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Abstract. Optimal multi-modal journey planning under uncertainty
is a challenging problem, due in part to an increased branching factor
generated by nondeterministic actions. Deterministic search, which
ignores all uncertainty, can be much faster, but deterministic plans
lack correctness and optimality guarantees in the uncertainty-aware
domain.

We present a novel approach that combines the strengths of both
deterministic and nondeterministic search in order to achieve supe-
rior performance. Initially, an A* search is used checking whether the
resulting deterministic plan remains correct and optimal under uncer-
tainty. When the plan is invalid, a backpropagation step through the
A*’s search graph improves the initial heuristic while preserving its
admissibility. After the backpropagation, an AO* search is run with
the new improved heuristic. A theoretical analysis proves that our ap-
proach is sound and optimal. Our backpropagation correctly handles
a subtle issue arising in the presence of state-dominance pruning.
This supports the use of these two powerful speedup techniques in
combination, for a better overall performance.

We empirically evaluate our solution in multi-modal journey plan-
ning under uncertainty, with realistic data from three European cities.
Our results show that our approach brings a significant performance
improvement over a state-of-the-art, highly optimized journey plan-
ning engine based on AO* search.

1 Introduction

Both domain-independent and dependent-specific planning have
been extensively studied for decades in the AI research commu-
nity. Despite recent improvements in domain-independent planning,
domain-specific planning is still necessary, due to a strong demand
for efficiency. Additionally, ideas developed in domain-specific plan-
ning can often be generalized and transferred to domain-independent
planning. Conversely, domain-independent planning algorithms can
be specialized into high-performance domain-specific methods.

Multi-modal journey planning has garnered increased attention in
recent years, for several reasons. First off, this is driven by an increas-
ing practical need, as multi-modal travel can potentially contribute to
reducing pollution, congestion and carbon emissions. Secondly, an
increasing availability of input data, such as public transport sched-
ules, and smart phone technology facilitate the development and the
use of journey planning systems.

Traditional multi-modal journey planning systems are determinis-
tic, implicitly assuming that the input data is accurate which makes
journey planning relatively straightforward. However, in real life, a
transport network can have a great deal of uncertainty, such as signif-
icant differences between published schedules and the actual arrival
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Figure 1. Architecture of our approach.

and departure times of buses, trams or trains due to unforeseen de-
lays. This can result in missed connections, which can in turn cause
other segments in the journey to become unrealistic. Recent work has
investigated multi-modal journey planning under uncertainty [8, 29],
as an approach to provide more reliable journey plans [7].

Given the high volume and time dependent nature of such an appli-
cation, the speed performance for optimal multi-modal journey plan-
ning is extremely important. As a result, the current rational choice
of practitioners is the use of domain-specific planning specialized
to journey planning. The need for speeding up optimal multi-modal
journey planning is particularly important when uncertainty is mod-
eled as part of the problem, for two reasons. First off, deterministic
multi-modal journey planning has benefited from more research ef-
forts than the uncertainty-aware problem, being thus a more mature
field (see e.g., [3]). Secondly, planning under uncertainty is inher-
ently more computationally difficult.

We present an optimal approach to journey planning under un-
certainty, that combines the strengths of deterministic and nonde-
terministic search, as illustrated in Figure 1. A deterministic solver,
based on A* [13] search with pruning enhancements, provides a de-
terministic plan. This is followed by a so-called validity test, to de-
cide whether the deterministic plan remains correct and optimal in
the nondeterministic domain. If the test is positive, the nondetermin-
istic problem has been solved with a standard deterministic search,
which is typically faster than nondeterministic search. On the other
hand, when the validity test fails, a backpropagation step through the
A*’s search graph computes new (improved) heuristic estimations
for the states visited in the search. Then, a nondeterministic search,
based on AO* [27, 28] search with pruning enhancements, is run
using the more accurate heuristic. The new heuristic improves the
performance due to the knowledge gathered during the original de-
terministic search.

The high-level idea summarized in the previous paragraph and il-
lustrated in Figure 1 is domain-independent. However, we develop
it and study its use in an application-specific context, as our mo-
tivation was advancing the state-of-the-art in multi-modal journey
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Figure 2. Toy example.

planning under uncertainty. Creating components such as an effective
backpropagation technique is not a trivial task. In addition, combin-
ing our contributions with a state-of-the-art AO*-based solver intro-
duces a number of challenges to address. Part of the reason is that the
highly-optimized A* and AO* search engines use pruning rules, in-
cluding state-dominance pruning [8]. As discussed in the paper, there
are important differences between deterministic and nondetermin-
istic search regarding the conditions under which state-dominance
pruning can safely applied. Transferring informed knowledge from a
deterministic domain relaxation to the nondeterministic domain, as
done with our backpropagation algorithm, needs a special attention,
to handle a subtle issue that may otherwise affect the optimality.

We give a theoretical analysis which proves that our approach is
sound and optimal. The proposed solution makes it feasible to har-
ness two powerful speedup techniques (i.e., our approach and domi-
nance pruning) in tandem, for a better overall performance.

We use Botea et al.’s domain modeling [8], a state-of-the-art ap-
proach to multi-modal journey planning under uncertainty. As dis-
cussed later, the domain is represented as a state space that allows
nondeterministic transitions. A plan is a probabilistic contingent plan
(or policy in MDP terms). Figure 2 shows a toy problem. A user ar-
rives (e.g., with another connection) at a point A by 11am. There
are two options to continue to the destination B: take a fast bus di-
rectly; or walk to a nearby tram stop C, and take a tram from there.
The first option is faster but, due to uncertainty in the bus depar-
ture time, it may or it may not be possible to catch the bus route.
As such, the take-bus action has two possible nondeterministic out-
comes (branches): “success” and “missed bus” (failure). In general,
the probability of each possible outcome is computed from the prob-
abilistic times of the user arrival and the bus departure [8]. In our
example, the optimal contingent plan is as follows: At location A,
attempt to take the bus. If the bus is missed, walk to the tram stop C
and take the tram.

We experimentally evaluate our proposed solution demonstrating
the contribution with realistic multi-modal transportation data from
three European cities, a testbed reused from the literature [7]. Our
approach achieves significantly improved performance, compared to
a state-of-the-art approach based on AO* search and on search en-
hancements such as those introduced by Botea et al. [8].

2 Related Work

We start with an overview of research in nondeterministic planning,
followed by surveying previous research in deterministic search.

2.1 Nondeterministic Planning

Variations of planning under uncertainty include conformant plan-
ning [11, 32], contingent planning [30], and probabilistic contingent
planning, with differences stemming from the assumptions on the

properties of the actions and the observability (sensing capabilities).
See e.g., [4] for a discussion.

In conformant planning, actions can be nondeterministic, the ini-
tial state is not fully known, and no sensing is available when execut-
ing the plan. Thus, a conformant plan should guarantee reaching the
goal under such conditions. In contingent planning, sensing allows
to detect the resulting state when a nondeterministic action is ap-
plied. Plans can have a tree structure, to ensure that the goal will be
reached from any potential nondeterministic successor. Probabilis-
tic contingent planning allows probabilistic actions and sensing. As
Bonet and Geffner remark [4], probabilistic contingent planning can
generally be modeled as Partially Observable Markov Decision Pro-
cesses (POMDPs). However, when full observability (full sensing) is
assumed, we fall into the framework of MDPs.

While approaches such as AO* and dynamic programming can
return optimal plans (policies), computing optimal plans is challeng-
ing due to the potentially many states that need to be processed dur-
ing planning. For instance, decision-theoretic algorithms based on
dynamic programming can suffer from large memory requirements,
that can be exponential in the domain feature size [2]. Adding heuris-
tic enhancements to AO*, such as an informed admissible heuristic
or effective pruning rules can reduce the size of the state space ex-
plored in a search for an optimal plan, which is the approach taken
by Botea et al. [8]. Hansen and Zilberstein present LAO* [12], an
optimal algorithm based on AO* that is capable of finding solutions
with loops, and apply LAO* to solve MDPs. We note that the search
space of our multi-modal journey planning has no loops, one main
reason being that a state includes the time among its components.

Due to the computational difficulty of optimal nondeterminis-
tic planning, research has often focused on suboptimal approaches,
for a better speed and scalability. Hoffmann and Brafman [18] use
Weighted AO*. Bonet and Geffner take an approach based on a
greedy, real-time action selection [4, 5, 6]. One of their heuristics,
called the min-min state relaxation, is related to our approach of us-
ing the results of a deterministic relaxation to obtain an admissible
heuristic in the nondeterministic domain.

Some approaches rely on using deterministic planning as part of
solving a nondeterministic planning problem [22, 23, 35, 24, 21, 34,
25, 26]. For example, Kuter et al. [24] run multiple deterministic
planning rounds, with a deterministic relaxation of the original do-
main, to gradually add branches to a contingent plan under construc-
tion. FF-Replan [35] invokes a deterministic planner for the initial
state and for the states in the plan where unexpected outcomes are
observed in the nondeterministic scenario.

Thus, the high-level idea of using deterministic planning as part of
the process to solve a nondeterministic planning problem appears in
both previous work and our work. There are important differences,
however, stemming in part from the fact that we ensure solution opti-
mality, whereas such previous work does not. We run exactly one
deterministic search. If the result is a correct and optimal nonde-
terministic plan, we are done. Otherwise, we improve the available
heuristic function with the backpropagation and run full-scale AO*.
To our knowledge, our approach is the first to combine deterministic
and nondeterministic search in this way with evidence that this ap-
proach solves realistic, difficult journey planning problems fast and
optimally.

2.2 Deterministic Search

Using a deterministic relaxation of a nondeterministic problem to
compute an admissible heuristic can be used as a form of domain
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abstraction. Using state-space abstractions to build an admissible
heuristic is broadly used in planning and heuristic search. See e.g.,
Hierarchical A* (HA*) [19], pattern databases [10], and merge-and-
shrink abstractions [14, 15]. Among these, HA* is more closely re-
lated to our method. HA* builds a hierarchy of abstractions, with the
lowest level being the original state space. A* search in one abstract
space can be used to build an admissible heuristic for the lower ab-
straction level. HA* features caching techniques to reduce duplicate
search effort across multiple levels in the hierarchy.

We incorporate Holte et al.’s P-g heuristic [19]. In HA*, P-g is the
heuristic h(n) = P − g(n), where P is an optimal solution cost in
the next abstraction level, and g(n) is the g-cost in the next abstrac-
tion level of the abstract node corresponding to n. There are multiple
notable differences between our approach and HA*. First, we con-
sider domains with multiple types of “consumable resources”, such
as the a maximum walking time and a maximum number of legs
in a trip. This makes state dominance an important pruning mecha-
nism. Ensuring the correctness and optimality of a hybrid A*–AO*
approach, especially in the presence of state dominance, is a non-
trivial contribution. Secondly, unlike HA*, our approach backpropa-
gates information through the graph search of A*, for a stronger im-
provement of the heuristic. Furthermore, our approach runs at most
two searches, one deterministic and one nondeterministic. That is,
our approach defines exactly two “hierarchical levels”, and employs
only one search in the “abstracted” (i.e., deterministic) state space.
The number of searches can be larger in HA*, due to a potentially
larger number of levels, as well as potentially multiple searches at a
given abstraction level. In HA* all search spaces are deterministic,
whereas we report a contingent planning system.

Incremental heuristic search aims at efficiently reusing previous
search results to solve “similar” new problems. It has mainly been
applied to real-time path-planning with dynamic domains. There
are two common principles for reusing information in incremental
search. One is to start a new A* search with the open and closed lists
adapted from the previous A* search [33, 20]. The idea is effective
when small changes are observed in the problem from one search
to another. On the other hand, in our setting, differences between
deterministic and nondeterministic search are more fundamental. In
particular, the two types of problems require very different search
algorithms, such as A* and AO*. The second common principle in
incremental search is to make a heuristic more informed based on
previous search results [16, 17]. Caching techniques used for this
purpose are similar to those featured in HA*, reviewed earlier.

3 Preliminaries

We start with a description of the multi-modal journey planning prob-
lem. Then we discuss how the problem is converted into a nondeter-
ministic planning problem. We give definitions, optimization criteria
and assumptions needed in the formal analysis. ND and D refer to
the nondeterministic and deterministic domains, respectively.

3.1 Input Data in Multi-modal Journey Planning

A multi-modal journey planner takes as input a user request (“the
instance”) and a network transport snapshot (“the domain”).

The request includes the origin, the destination, the departure or
the arrival time,2 and the transport modes acceptable in the journey
at hand. It also includes so-called quotas, which are max acceptable

2 In this work we focus on scenarios where the user request specifies a depar-
ture time rather than an arrival time.

values for the walking time, the cycling time, and the number of legs
(segments) in the trip.

The network snapshot contains information available about a
multi-modal transportation network and includes the following data:

• Relevant locations include public-transport stops, bike stations in
a city’s shared-bike network along with the location of the origin
and destination of the request. All relevant locations have their lat
and lon coordinates specified, besides their type (e.g., stop or bike
station), name and id.

• A public-transport route can be represented as an ordered se-
quence of stops. Each route is served by several trips during the
day. A trip has an arrival and departure time associated with every
stop along the route. Traditionally, these times are deterministic.
However, we allow a more general representation, where a depar-
ture or arrival time is a probability distribution.

• Road map data is represented as a graph with nodes and segments.
Each segment is labeled to reflect its direction (e.g., one-way or
bi-directional), access to cyclists, access to pedestrians, access to
cars and driving speed.

Next we discuss how such input data is converted into a nondeter-
ministic state space.

3.2 Nondeterministic Domain Modeling

We adopt the formalization introduced by Botea et al. [8] for multi-
modal journey planning under uncertainty. For a self-contained pre-
sentation, we summarize how the problem is formalized here as a
nondeterministic state space, defining states and transitions.

A state s is a tuple (ps, ts, qs, αs) where:

• ps is the position of the traveler, which is either a relevant location
on the map, or the id of a trip, for those states where the user is
aboard a trip (e.g., a bus);

• ts is a probability distribution of the time when the user has
reached position ps;

• qs is a vector which lists quotas left in this state (e.g., max walking
time and max number of legs in the rest of the trip);

• αs is a subset of additional variables which are skipped for brevity.

The initial state s0 is constructed with the components
ps0 , ts0 , qs0 taken from the user request, representing the origin, the
departure time and the quotas acceptable for the entire trip respec-
tively. A valid state s is not allowed to have negative values on any
component of the quota vector qs. A state sG is a goal state if it is
valid and psG corresponds to the destination specified in the user re-
quest. Depending on the user preferences, other conditions may be
added to the goal state, such as not having a hired bike in posses-
sion in a goal state (i.e., if the user hires a bike, the bike should be
eventually returned to a bike station). For clarity, we assume that this
condition is part of the goal definition as well.

It is common in nondeterministic planning research to group reg-
ular states together into a belief state, using for instance decision di-
agrams to represent belief states. This choice seen in related work is
motivated by two reasons: to cover domains with partial observabil-
ity, where a belief state could contain all possible current states; and
to mitigate state explosion, obtaining a more compact state space def-
inition. Botea et al.’s modeling [8], which we adopt in this research,
works with regular, not belief states, one of the reasons being that
states are assumed to be fully observable during the plan execution.

Transitions include Walk, TakeTrip (i.e., boarding a pub-
lic transport vehicle), GetOffTrip, HireBike, Cycle and
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ParkBike. Except for TakeTrip actions, all transitions are de-
terministic, in the sense that they always succeed and thus each of
them has exactly one successor. As illustrated earlier in Figure 2, a
TakeTrip action can succeed or fail, depending on the possibly
uncertain arrival times of the vehicle and the traveler. Botea et al.
show how to compute the probability of each outcome [8]. Obvi-
ously, when the probability of success is 1, the TakeTrip action at
hand becomes deterministic, with only the successful branch defined.
When the probability is 0, no TakeTrip action is defined for that
particular trip in that particular state.

On the successful branch, the successor state s of a TakeTrip
action has the position ps set to the id of the trip just boarded. The
time ts is the (stochastic) departure time of the trip from the stop at
hand. On the failed branch, the position and the time remain as in the
parent state. However, in the successor state, a new flag is set to true,
indicating that the trip at hand has just been missed. As such, the
parent and the successor state are different, and therefore the failed
branch is not a self-loop transition. This property, together with the
fact that the time is a state component, ensures that there are no cycles
in this state space. In the search, the space is modeled as a tree, rather
than a directed acyclic graph.

For brevity, we skip discussing how other transitions generate their
successor states. Such details are not difficult to infer based on the
discussion provided, and the interested reader can refer to the original
work [8].

A state s dominates a state s′, i.e., s ≺ s′, iff ps = ps′ , qs ≥ qs′

component-wise, and P (Ts ≤ Ts′) = 1. Ts is the random variable
with the density function ts. In other words, the position is the same,
and one state is no worse than the other in terms of available quo-
tas and time. The relation is not symmetric, apart from the obvious
exception that every state dominates itself.

And(s) is the set of all actions applicable to a state s in ND.
For a state s and an action a ∈ And(s), B(s, a) is the set of all
possible branches. I.e., |B(s, a)| = 1 for deterministic actions, and
|B(s, a)| = 2 for nondeterministic actions with just two outcomes
(i.e., succeed and fail). Each branch b uniquely determines a transi-
tion to a successor state. It has a probability pb as illustrated earlier,
a cost cb(s, a) associated with the transition,3 and a successor state
γb(s, a). As the deterministic action has a unique branch, in their
case the notations get simplified into c(s, a) and γ(s, a). Thus, de-
terministic actions are a particular type of successful branches.

3.3 Deterministic Domain

We obtain the deterministic domain as a relaxation from ND. Specifi-
cally, we convert nondeterministic actions into deterministic actions,
by keeping only the successful branch. Actions that were determin-
istic in ND are preserved unchanged. Adet(s) is the set of actions
applicable to a state s in D. Clearly, |Adet(s)| = |And(s)|.

This relaxation is optimistic in the sense that, even when the prob-
ability of the successful branch is small (but strictly positive), we
still consider that as the only outcome of the action in D. Such an
optimistic approach is one of the conditions that we need to ensure
the optimality of plans in our approach, as discussed later in the pa-
per. In particular, we will make use of the following straightforward
observation.

Observation 1. All successful branches in ND are available as de-
terministic actions in D.
3 The cost can depend on both action a and state s, not just on action a. This

allows for instance to integrate waiting into the cost of a transition from
“arrived at a stop” to “boarded a bus”.

3.4 Optimality Criteria

The cost function c(n,m) returns a non-negative value as a state
transition cost from state n to state m. Additionally, f(n), g(n)
and h(n) represent an f-value, a g-value, and a h-value (or heuris-
tic value) at state n, respectively. The f-value is defined as f(n) =
g(n) + h(n), where g(n) is the sum of the transition costs from the
initial state to reach n, and h(n) is a value estimating a cost to reach
the destination from n. In this work, the cost is set to the travel time.

The optimal cost vdet(n) of a state n in D, the optimal expected
cost vexp(n) in ND, and the optimal worst-case cost vwst(n) in ND

are defined as:

1. If n is a goal state, vdet(n) = vexp(n) = vwst(n) = 0.
2. If |Adet(n)| = 0, vdet(n) = vexp(n) = vwst(n) =∞.
3. Otherwise,

• vdet(n) = min
a∈Adet(n)

(c(n, a) + vdet(γ(n, a)))

• vexp(n) =min
a∈And(n)

∑

b∈B(n,a)

pb(cb(n, a) + vexp(γb(n, a)))

• vwst(n) = min
a∈And(n)

max
b∈B(n,a)

(cb(n, a) + vwst(γb(n, a))).

Note that there are many goal states for one goal, since the time
and quotas are part of the state definition.

We use Botea et al.’s objective function [8], which minimizes the
worst case, and break ties in favor of better expected costs (i.e., take
(vwst, vexp) in the lexicographic order):

Definition 1. The cost in ND of a plan π is the pair vopt(π) =
vopt(r) = (vwst(r), vexp(r)), where r is the root node of the plan.

We write (p1, p2) ≤lex (q1, q2) iff (p1 < q1) ∨ (p1 = q1 ∧ p2 ≤
q2). The inequality is strict when the two pairs are not identical. We
can use other objectives (e.g., swap the lexicographic order [7]) with
minor changes, but this is beyond our focus.

We list a few additional facts relevant to our analysis:

Proposition 1 ([8]). In an optimal plan, the cost when following the
failed branch of an action cannot beat the cost along the successful
branch.

Observation 2 ([8]). Let a be an action with two nondeterministic
outcomes in a correct plan π. Cutting action a from π, plus the entire
subtree along the successful branch, results in a correct plan.

The example shown in Figure 2 helps see the intuition behind these
two claims. The part of the plan under the failed branch of the take-
bus action is ”walk to C and then take the tram”, as these are the
actions taken after failing to catch the bus. Regarding Proposition 1,
if this part of the plan under the failed branch had a better cost (i.e.,
better arrival time) then the bus trip, there would be no point to even
attempt to take the bus. Regarding Observation 2, indeed, we can
eliminate the attempt to take the bus, together with the part under the
successful branch (i.e., ride the bus to B), and still obtain a perfectly
valid (but not necessarily optimal) plan. This plan would be “...arrive
at A, walk to C and take the tram to B.” More formally, this stems
from the fact that we compute strong (acyclic) plans [9], meaning
every pathway in a contingent plan ends up at the destination. See
the original work for more formal proofs of these two claims.

Assumption 1. We assume that the initial heuristic available is ad-
missible in D.

In particular, this holds for Botea et al.’s heuristic [8], which we
reuse in experiments as the initial heuristic available.
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4 Cost and Heuristic Relations in D and ND

We present a few results that draw a connection between determin-
istic and nondeterministic search. Bonet and Geffner have observed
similar properties in their work on MDPs and probabilistic planning
[4, 6]. The discussion presented in this section is important to ensure
the optimality of our hybrid approach.

Theorem 1. For any state n, vdet(n) ≤ vexp(n) ≤ vwst(n).

Proof Sketch (for vdet(n) ≤ vexp(n)). Let π be a plan in ND,
rooted at n, that is optimal on vexp (i.e., vexp(π) = vexp(n)). Let
p be a smallest-cost pathway in π. Consider all nondeterministic ac-
tions having their failed branch within p. Remove these actions from
π, together with the subtree under their successful branch, obtaining
a plan π′ that is correct in ND, cf. Observation 2. In π′, p has lost
zero or more failed branches (let p′ be the new pathway). As p′ has
only successful branches, it is a correct plan in D, cf. Observation 1.
Clearly, vdet(p′) ≤ vexp(π) = vexp(n), since p was a best-cost
pathway in π. Furthermore, vdet(n) ≤ vdet(p

′), since the former is
the optimal value in D, and the latter is the cost of one correct plan
in D (which may be optimal or not).

Theorem 2. Any h(n) admissible in D is admissible in ND.

Proof Sketch Let hnd(n) = (h(n), h(n)) and vopt(n) =
(vwst(n), vexp(n)). It follows from Theorem 1 that hnd(n) =
(h(n), h(n)) ≤lex (vdet(n), vdet(n)) ≤lex (vwst(n), vexp(n)) =
vopt(n).

Corollary 1. The perfect heuristic in D h∗(n) = vdet(n) is admis-
sible in ND.

These results show that we can use an optimal cost in D or a lower-
bound to admissibly guide the search in ND. We emphasize that the
previous cost definitions are specific to a given goal condition (i.e.,
they are initialized to 0 at goal states), but the initial state is irrele-
vant. As such, the results derived in this section are specific to a goal
condition, but make no assumption about the initial state.

5 Hybrid Approach

Algorithm 1 Hybrid Deterministic Nondeterministic Search
Require: Initial state root

1: O = C = H = φ
2: (vdet, π1) = A*(root, O, C, h)
3: if (all actions in π1 are deterministic in ND) then

4: return π1

5: else

6: Update(root, O, C, H , vdet)
7: return AO*(root, max(H,h))

We now introduce our new algorithm, whose main steps are illus-
trated in Algorithm 1 and Figure 1. Our approach first runs A* with
an open list O and a closed list C, returning an optimal plan π1 in
D, as well as its cost vdet. Unlike standard A*, our A* takes into
account the state dominance (see Algorithm 2). Assume that A* gen-
erates a successor s and detects that there is a state u in O ∪ C such
that u ≺ s. Then, A* discards s, since both vdet(u) ≤ vdet(s) and
g(u) < g(s) always hold in the deterministic scenario. That is, A*

does not explore further the search space rooted at s. This is plays a
crucial role in significantly reducing A*’s search space.

Similarly to A*, AO* performs pruning with state dominance.
However, Botea et al. [8] have pointed out that correctly applying
state dominance pruning in a nondeterministic search requires addi-
tional conditions to satisfy, and they presented sufficient conditions
for this purpose. Our AO* implementation observes these.

Algorithm 2 A* with state dominance pruning
Require: State n, open list O, closed list C and consistent heuristic

function h
1: Enqueue(O, n, h(n))
2: while O 
= ∅ do

3: t = Dequeue(O)
4: if t is a goal then

5: return (f(t), path(n, t))
6: Save(t, C)
7: for each of t’s successors s do

8: if s 
∈ C ∧ no state u ∈ C ∪O dominates s then

9: Enqueue(O, s, g(t) + c(t, s) + h(s))
10: return (∞, ∅)

Theorem 3. Consider a deterministic plan π1 computed in the de-
terministic search. If all π1’s actions a correspond to a deterministic
action in ND (as opposed to a being the relaxation of a nondeter-
ministic action in ND), then π1 is correct and optimal in ND.

Proof Sketch The correctness follows from the fact that actions,
being deterministic in ND, will behave as in the deterministic do-
main, being applicable in the corresponding state and succeeding
with probability 1. For optimality, assume there is a nondeterminis-
tic plan π2 with a better score vopt(π2) <lex vopt(π1). Let ri be the
root of πi, i = 1, 2. Applying Theorem 1 to r2, we obtain vdet(r2) ≤
vexp(r2) ≤ vwst(r2). At the same time, vdet(r1) = vexp(r1) =
vwst(r1), since π1 is linear and thus has no multiple branches. As
both π1 and π2 are valid plans in D, and π1 is optimal in D, it fol-
lows that vdet(r1) ≤ vdet(r2). Putting all these together, it follows
that vopt(r1) = (vwst(r1), vexp(r1)) = (vdet(r1), vdet(r1)) ≤lex

(vdet(r2), vdet(r2)) ≤lex (vwst(r2), vexp(r2)) = vopt(r2), which
is a contradiction.

The previous result is important because it formalizes the valida-
tion step in our approach (line 3 of Algorithm 1). When the validity
test fails, our approach updates the heuristic, after which it runs AO*.

The Update method shown in Algorithm 3 implements the back-
propagation idea, computing more informed h-values that are stored
in a table H . As in related previous work [31, 1], Update traverses
the search graph backwards and sets H(n) = minsi∈C(n)(f(si) −
g(n)), where C(n) is the set of not-expanded frontier states reach-
able from n. However, unlike previous approaches, Update does not
perform iterative deepening, and its depth-first search is limited to
the threshold initialized to vdet at the initial state (see Algorithm 1),
and to the set of states examined by A*.

As mentioned, both A* and AO* apply dominance pruning. To
ensure the plan optimality, our Update procedure correctly han-
dles a subtle but important detail stemming from the use of domi-
nance pruning. Assume a new state s is dominated by an older state
u ∈ O ∪ C. Both A* and Update skip examining s due to the prun-
ing scheme with state dominance (see line 8 in Algorithm 2 and line
5 in Algorithm 3). However, while regarding s as a deadend in D
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Algorithm 3 Update
Require: State n, open list O, closed list C, hash table H , and

threshold θ
1: r = h(n)
2: if n ∈ H then

3: t = GetValue(n, H)
4: r = max(r, t)
5: if θ ≥ r ∧ n is not a goal ∧ n 
∈ O ∧ no state m ∈ O ∪ C

dominates n then

6: /* Improve heuristic values of successors */
7: v =∞
8: for each of n’s successor s do

9: v = min(v, c(n, s) + Update(s,O,C,H, θ − c(n, s)))
10: /* Increase r based on an improved heur. value v */
11: r = max(r, v)
12: /* Increase r based on the optimal solution cost θ */
13: r = max(r, θ)
14: /* Save an improved heuristic value */
15: Save(n, r, H)
16: return r

Figure 3. A simple example where a dominated state in D belongs to an
optimal plan in ND

is correct in A*, setting H(s) = ∞ in Update would be an error.
Instead, in such cases we set H(s) = h(s), where h is the initial
heuristic (line 1 in Algorithm 3). We illustrate why aggressively set-
ting H(s) = ∞ in Update would be a mistake with the following
example.

Example 1. Figure 3 illustrates a scenario where a state s domi-
nated in D belongs to an optimal plan in ND. Assume that u domi-
nates s. Recall that in D pathways starting with a failed branch are
not generated. Thus, in D (solid arrows only), there are two plans: the
sequential pathway through u and the sequential pathway through s.
The one containing u is an optimal plan, and s can safely be pruned
in D as a state dominated by u.

In ND (solid plus dashed arrows), there are two plans: the contin-
gent plan with a branching point under m, and the sequential path-
way through s. Here, the latter is an optimal plan, as we assume that
the nondeterministic branch in the former plan has a very large cost.

Therefore, setting H(s) = ∞ in Update would result in ignor-
ing the plan through s in ND and returning a suboptimal solution.
To bypass this, our Update method propagates back a conservative
admissible heuristic value h(s) for s.

Line 13 in Algorithm 3 is related to Holte et al.’s P-g heuristic [19],

discussed in the related work section. Backpropagation (without line
13) provides better estimates than P-g (line 13 alone) in many cases.
Interestingly, while experiments presented later show that P-g alone
is not effective in this domain, we found that P-g is helpful in com-
bination with our backpropagation. Specifically, we found line 13 to
be particularly useful in states pruned away with state dominance. As
such pruned states are not expanded further, their exploration subtree
is empty. On the other hand, backpropagation (without line 13) works
by increasing the heuristic of a state based on the heuristic of its chil-
dren. Clearly, when a state has no children (as it happens for states
pruned away), backpropagation cannot increase the heuristic of that
state. In such cases the P-g rule (line 13) is the only mechanism that
can improve the heuristic, which of course can trigger further im-
provements up in the tree.

We argue that the P-g heuristic preserves the admissibility of H
in D as follows: 1) When a state n is processed in Update, we have
θ = vdet − g(n). This follows easily from the initialization of θ to
vdet (line 6 in Algorithm 1), and from the way it is updated in each
recursive call (line 9 in Algorithm 3); 2) It is known that, at the end
of an A* search that returns an optimal cost vdet, vdet − g(n) is an
admissible heuristic for every state n with an optimal g-cost.

Our heuristic update strategy implements a few additional ideas.
As shown in Algorithm 1, we take the max(h(n), H(n)) as the
heuristic to use in AO*. The reason is that, for those states n not
visited in A*, H(n) returns 0. Secondly, when u = (l, tu, . . .) dom-
inates s = (l, ts, . . .) in D, ts+H(s) = f(s) ≥ f(u) = tu+H(u),
which further allows us to increase H(s) to H(u) + tu − ts within
method GetValue in Algorithm 3. Thirdly, we added to AO* (both
as a module of our method and as a standalone benchmark) an extra
heuristic update rule. Let ss and sf be the successful and the failed
successors of a nondeterministic action. The heuristic of sf can ad-
missibly be increased to the heuristic of ss, a property that follows
from Proposition 1.

Theorem 4. The hybrid method returns optimal solutions in ND.

Proof Sketch It is sufficient to prove H(n) ≤ vdet(n), ∀n. Then
H is admissible in ND cf. Theorem 2. With no generality loss, as-
sume that H(n) = h(n) if n is not found in H . Here we only
show that H(n) = mina∈Adet(n)(c(n, a)+H(γ(n, a))) ≤ vdet(n).
Other rules (e.g., increasing H(n) to θ) were discussed earlier. The
proof is related to Akagi et al.’s work [1]. Let Hk be the table H
after k updates. If k = 0, the theorem holds, as nothing new is
saved in H , and h(n) ≤ vdet(n) cf. Assumption 1. Assume that
the result holds for k (i.e., Hk(s) ≤ vdet(s)), and we are about to
save a new result for node n at step k + 1. We have: Hk+1(n) =
mina∈Adet(n)(c(n, a) + Hk(γ(n, a))) ≤ mina∈Adet(n)(c(n, a) +
vdet(γ(n, a))) = vdet(n).

6 Experimental Evaluation

We implemented our ideas on top of DIJA [8], a state-of-the-art
engine for multi-modal journey planning under uncertainty. It is a
highly-optimized, AO*-based planning engine, implementing tech-
niques described by Botea et al. [8]. For a fair comparison, the AO*
algorithm is the same in both DIJA and our approach, except for the
heuristic used. As described earlier in the paper, our approach first
attempts to solve the problem with deterministic A* search. If the
resulting plan is not valid in the nondeterministic domain, a back-
propagation step provides an improved heuristic to the AO* engine.

The optimality criterion is minimizing the worst-case travel time,
with ties broken in favor of a better expected travel time. Botea et
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al. [7] handle a linear combination between the travel time and the
number of legs. However, optimizing purely on the travel time is the
most computationally challenging scenario, which is why we focus
on improving the performance in this case.

We have used testbed data from the literature [7]. This is trans-
portation data from three European cities, Montpellier, Dublin, and
Rome. The Dublin data contain 4,739 stops, 120 routes, and 7,308
trips per day. The road network has 301,638 nodes and 319,846 seg-
ments. In Montpellier, bus and tram data amount to 1,297 stops, 36
routes and 3,988 trips per day. The road network has 152,949 nodes
and 161,768 links. In Rome, buses, trams, subways and light trains
sum up to 391 routes, with 8,896 stops and 39,422 trips per day. The
road map contains 522,529 nodes and 566,400 segments.

The original data is deterministic. This was extended with a
stochastic noise assigned to the original deterministic arrival and de-
parture times. The noise follows a Normal distribution, truncated to a
confidence interval of 99.7%. We report results with two distinct lev-
els of noise. The smaller level has σ2 = 1600 seconds, equal roughly
to ±2 minutes around the original deterministic arrival or departure
times. In the larger noise level we set σ2 = 6400, which roughly
corresponds to a ±4-minute uncertainty interval.

We used 1,000 journey plan requests (instances) for each city. The
origins and the destinations are picked at random, and the departure
time is 11AM. Quotas are set to at most 20 minutes of walking, and
at most 5 segments per trip. Combined with two levels of noise and
two solvers, this sums up to 3, 000× 2× 2 = 12, 000 runs in total.

Figure 4 shows the CPU time in our method, denoted by “Hybrid”,
compared to the benchmark state-of-the-art approach DIJA. Dots un-
der the main diagonal are cases where our method is faster, and dots
above the diagonal show the opposite. The three parallel lines corre-
spond to the main diagonal y = x, y = 3x (above the main diagonal)
and y = 1

3
x (below the main diagonal). These will help better un-

derstand the results.
A main conclusion from Figure 4 is that, when our method is

faster, it can be faster by a large margin, especially in solving dif-
ficult instances. The speedup can significantly exceed one order of
magnitude and, in a few cases, two orders of magnitude. On the other
hand, when our method is slower, its slowdown is bounded by a fac-
tor of 3 in most but not all cases (see the y = 3x line above the main
diagonal line). We call this the asymmetric speedup behavior.

This (not strict) bounding factor of 3 is present because, in our
method, each run invokes at most three time-consuming operations:
the A* search (“Hybrid A*”), the backpropagation, and the AO*
search (“Hybrid AO*”). Each of these is typically smaller than the
standalone AO* search (“DIJA AO*”), as follows. The A* search
has a smaller space to explore, being a deterministic search. Figure 5
(left) shows differences between A* and AO* search, both with the
initial heuristic in use. The backpropagation traverses A*’s search
space, being thus comparable with A* as CPU time. The AO* of
our method is typically faster than the DIJA AO*, thanks to the bet-
ter heuristic obtained through the backpropagation phase. Figure 5
(middle) shows the impact of the improved heuristic on AO* search.
The impact of backpropagation will be discussed in more detail later
in this section.

Table 1 complements the observations drawn from Figure 4 with
summary statistics. For each σ2 level, Part A reports the total CPU
time ratio between DIJA and our method. Our method is consistently
better on this metric, as all values reported are greater than 1. This
is an important result, showing that the new approach is faster in
average on all 6 combinations of a city and a noise level. The average
speed is important, for instance, in a server implementation, where

Table 1. Summary statistics. Easy instances, requiring less than 1 second
with the baseline approach, are skipped.

City Mon Rom Dub
Uncertainty level: σ2 = 1600

A CPU time ratio DIJA/Hybrid 5.97 1.07 1.71
B Max speedup factor Hybrid 166.01 48.77 101.81

Max speedup factor DIJA 1.51 1.44 1.74
C Det plan valid % 58.10 27.70 35.80
D Instances Hybrid faster % 66.66 40.32 49.26

Uncertainty level: σ2 = 6400

A CPU time ratio DIJA/Hybrid 2.14 1.26 1.18
B Max speedup factor Hybrid 269.56 82.18 158.07

Max speedup factor DIJA 5.12 3.28 1.54
C Det plan valid % 39.70 10.40 15.40
D Instances Hybrid faster % 57.6 65.85 25.26

a journey planning engine has to answer several queries in a short
amount of time. Part B shows the maximum speedup of each system,
showing a consistent advantage in favor of the new hybrid approach.
Part C reports the percentage of instances where the deterministic
plan is valid under uncertainty, and Part D presents the percentage
of instances where our method is faster (i.e., dots below the main
diagonal in Figure 4). Due to the asymmetric speedup behavior, our
method is faster in terms of average solving time (Part A) even in
those cases where Part D shows a value lower than 50%.

Savings in speed come from both the ability to avoid backpropa-
gation and AO* search, when the deterministic search is sufficient,
and from the better informed AO* heuristic when the deterministic
search is not sufficient. Note that, given a σ2 level, Part D shows sub-
stantially higher percentages than Part C, confirming that our method
is faster substantially more often than just the cases when our method
stops after A*.

We have also evaluated a partial version of Hybrid, with back-
propagation turned off. In other words, when the deterministic plan
is invalid in the nondeterministic domain, the heuristic is updated us-
ing only the P-g rule, without any backpropagation. Comparing the
middle and the rightmost charts in Figure 5 convincingly illustrates
the benefits of backpropagation.

In the rightmost chart, we observe that, in our problems, the P-g
rule alone does not change the AO* performance significantly. In par-
ticular, this implies that, for the subset of instances where A* alone
is not sufficient, a hybrid approach without backpropagation would
consistently be slower than a pure AO* solver. Indeed, in such cases,
the system has the additional overhead of running A*.

On the other hand, the full heuristic update method, with both P-g
and backpropagation switched on, performs significantly better than
the original heuristic, as shown in the middle chart in Figure 5. Even
when the system has to perform A*, backpropagation and AO*, the
speedups are obtained in AO* due to a better-informed heuristic off-
sets and even exceed the overhead of the A* and backpropagation
steps on average. In particular, this explains why values in Part D are
higher than values in Part C in Table 1. Thus, backpropagation plays
a significant role in the performance of our system.

7 Conclusions

We presented an approach to nondeterministic planning combining
A* and AO* search. We focused on multi-modal journey planning
under uncertainty, an application domain where speeding up opti-
mal solving approaches is an important task. Our theoretical analysis
shows that our approach creates optimal plans even in the presence of
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Figure 4. CPU time in our method and DIJA AO* on a logarithmic scale. Top row: σ2 = 1600; bottom row: σ2 = 6400.
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Figure 5. Left: A* in our method vs DIJA AO*; middle: AO* in our method vs DIJA AO*; right: AO* with a partial heuristic update strategy vs AO* with the
original heuristic. Data shown for Rome with σ2 = 6400. Other combinations (city, noise level) lead to a similar conclusion and are skipped to save room.

dominance relations between states. Empirical results in multi-modal
journey planning under uncertainly demonstrate that our approach
brings a significant performance improvement over a state-of-the-art
journey planner based on AO*.

Assumptions such as modeling nondeterminism with successful
and failed attempts are not limited to journey planning. We plan to

develop our method in domain-independent planning, especially in
domains with state dominance (e.g., planning under uncertainty with
consumable resources). Another interesting direction is to further im-
prove the heuristic function with backpropagation, extending the ini-
tial A* search with localized additional explorations.
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