0 = 〈R0,V 0〉 ∈ I and
M1 = 〈R1,V 1〉 ∈ I be two interpretations for institution I where:
V 0 = 〈V 0

0 , ...,V
0
i 〉 with typical element V 0

v = 〈E0
v ,S

0
v〉 s.t. E0

v =

〈E0
v:0, ...,E

0
v:k〉, and V 1 = 〈V 1

0 , ...,V
1
j 〉 with typical element V 1

v =

〈E1
v ,S

1
v〉 s.t. E1

v = 〈E1
v:0, ...,E

1
v:k〉. The ordering < is a relation be-

tween interpretations M0 and M1 such that:

M0 < M1 ⇔ ∃t ∈ [0,k],�t ′ ∈ [0, t-1] :

v = R0(t),E0
v:t ∩Emod ⊃ E1

v:t ∩Emod

v′ = R0(t ′),E0
v′:t ′ �= E1

v′:t ′

We operationally characterise a model by constructing a ‘correct’
interpretation. That is, constructing versions comprising correct state
transitions and generated events. We could construct each institution
version by starting at an initial state and proceeding from one state to
the next according to the event generation and state transition opera-
tions. However, this would require knowing which rule modification
events happen in each version’s past, present and future.

To give an example for an observable event set trace 〈O0, ...,Ok〉.
An institution starts at an initial state only comprising an active rule
enabling a government to make retroactive modifications (Δ = S0:0 =
{active(gov0)}). First, a fence is observably built (O0 = {fb}, occur-
ring during the first state transition fb ∈ E0:0 = GRω (S0:0,O0,M)).
But, there is no active rule that causes the next state to be different
(S0:1 = TR(S0:0,E0:0) = S0:0 = {active(gov0)}). Then, the govern-
ment votes to retroactively activate a rule in state zero, stating building

a fence initiates an obligation to paint it. Consequently, the second
state which has already been determined, S0:1, seems wrong since it
lacks the fence painting rule and its effects. In fact, the institution
should transition to a new rule version V1. This new version should
start at the same initial state S1:0 = Δ. But, crucially, transition to the
next state (S1:0 = TR(S1:0,E1:0)) with the knowledge that in the future
of the new version the fence painting rule will be retroactively added
at state zero (S1:0) and become active in the second state (S1:1). State
transitions are defined with respect to an interpretation comprising
past/present/future rule modification events which might be unknown
when each state and transitioning event set is constructed.

We define an interpretation successor operation which addresses
the problem of constructing a ‘correct’ interpretation without the
knowledge of each version’s past/present/future. The successor opera-
tion takes as input a preceding interpretation which supplies versions
comprising a past/present/future on which each version in the new
succeeding interpretation can be constructed according to TR and GR.
That is, a new interpretation is produced using the version timelines of
the previous interpretation, taking into account past/present/future rule
modifications from the preceding interpretation’s version timelines.

A succeeding interpretation might not be the same as the previous
interpretation, since the previous interpretation might have been built
without knowledge of its own past/present/future. That is, the new
interpretation might differ in its temporal evolution (comparable ver-
sion timelines in each interpretation being different). Consequently,
the succeeding interpretation might have new, previously unknown,
rule modification events that also need to be accounted for and thus
another succeeding interpretation must be produced.

The idea is to iteratively apply the institution successor operation
until a succeeding interpretation is produced that is the same as the
previous interpretation. That is, until the operation reaches a fixed
point, which is guaranteed according to lemma 3 we give later on.
Intuitively, the fixed point characterises an interpretation that is built
taking into account its own past/present/future modifications in each
version (since it was built with respect to an identical preceding
interpretation). Formally, the successor interpretation operation is:

Definition 7. Successor Interpretation Operation Let et =
〈O0, ...,Ok〉 be an observable event trace for I of length k. Let
M′ = 〈R′,V ′〉 ∈ I be an interpretation such that V ′ = 〈V ′

0, ...,V
′
j′ 〉 is a

tuple of institution versions. The interpretation successor operation
SUCC : I×ET → I is defined for the interpretation M w.r.t. I and et
such that SUCC(M,et) = M′ iff M′ satisfies the following conditions:

∀v ∈ [0, j′] : S′v:0 = Δ (7.1)

∀v ∈ [0, j′], t ∈ [0,k] : E ′
v:t = GRω (S′v:t ,Ot ,M) (7.2)

∀v ∈ [0, j′], t ∈ [0,k] : S′v:t+1 = TR(S′v:t ,E
′
v:t ,M) (7.3)

R′(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t = 0,E ′
0:t ∩Emod = /0

1, t = 0,E ′
0:t ∩Emod �= /0

R′(t-1), t > 0,E ′
R(t-1):t ∩E′

mod = /0
R′(t-1)+1, t > 0,E ′

R(t-1):t ∩E′
mod �= /0

(7.4)

Given that V ′ = 〈V ′
0, ...,V

′
j′ 〉,R′(k) = j′ (7.5)

Every institution version starts at the same initial state (7.1). Each
state transition (an event set) in a version is produced by the event
generation operation applied to the previous state and the observable
events occurring at that time (7.2). The next state in a version is the
state produced by the state transition operation applied to the previous
state and the transitioning events occurring in that version with respect
to the preceding institutional interpretation (7.3). That is, transitioning
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from one state to the next takes into account the rule modification
events occurring in the past/present/future of the same version in the
preceding interpretation. Rule modifications in the latest version cause
the current version to evolve/increment to the next version. If no rule
modification takes place the version remains the same or the zeroeth
version for the zeroeth time instant (7.4). If a rule modification does
take place in the latest version, then the current version at that time
incremented by one, or is the first version for the zeroeth time point
(7.4). The version sequence only goes up until the current version at
the last time instant (7.5).

At least one fixed point for the successor interpretation operation,
starting at any initial interpretation, is always guaranteed. A fixed
point is denoted as SUCCω (M,et). To see why, the general idea is
that there always exists a series of successive interpretations that
monotonically increase which versions and states they agree on.

The following lemma is used to prove that there always exists a
series of such interpretations and therefore that there always exists a
fixed point. Informally, the lemma is conditional on there being two
successors M′ and M′′ to any interpretation that agree with each other
up until a particular time (h) in a version ( j). The consequence is that
the second interpretation M′′ has the same events at time h and state
transition at time h+1 in version j as if the event and state transitions
were produced with respect to M′′’s own past/present/future timeline.

Lemma 2. If I is an institution, M an interpretation and et an ob-
servable event trace of length k for I and there exists interpretations
M′ = SUCC(M, et) and M′′ = SUCC(M′,et) where ∃h ∈ [0,k], j ∈
[0,v′],∀i ∈ [0,k] :

〈V ′
0, ...,V

′
j−1〉= 〈V ′′

0 , ...,V
′′
j−1〉 (A2.1)

〈S′j:0, ...,S′j:h〉= 〈S′′j:0, ...,S′′j:h〉 (A2.2)

mod(op, id, h) ∈ E ′
v:i,

R′(i)≤ j
⇔ mod(op, id, h) ∈ E ′′

j:i,

R′′(i)≤ j
(A2.3)

then E ′′
j:h = GRω (S′′j:h,Oh,M′′) and S′′j:h+1 = TR(S′′j:h,E

′′
j:h,M

′′)

Proof sketch. Follows from the assumptions, and definitions 3-5.

The previous lemma’s assumptions can always be met starting
from any interpretation M. Firstly, since in the worst case, from any
interpretation we can obtain a successor starting at the institution’s
initial state - so both successors agree at least on the initial state.
Secondly, by making the non-deterministic choice in the event gen-
eration operation to select the same rule modifications for both the
successor and the successor to the successor (in the worst case, no rule
modifications). We can continue to incrementally produce successive
interpretations that monotonically increase the time point they agreed
upon. Note that, this may mean backtracking by changing preceding
interpretations (e.g. selecting no rule modifications).

Lemma 3. There exists a fixed point for the interpretation successor
operation denoted SUCCω (M,et) for any M and et.

Proof sketch. A proof can be obtained by structural induction, ap-
plying Lemma 2, and ensuring each successive interpretation agrees
with the preceding interpretation on rule modifications (potentially
removing modifications in previous interpretations).

In fact, there can be multiple fixed points, as exemplified:

Example 4.1. An institution I contains a legislative rule with
the id leg0 ∈ ID stating that an agent, Ada, voting to acti-
vate a rule (votea(act, id, t) ∈ Eobs) counts-as activating the rule:

G(�,{votea(act, id, t)})  mod(act, id, t). In the initial state the leg-
islative rule is active Δ = {active(leg0)}. In an observable event trace
et = 〈O0〉 Ada votes to activate another rule with the id leg1 ∈ ID in
the initial state O0 = {votea(act, leg1, 0)}.

From an initial empty interpretation M we have the following suc-
cessors and interpretations for example 4.1(differences are in bold):

M2 = SUCC(M, et) = SUCCω (M, et) s.t. V 2 = 〈V 2
0 〉,R2(0) = 0,R2(1) = 0,

S2
0:0 = {active(leg0)},S2

0:1 = {active(leg0)},E2
0:0 = {votea(act, leg1, 0)}

M1 = SUCC(M, et) = SUCCω (M, et) s.t. V 1 = 〈V 1
0 ,V

1
1 〉,R1(0) = 1,R1(1) = 1,

S1
0:0 = {active(leg0)},S1

0:1 = {active(leg0)},
E1

0:0 = {votea(act, leg1, 0),mod(act, leg1 , 0)}
S1

1:0 = {active(leg0)},S1
1:1 = {active(leg0)},E1

1:0 = {votea(act, leg1, 0)}
M0 = SUCC(M, et) = SUCCω (M, et) s.t. V 0 = 〈V 0

0 ,V
0
1 〉,R0(0) = 1,R0(1) = 1,

S0
0:0 = {active(leg0)},S0

0:1 = {active(leg0)},
E0

0:0 = {votea(act, leg1, 0),mod(act, leg1 , 0)}
S0

1:0 = {active(leg0)},S0
1:1 = {active(leg0),active(leg1)},

E0
1:0 = {votea(act, leg1, 0),mod(act, leg1 , 0)}

Each fixed point has different rule modifications. M2 does not add
the rule leg1. M1 contains an attempt to add the rule in the version
zero but not in version one. Finally, M0 adds the rule in the version
zero and version one, version one being the current version when
the rule is added meaning the rule addition is successful. In fact,
the following prioritisation holds M0 < M1 < M2 meaning that M0

maximises successful rule modifications.
Models are interpretations which maximise successful rule modi-

fications. Thus we characterise models by combining the successor
interpretation fixed point and interpretation prioritisation. Given an
empty interpretation we find a fixed point successor interpretation for
a given event set trace (8.1). The fixed point is a model if there is no
greater prioritised successor fixed point interpretation (8.2).

Definition 8. Models Let M = 〈R,V 〉 be an empty interpretation such
that V = 〈V0〉, V0 = 〈E0,S0〉, E0 = 〈〉 and S0 = 〈〉. The interpretation
M′ = 〈R′,V ′〉 is a model for I w.r.t. an observable event set trace
et = 〈O0, ...,Ok〉 iff:

M′ = SUCCω (M,et) and (8.1)

There does not exist an M′′ < M′ meeting 8.1. (8.2)

From lemma 3 and definition 8 we have the following property.

Lemma 4. There exists at least one model for any institution I w.r.t.
an observable event set trace et.

These semantics operationalise answering “when does a rule
change count-as a legal rule change?”. Generally, a rule change counts-
as a legal rule change if and only if a rule ascribes the change in a
context that is consistent with the modification. Models always con-
tain ‘legal’ rule modifications, defined as fixed point interpretations
which maximise rule modifications. So, ‘legal’ rule-changes occur in
at least one model whilst illegal rule changes do not occur at all (the
non-deterministic choice for a rule modification to occur in 4.4) and
the institution continues to operate ‘as usual’, meeting our desiderata.

5 Case Studies

Now we apply the framework to concrete case studies. For brevity we
use variables to denote: all rule identifiers (id ∈ ID), all rule change
operations (op ∈ {act, deact}), and all time instants (t ∈ N). The first
case concerns a simple rule change procedure.
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Case 5.1. An institution Isgov describes a simple government com-
prising two agents, Ada and Bertrand. Both Ada and Bertrand
voting to activate or deactivate a rule in the context that nei-
ther are criminals (crim(ada),crim(bert) ∈ F sgov

dom ) counts-as activat-
ing/deactivating the rule. The rule modifying counts-as rules are
identified with leg0 ∈ ID and formalised as Gsgov(¬crim(ada) ∧
¬crim(bert),{votea(op, id, t),voteb(op, id, t)})  mod(act, id, t). At
time point one Ada and Bertrand vote to add a rule with id crim0,
O1 = {votea(act, crim0, 1),voteb(act, crim0, 1)}. The rule identi-
fied as crim0 states that if Ada or Bertrand are found guilty of a
crime (g(ada),g(bert) ∈ E sgov

obs ) then they become criminals, formally
- C↑(�,g(ada))  crim(ada) and Csgov↑(�,g(bert))  crim(bert).
Next, Bertrand is found guilty of a crime O2 = {g(bert)}. Finally,
Bertrand and Ada vote to deactivate the criminalising rule, O3 =
{votea(act, crim0, 3),voteb(act, crim0, 3)}.

For clarity, models are represented graphically. The model for
case 5.1 is shown in Figure 1. Lines represent when domain and ac-
tive rule fluents hold. We distinguish between whether a fluent holds
in a state Sv:t : 1. retroactively in the version’s past and not in the
previous version, (i.e. R(t)< v and 〈M,Sv−1:t〉 �|= f ), 2. when
the version is the current version, ) (i.e. R(t) = v), and 3. when
the version is obsolete, (i.e. R(t)> v). Time instants are marked
if they have successful or non-successful rule modification events in
versions where modifications can have an effect (i.e. non-obsolete
versions): 1. denoting that all the rule modification events occurring
in the previous version occur again (i.e. Ev:t ∩Emod = Ev−1:t ∩Emod).
Meaning, the conditions (contexts) for the rule modifying events to be
ascribed are consistent with the version and therefore with applying
the rule modifications (the non-deterministic choice to include a rule
modification in Ev:t according to 4.4 is always made) 2. denoting
that at least one rule modification event which occurred in the previous
version does not occur again (i.e. Ev:t ∩Emod �= Ev−1:t ∩Emod). Mean-
ing, the conditions (contexts) for rule modifying events to be ascribed
are inconsistent with the version they occur in and therefore with
applying the rule modifications (a non-deterministic choice according
to 4.4 to not include a rule modification is made when building Ev:t ).

Figure 1 shows case 5.1’s model. Throughout version zero the
legislative rule (leg0) is active, stating Ada and Bertrand voting to
add a rule counts-as adding a rule. When at time instant one Ada and
Bertrand vote to add a new rule (crim0), stating people found guilty
become criminals, the model succeeds to version one where the new
rule is successfully added. At time instant three Bertrand becomes a
criminal. When they vote again to modify a rule it is unsuccessful,
since rule change is conditional on neither being criminals. Adding
a criminalising rule altered the built social reality in version one’s
future, changing what could be ascribed as a legal rule modification.

0 1 2 3 4

Fluent

crim(bert)
active(crim0)

active(leg0)

active(leg0)

Version

1

0

Time

Figure 1. Model for case 5.1 with two institution versions.

The next case presents an institution Iuk representing the UK’s
legislation rules. The cases are based on past changes to a court
decision on UK tax laws (Pad), and past changes to tax laws (Fin
[2008]). The UK government can unconditionally enact any rules

effective at any time. Observable events where the government
activates/deactivates a rule (gmod(op, id, t)) count-as modifying
the rule (mod(op, id, t). Legislative rules identified as leg0 ∈ ID
cause rule activations Guk(�,{gmod(act, id, t)})  mod(act, id, t)
and legislative rules identified as leg1 ∈ ID cause rule deacti-
vations Guk(�,{gmod(deact, id, t)})  mod(deact, id, t). A model
Muk = 〈Ruk,V uk〉 is produced for an observable event trace et =
〈O0,O1,O2,O3,O4〉 for Iuk. The model comprises four versions
V uk = 〈V uk

0 ,V uk
1 ,V uk

2 ,V uk
3 〉. We begin the case:

Case 5.2. A rule states that any UK resident (e.g. person a re-
sides in the UK -r(a, uk)) in a business partnership in the UK (p(a,
uk)) or elsewhere such as Jersey (p(a, jers)) in the first tax year
month is obliged to pay tax (oblt). We have for all locations L ∈
{uk, jers} a tax rule Cuk↑(r(a, uk)∧ p(a, L),mon1)  oblt identified
as tax0 ∈ ID. Initially the legislative rules leg0 and leg1, and the tax
rule tax0 are active (Δuk = {active(leg0),active(leg1),active(tax0)}).
At time point one it is the first tax year month (O1 = {mon1}).
Following a court challenge (Pad) the government retroactively
replaces the tax rule with id tax0 with a new rule with id tax1
(O2 = {gmod(deact, tax0, 0),gmod(act, tax1, 0)}). The new rule,
tax1, states that only people in a UK business partnership are obliged
to pay tax - Cuk↑(r(a, uk)∧p(a, uk),mon1)  oblt.

Rule/ Fluent

leg2
leg3

Version

EUUK 3

0 1 2 3 4 5 6

tax0
oblt
leg0
leg1

tax2
oblt
leg0
leg1

tax1
leg0
leg1

tax0
oblt
leg0
leg1

UK 3

UK and
EUUK 2

UK and
EUUK 1

UK and
EUUK 0

Time

Figure 2. Model for case 5.2 with four institution versions for the institution
Iuk (denoted UK) and a model for case 5.3 with four versions for the institution
Ieuuk (denote EUUK). Institutions Iuk and Ieuuk have identical versions 0 to
2. Not shown, in all states person ‘a’ is in a Jersey-based business partnership
(p(a,jersey)) and is a UK resident (r(a,uk)).

In Figure 2 version zero (V uk
0 ) obliges person ‘a’ to pay tax in

state two. In state two (Suk
0:2) the current institution version changes

when the rule obliging UK residents to pay tax (tax0) is replaced
with the rule obliging UK business partners to pay tax (tax0)
(act(t1,0),deact(t0,0) ∈ Euk

0:2) to version one (V uk
1 s.t. Ruk(2) = 1).

Due to this change, the version one (V uk
1 ), does not oblige tax to be

paid in its third state (Suk
1:2) since person a resides in the UK but is in

a Jersey-based business partnership.

Case 5.2 (Continued). The government partially reverses the
tax change at time point three. This is by retroactively re-
placing the rule obliging people in a UK business partner-
ship to pay tax (tax1) with new rule identified as tax2 (O3 =
{gmod(deact, tax1, 0),gmod(act, tax2, 0)}). The new rule obliges
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UK residents in a business partnership to pay tax if it does not crimi-
nalise them retroactively (i.e. in a retroactive state an obligation to pay
tax is initiated conditional on the obligation holding in the next state
of the previous version). For all locations L ∈ {uk, jersey} the rule
is Cuk↑((r(a, uk)∧ p(a, L)) → (P) → PrV(NS(oblt))),mon1)  oblt.
Next, it is the first tax year month again (O4 = {mon1}).

In Figure 2 version two (V uk
2 ), like version zero, does not oblige

‘a’ to pay tax in the past. But, it does oblige them to pay tax after the
second time the first tax year month occurs (mon1 ∈ Euk

2:4).

Case 5.2 (Continued). The UK government decides to reverse the
previous judgements going back to the original rule set (O5 =
{gmod(deact, tax2, 0),gmod(act, tax0, 0)}).

In Figure 2, version three (V uk
3 ) reverts to the original legislation.

Thus we have the same situation as if the legislation in version zero
had not been modified. That is, an obligation to pay tax after the first
occurrence of the first tax year month (mon1 ∈ Euk

3:1).
The next case is a variation on the previous describing an institution

Ieuuk, incorporating EU human rights law.

Case 5.3. The European Convention on Human Rights [Council of
Europe, 1953, Art. 7] (ECHR) blocks retroactive legislative modi-
fications that criminalise formerly innocent people. The institution
Ieuuk contains the same rules as Iuk with the same identifiers minus
the legislative rules leg0 and leg1. Instead, legislative rules state that
observable rule modifications count-as rule modifications conditional
on the changes not retroactively criminalising people. In all states
where rules are being applied retroactively, if there is not an obligation
to pay tax in the previous version then there must not be an obliga-
tion to pay tax in the current version. We have rules with the identi-
fier l2: Geuuk(PaS(P → PrV(¬oblt)→¬oblt)),{gmod(act, id, t)}) 
act(id, t), and rules with the identifier l3: Geuuk(PaS(P →
PrV(¬oblt)→¬oblt)),{gmod(deact, id, t)})  deact(id, t). Initially,
person ‘a’ is in a Jersey based business partnership (p(a,jersey))
and is a UK resident (r(a,uk)), and the first tax rule and the leg-
islative rules conditional on being non retroactively criminalising
are active such that Δeuuk = {p(a,uk),r(a,uk), tax0, l2, l3}. The same
events occur as in case 5.2, et = 〈 /0,{mon1}, {gmod(deact, t0, 0),
gmod(act, t1, 0)}, {gmod(deact, t1, 0), gmod(act, t2, 0)}, {mon1},
{gmod(deact, t2, 0), gmod(act, t0, 0)}〉.

Figure 2 shows a model Meuuk for Ieuuk. The first three versions are
identical to our previous case 5.2 (where the UK’s legislature was not
constrained by EU rules blocking retroactively criminalising modifica-
tions), since the first two rule modifications do not criminalise people
retroactively. Unlike in our previous case 5.2, the version two contains
no tax rules. The reason being that tax rule two - “obliging uk resi-
dents in a business partnership to pay tax but on the condition that if
it is retroactive then those people were obliged to pay tax in the previ-
ous version”, is deactivated since its deactivation does not criminalise
retroactively. On the other hand, tax rule zero - “any UK resident in a
business partnership in the first tax year month is obliged to pay tax”
(Cuk↑(r(a, uk)∧p(a, L),mon1)  oblt) is not reactivated, even though
it was reactivated in our previous case 5.2. Its reactivation would
retroactively criminalise people if activated in version three, meaning
its activation does not occur since legislative rule - l2: Geuuk(PaS(P →
PrV(¬oblt)→¬oblt)),{gmod(act, id, t)})  act(id, t) - has a condi-
tion that is not met.

The next cases look at modifying legislative rules themselves.

Case 5.4. An institution Ip describes a parliament that can retroac-
tively modify rules through a majority vote pvote(act, id, t) ∈ Eobs.

The legislative rules are identified the id parl0∈ ID for activating rules
Gp(�,{pvote(act, id, t)})mod(act, id, t) and with the id parl1∈ ID
for deactivating rules Gp(�,{pvote(deact, id, t)}) mod(deact, id, t).
In the initial state all rules are active such that active(id) ∈ Δ. In an
observable event set trace tr = 〈O0,O1〉 at time point one the parlia-
ment votes to retroactively remove the rule which ascribes retroactive
modifications (O1 = {pvote(deact, parl1, 0)}.

Depicted in Figure 3 a single model Mp = 〈Rp,V p〉 comprises two
institution versions V p = 〈V p

0 ,V
p
1 〉. An event occurs in version zero at

time instant one, where the parliament votes to retroactively modify
a rule and the corresponding rule modification event occurs (Ep

0:1 =
{pvote(deact, parl1, 0),mod(deact, parl1, 0)}). Consequently the in-
stitution transitions to version one (Rp(1) = 1). Importantly, in version
one, the same rule modifying event does not occur. The reason being,
if the modification event did occur then the rule parl1 ascribing the
modification event - Gp(�,{pvote(deact, id, t)})  mod(deact, id, t) -
would be inactive in version one state one Sp

1:1, and the deactivation
could not occur in the first place (contradiction). This exemplifies how
the formalism always guarantees a model, paradoxical rule modifica-
tions do not occur if they make the rule modifying event impossible
in the first place.

0 1 2
Time

Fluent

active(parl0)
active(parl1)

active(parl0)
active(parl1)

Version

1

0

Figure 3. Model for case 5.4

The next case extends the previous case 5.4:

Case 5.5. This case describes an institution Imp where a monarch
and a parliament can retroactively modify rules, including all the rules
from the previous case’s institution Ip. Additionally, a rule identified
as fence0 ∈ ID states that if a fence is built fb ∈ Emp

obs it is obliged
the fence is painted white oblpf ∈ Fmp

inst - Cmp↑(�, fb)  oblpf. A rule
identified as mon0 states the monarch issuing a rule change decree
mdecree(act, id, t) ∈ Emp

obs to activate a rule counts-as activating the
rule - Gmp(�,{mdecree(act, id, t)})  mod(act, id, t). A rule identi-
fied as mon1 state the monarch issuing a decree to deactivate a rule
counts-as deactivating the rule Gmp(�,{mdecree(deact, id, t)}) 
mod(deact, id, t). All legislative rules are initially active, but the fence
painting rule is not (s.t. active(fence0) �∈ Δmp). At time point one
the parliament votes for the fence-painting obligation rule to be ac-
tivated, (O1 = {pvote(act, fence0, 1)}), a fence is built (O2 = {fb}),
the monarch issues by decree the fence-building rule to be retroac-
tively deactivated at the time it was activated, cancelling its acti-
vation (O3 = {mdecree(deact, fence0, 1)}). Finally, the parliament
votes to retroactively disenable the monarch from deactivating rules
(O4 = {pvote(deact, mon1, 0)}).

Depicted in Figure 4 the model Mmp = 〈Rmp,V mp〉 comprises
four versions V mp = 〈V mp

0 ,V mp
1 ,V mp

2 ,V mp
3 〉. At version zero time

instant zero the parliament votes to add the rule obliging built
fences to be painted white, causing a rule modification event (Emp

0:1 =
{pvote(act, fence0, 1),mod(act, fence0, 1)}) and the institution to
transition to the version one (Rmp(1) = 1) where the same modi-
fication occurs (Emp

1:1 = {pvote(act, fence0, 1),mod(act, fence0, 1)}).
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In the version one time instant two building a fence (fb ∈ Emp
1:2)

causes an obligation to paint the fence oblpf ∈ Smp
1:3. At time instant

three the monarch retroactively deactivates the fence painting rule
(mdecree(deact, fence0, 1)∈ Emp

1:3) causing the institution to transition
to the version two (Rmp(3) = 2) where the modification takes effect
(mdecree(deact, fence0, 1) ∈ Emp). Consequently, the fence painting
obligation rule is deactivated and its effects (an obligation) no longer
hold. When the parliament retroactively removes the ability for the
monarch to deactivate rules the institution transitions to the final
version three (Rmp(4) = 3) where the parliament’s retroactive rule
removal takes effect (pvote(deact, mon1, 0),mod(deact, mon1, 0) ∈
Emp

3:4) causing the monarch’s modifications to be unravelled (note that
at the final version’s third time instant the monarch’s rule modifica-
tion is unsuccessful even though it was successful in the previous
version). Consequently, the fence painting obligation rule and its ef-
fects (an obligation) is reinstated by retroactively removing the ability
to deactivate the fence painting rule.

0 1 2 3 4 5

Fluent

active(parl0)
active(parl1)
active(mon0)
active(mon1)

active(fence0)
oblpf

active(parl0)
active(parl1)
active(mon0)
active(mon1)

active(parl0)
active(parl1)
active(mon0)
active(mon1)

active(fence0)
oblpf

active(parl0)
active(parl1)
active(mon0)
active(mon1)

Version

3

2

1

0

Time

Figure 4. Model for case 5.5 with four institution versions.

6 Related Work

In (Governatori et al. [2005]; Governatori and Rotolo [2010]) a de-
feasible logic is proposed for temporal rule modification operations.
Operations include, in (Governatori and Rotolo [2010]), complete
rule removal (annulment) and removing immediate rule effects (ab-
rogation). Meta-rules are used to introduce rule changes, which bear
similarity to our rule-modifying counts-as rules. However, the meta-
rules are only conditional on a single state. For comparison, we for-
malise richer conditions on past versions, states and hypothetical
rule changes required to capture a number of important examples we
address (such as rule change being non-retroactively criminalising).
The focus of these papers is on rule change operations found in the
legal domain, rather than the relation between ascribing a social real-
ity and rule modifications with counts-as rules. In (López and Luck
[2003]; López et al. [2006]) electronic institutions are specified in the
Z specification language where legislation norms restrict legislative
actions. The conditions for legislation norms are less expressive than
our proposal and the authors do not consider the interdependency
between changing rules in the past/present/future and the built social

reality. On the other hand, in Boella and van der Torre [2004] rule
modifications ascribed by counts-as rules are formalised where there
is such a potential interdependency, but the setting is non-temporal.

Our proposal is thematically related to work in the institution-
al/normative reasoning sphere, in particular work on: 1. constitutive
rule classes (Grossi et al. [2005, 2006, 2008]; Grossi [2008, 2011]),
2. norm change postulates (Boella and van der Torre [2004]), 3. detect-
ing and/or resolving norm inconsistencies (Jiang et al. [2015]; Jiang
[2015]; Kollingbaum et al. [2007]; Corapi et al. [2011]; Li [2014];
Vasconcelos et al. [2008]), rectifying non-compliant institutions (King
et al. [2015a,b]) and 4. temporal norm updates (Alechina et al. [2013];
Knobbout et al. [2014]). However, these papers do not look at rule
change legality ascribed by constitutive rules over time.

7 Conclusions

This paper answers “when do rule changes count-as legal rule
changes?” with a novel formalism. Our framework formalises reason-
ing about institutional rule change over time ascribed by counts-as
rules. A novel semantics defines how an institution evolves from one
social reality to the next and from one version of rules to another.
Under the proposed semantics counts-as rules define the past/present/-
future social reality. In turn, rule modifications change counts-as rules
in the past/present/future and therefore the constructed social reality.

A rule change counts-as a legal rule change if and only if - 1. the
rule change is ascribed by counts-as rules, conditional on a context
which can include the potential changes to the social reality the rule
modification would make. 2. the rule change results are consistent
with the context the rule change is conditional on. In particular, tak-
ing into account the rule modification’s past/present/future effect on
counts-as rules, any changes to previous rule modifications, and the
rule modification being ‘undone’ by future modifications. Legal rule
changes always occur. Meeting our desiderata, illegal rule changes do
not occur and the institution continues to operate ‘as usual’.

There are many avenues for future work. First, extending the frame-
work to deal with further cases. In particular, rules which explicitly
block retroactive modifications altogether (e.g. [USC, Art. 1 Sec. 9
Cl. 3] “No Bill of Attainder or ex post facto Law shall be passed”).
Preventing retroactive modifications can be expressed as a lack of a
rule ascribing past rule changes, but not rules which block past rule
changes. Second, the fixed-point institutional model characterisation
can be implemented in any adequately expressive language. One pos-
sibility is Answer-Set Programming (Gebser et al. [2011b]; Gelfond
and Lifschitz [1988]) as used in the InstAL framework (Cliffe et al.
[2007]). Third, agent planning for rule changes, such as by building
on existing agent-planning in Answer-Set Programming (Gebser et al.
[2011a]; Lifschitz [1999]). Fourth, looking at agents bringing about
legal rules, known as social commitments (e.g. promises, contracts),
through locutions (Austin [1975]). In particular, looking at how social
commitments can be created with the special role of ascribing changes
to social commitments, such as by building on Event Calculus based
frameworks (Chesani et al. [2012]; Günay and Yolum [2012]).
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