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Abstract. Multi-label classification aims to assign multiple labels
to a single test instance. Recently, more and more multi-label clas-
sification applications arise as large-scale problems, where the num-
bers of instances, features and labels are either or all large. To tackle
such problems, in this paper we develop a clustering-based local
multi-label classification method, attempting to reduce the problem
size in instances, features and labels. Our method consists of low-
dimensional data clustering and local model learning. Specifically,
the original dataset is firstly decomposed into several regular-scale
parts by applying clustering analysis on the feature subspace, which
is induced by a supervised multi-label dimension reduction tech-
nique; then, an efficient local multi-label model, meta-label classifier
chains, is trained on each data cluster. Given a test instance, only the
local model belonging to the nearest cluster to it is activated to make
the prediction. Extensive experiments performed on eighteen bench-
mark datasets demonstrated the efficiency of the proposed method
compared with the state-of-the-art algorithms.

1 INTRODUCTION

Originated from traditional single-label classification, multi-label
classification (MLC) enables to associate an instance with multiple
labels. MLC has been used to tackle a number of real-world applica-
tions like text categorization [11], semantic image classification [3],
video annotation [16] and music emotions detection [24], etc. Var-
ious MLC decomposition methods, such as Binary Relevance [3],
Classifier Chains [18, 6], Calibrated Label Ranking [8] and Label
Powerset [26], have been proposed by decomposing a multi-label
problem into one or a set of single-label classification problems.

As the rapid increasing of web-related applications, more and
more recent multi-label datasets emerge in large-scale, whose num-
bers of instances, features and labels are far from the regular-size.
For example, there are millions of videos in the video-sharing web-
site Youtube, while each one can be tagged by some of millions of
candidate categories. Such large-scale problems challenge the exist-
ing MLC methods. Several methods [38, 5] have been proposed to
tackle such a situation by training a multi-label model on the feature
or the label subspaces. The common assumption behind these meth-
ods is that noisy features exist in the original data and the training la-
bel matrix is low-rank. Although these methods achieved much suc-
cess in a number of MLC applications, further improvement in terms
of time complexity and prediction accuracy is recently required.

In this study, we put on two assumptions about the locality in
MLC setting: (a) meta-labels, i.e. reasonable and strong label com-
binations, exist implicitly in the label space; (b) only a fraction of

1 Hokkaido University, Sapporo 060-0814, Japan, email: {sunlu, mine,
kkimura}@main.ist.hokudai.ac.jp

features and instances are relevant to a meta-label. These assump-
tions are supported by several observations. For example, in Enron
dataset, 53 labels are categorized into only four meta-labels, and in
image annotation, an object typically relates to only a few regions in
the high-dimensional feature space.

Hence, we presume that MLC can be tackled by decomposing the
original large-scale data into several regular-scale datasets, each of
which is relevant to only several meta-labels in a feature subspace
with a fraction of training instances. Based on this assumption, a
Clustering-based Local MLC (CLMLC) method is proposed in this
paper. CLMLC consists of two stages, low-dimensional data clus-
tering and local model learning. In the first stage, a supervised di-
mension reduction is firstly conducted to project the original high-
dimensional data into a low-dimensional feature subspace, while
preserving feature-label correlation. Then clustering analysis is ap-
plied to partition the low-dimensional data into several regular-scale
datasets. In the second stage, within each data cluster, meta-labels
are mined by saving both label similarity and instance locality, and
then classifier chains over meta-labels are built as the local MLC
model. Given a test instance, prediction is made on the basis of
the local model corresponding to its nearest data cluster. To empir-
ically evaluate the performance of CLMLC, extensive experiments
on regular/large-scale datasets from various domains are carried out
with the state-of-the-art MLC algorithms.

2 RELATED WORKS

To handle large-scale MLC problems, recently many research ef-
forts have been paid to Feature Space Dimension Reduction (FS-
DR) and Label Space Dimension Reduction (LS-DR). In FS-DR, tra-
ditional supervised dimension reduction approaches, such as Latent
Semantic Indexing, Linear Discriminant Analysis, Canonical Corre-
lation Analysis and Hypergraph Spectral Learning, are specifically
extended to match the MLC setting [35, 29, 22, 21]. On the other
hand, in order to improve the discriminative ability for each label,
LIFT [37] and LLSF [9] are proposed to extract label-specific fea-
tures. In LS-DR, based on the assumption of low-rank of label ma-
trix, several embedding methods, such as Compressive Sensing [12],
CPLST [5] and FaIE [13], encode the sparse label space by preserv-
ing label correlations and maximizing predictability of latent label
space. By combining FS-DR and LS-DR, several methods have been
proposed in recent years. WSABIE [31] learns a low-dimensional
joint embedding space by approximately optimizing the precision on
the top k relevant labels. By modeling MLC as a general empirical
risk minimization problem with a low-rank constraint, LEML [34]
scales to very large datasets even with missing labels. To handle the
extreme MLC problems with a large number of labels, a tree-based
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method, FastXML, is proposed in [15] by directly optimizing a spe-
cific ranking loss function, nDCG, and by efficiently executing its
formulation in light of an alternating minimization algorithm.

The above methods can be categorized as global MLC methods,
since they assume that feature-label relationship can be modeled on
the whole training data. The global methods probably contradict real-
world problems, harming classification accuracy and bringing in high
time complexity, especially in large-scale datasets. To relax the as-
sumption, local MLC methods are proposed, aiming to solve a com-
plex problem by dividing it into multiple simpler ones. The local
strategy has two advantages. First, simpler problems can be solved by
simpler techniques, like transforming a global nonlinear problem into
a local linear problem. Second, the training and testing can be more
efficient, making the algorithm tractable for large-scale datasets.

As local MLC methods, Hierarchical Multi-Label Classification
(HMC) [19, 1, 28] builds a hierarchy of single-label classifiers. Un-
der the hierarchy constraint, the training data for each classifier is
restricted so that it contains only the instances associated with parent
labels. However, HMC’s applications are limited on particular prob-
lems in text categorization and genomics analysis. Applying the same
strategy of HMC, HOMER [25] breaks the constraint on the prede-
fined label hierarchy. It builds the label hierarchy by recursively con-
ducting balanced k-means on the label space, transforming the orig-
inal task into a tree-shaped hierarchy of simpler tasks, each one rele-
vant to a subset of labels. The local strategy is also applied by directly
finding data clusters. CBMLC [14] partitions the original multi-label
datasets into multiple small-scale datasets, on which multi-label clas-
sifiers are built individually. Given a test instance, it is feed only to
the classifier corresponding to the nearest cluster. To speed up the
kNN classification, SLEEC [2] partitions the original training data
into several clusters, learning a local nonlinear embedding per clus-
ter and conducting kNN only within the test sample’s nearest cluster.
On the other hand, in the regression setting, several regression tree
based methods, RETIS [10], M5 system [17] and HTL [23], also
employ the local strategy. Similar with the classical regression tree
algorithm like CART [4], such methods divide the input space into
mutually exclusive regions described by propositional assertions on
the input features. The difference is that RETIS, M5 and HTL build
several alternative regression models in the leaves of a tree to im-
prove predictive accuracy. In [36], Regression Clustering partitions
the original dataset into several subsets. Each regression is conducted
on its own subset with a simpler distribution, leading to a better gen-
eralization ability.

Based on the above survey, we notice that seldom research works
focus on local MLC methods. Motivated by the work of CBMLC
[14], in this paper, we propose the Clustering-based Local MLC
(CLMLC) method. In CLMLC, we assume a large-scale problem
can be divided into a number of small or medium-scaled problems
without loss of discriminative information. Different with CBMLC,
CLMLC is built on a feature subspace and employs different local
models for different data clusters.

3 THE CLMLC METHOD

In the scenario of MLC, an instance is typically represented by a pair
(x,y), which contains a feature vector x ∈ X ⊆ R

D and the corre-
sponding label vector y ∈ Y ⊆ {0, 1}L, where y� = 1 if and only
if �-th label is associated with instance x, and y� = 0 otherwise,
� ∈ {1, ..., L}. Assume that we are given a dataset of N instances
S = [XS ,YS ], where XS = [x1, ...,xN ]ᵀ and YS = [y1, ...,yN ]ᵀ

denote the feature and label matrix, respectively. Given a testing

dataset T = [XT ,YT ], the task of MLC is to find an optimal clas-
sifier h : X → Y which assigns a label matrix ŶT to test data XT

such that h minimizes a loss function on ŶT and YT .
Now we present the proposed CLMLC method, which can scale

to MLC problems in large N , D and L. CLMLC comprises low-
dimensional data clustering and local model learning.

3.1 Low-dimensional data clustering

We assume that a large-scale dataset could be decomposed into sev-
eral smaller local sets. To this end, clustering analysis is introduced
to find the local clusters. However, directly applying cluster analysis
would probably produce unstable outputs and suffer from high com-
putational cost, especially when the dimensionality of the original
feature space is relatively high. In this sense, a dimensionality re-
duction approach is necessary as a pre-processing technique before
applying clustering analysis.

Let X and Y be already centered so as to Xᵀ1 = 0 and Yᵀ1 = 0.
The Partial Least Squares (PLS) [30] finds the directions of maxi-
mum covariance between X and Y by Singular Value Decomposi-
tion (SVD) as follows:

min
U,V

‖XᵀY −UΛdV
ᵀ‖2F , (1)

where Λd is a diagonal matrix (λ1, λ2, ..., λd) with the largest d
singular values of XᵀY, and ‖·‖F denotes the Frobenius norm. This
is also the solution of the maximization problem:

max
U,V

Tr(UᵀXᵀYV) (2)

s.t. UᵀU = VᵀV = Id.

One of limitations of PLS is the lack of invariance to arbitrary linear
transformations on X [32].

To overcome this limitation, Orthonormalized PLS (OPLS) [32] is
proposed by orthonormalizing X to X(XᵀX)−

1
2 in (1), and we have

min
U,V

‖(XᵀX)−
1
2XᵀY −UΛdV

ᵀ‖2F . (3)

Similar with (2), (3) can be also rewritten to a maximization problem:

max
U

Tr(UᵀXᵀYYᵀXU) (4)

s.t. UᵀXᵀXU = I.

The solution U consists of eigenvectors u corresponding to the
largest d eigenvalues of a generalized eigenvalue problem

(XᵀYYᵀX)u = λ(XᵀX)u. (5)

To avoid the singularity of XᵀX and reduce the model complexity, in
practice a regularization term γI with γ > 0 is commonly introduced
to (5), leading to

(XᵀYYᵀX)u = λ(XᵀX+ γI)u. (6)

In general, directly solving the generalized eigenvalue problem (6)
suffers from an expensive cost and thus might not scale to large-scale
problems. In this study, we use an efficient two-stage approach [20]
to address the problem. In the first stage, a penalized least squares
problem is solved by regressing the centered feature matrix X to the
centered label matrix Y; after projecting X into the subspace by the
regression, in the second stage, the resulting generalized eigenvalue
problem is solved by SVD.
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Algorithm 1 Low-dimensional data clustering

Input: X: centered data matrix, Y: centered label matrix, d: size of
feature subspace, K: number of data clusters

Output: U: projection matrix, R,C: clustering output
1: Solve the least squares problem:

min
U1

‖XU1 −Y‖2F + ‖U1‖2F ;

2: H = Uᵀ
1X

ᵀY;
3: Decompose H = UHΛdU

ᵀ
H by SVD;

4: U = U1U2, where U2 = UHΛ
− 1

2
d ;

5: [R,C]← k-means(Z,K) by (7), where Z = XU.

Through (6), we find an orthonormal basis [u1,u2, ...,ud] to form
U. Therefore we can have a low-dimensional expression z ∈ R

d by
projection z = Uᵀx, Z = XU as well. Then we conduct clustering
on z1, z2, ..., zN in the light of elimination of most of noisy features.
In this paper, k-means is employed, aiming to approximately solve
the following optimization problem:

min
R,C

N∑
i=1

K∑
j=1

rij‖zi − cj‖22 (7)

s.t. ∀i, ‖ri‖0 = 1, ‖ri‖1 = 1,

where R represents the N × K indicator matrix, indicating the as-
signment from data points to centroids, while the centroid matrix
C = [c1, ..., cK ]ᵀ, whose cj =

∑
i rijxi/

∑
i rij . ‖·‖0, ‖·‖1

and ‖·‖2 denote the �0, �1 and �2 norm, respectively. In general,
k-means is realized as an iterative algorithm. The pseudo code of
low-dimensional data clustering is given in Algorithm 1.

3.2 Local model learning

In the second stage, we perform local model learning in each cluster.
By expecting the existence of meta-labels, We use Laplacian eigen-
map to learn meta-labels within each cluster, and then build classifier
chains over meta-labels for local model learning. For each data clus-
ter, we construct a graph G =< V,E > in the label space, where V
is the vertex/label set, and E is the edge set containing edges between
each label pair. Given an appropriate affinity matrix A on E, meta-
label learning can be considered as a graph cut problem: cutting the
graph G into a set of sub-graphs.

For constructing affinity matrix A, we use two different sources:
the label space and the instance space. In this study, we utilize Jac-
card index and heat kernel affinity to represent the label similarity
and instance locality, respectively.

• Label similarity A(L) = {A(L)
�m }L�,m=1,

A
(L)
�m :=

∑N
i=1 yi� · yim∑N

i=1(yi� + yim − yi� · yim)
. (8)

• Instance locality A(I) = {A(I)
�m}L�,m=1,

A
(I)
�m := e−‖μ�−μm‖22 , where μ� =

∑N
i=1 zi · yi�∑N

i=1 yi�
. (9)

By combining these two matrices, we obtain the following affinity
matrix A = {A�m}L�,m=1,

A�m :=
1

2

(
A

(L)
�m +A

(I)
�m

)
. (10)

Algorithm 2 Local model learning

Input: Zc: local data matrix, Yc: local label matrix, n: number of
meta-labels, L: meta-label classifier

Output: hc: local classifier
1: Compute A according to (10);
2: L = D−A, where D = diag(

∑
� A�m);

3: Solve Lw = λDw by n smallest eigenvalues;
4: Rc ← k-means(W, n), where W = [w1, ...,wn];
5: for k ∈ {1, ..., n} do

6: id = find(Rc==k)
7: hc

k ← L(Zc,Yc(:, id));
8: Zc = Zc ∪Yc(:, id);
9: hc ← {hc

k}nk=1.

To cut the graph G into n sub-graphs (n meta-labels) is equiv-
alent to perform k-means on the n smallest eigenvectors W =
[w1, ...,wn] of the generalized eigenvalue problem:

Lw = λDw, (11)

where D = (D��) = (
∑

m A�m), and L is the Laplacian matrix,
L = D−A. Thus, the label assignment to n meta-labels is obtained
by applying k-means on the rows of W.

After finding meta-labels, a sophisticated multi-label classifier L
could be applied to capture the strong label correlations within each
meta-label. On the other hand, to model relatively weak meta-label
correlations, a simple MLC method is also necessary in the meta-
label space. In this way, label correlations can be well captured with-
out much time cost. To this end, we introduce an efficient classifier
chains method [18] over the meta-label space. In general, for each
meta-label within a meta-label chain, we expand its training data by
taking previous meta-labels as extra features before feeding the data
into L. The outline of local model learning is given in Algorithm 2.

3.3 Prediction

Given a test instance x ∈ XT , the prediction can be made by two
steps. Firstly, x is encoded into the feature subspace by z = Uᵀx.
Secondly, the local classifier hc corresponding to z’s nearest cluster
c such as,

c = argmin
c∈C

‖z− c‖22, (12)

is activated to predict the label assignment by ŷ = hc(z). Note that
C in (12) is the centroid matrix obtained according to (7).

3.4 Remarks

The complete procedure of CLMLC, including training (Steps 1 to
5) and testing (Steps 6 to 8), is outlined in Algorithm 3. It is worth
noting that CLMLC is able to serve as a meta-strategy for large-scale
MLC problems. For example, other dimension reduction or cluster-
ing analysis techniques could be used to replace the OPLS or k-
means in Algorithm 1, in order to handle specific problem settings
or data patterns. Similarly, any MLC method can be directly applied
for local model learning in Algorithm 2. It shows the high flexibility
of CLMLC to address various MLC problems.

4 EXPERIMENTS

4.1 Datasets and evaluation metrics

In order to evaluate the performance of the proposed CLMLC
method and other MLC methods, we conducted experiments on eigh-
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Algorithm 3 CLMLC

Input: X: centered data matrix, Y: centered label matrix, x: test
instance, d: size of feature subspace, K: number of data clusters,
n: number of meta-labels, L: meta-label classifier

Output: ŷ: predicted label set
Training:

1: [U,R,C]← <Algorithm 1> (X,Y, d,K);
2: Z = XU;
3: for c ∈ C do

4: Find local dataset [Zc,Yc] by R;
5: hc ← <Algorithm 2> (Zc,Yc, n,L);

Testing:
6: z = Uᵀx;
7: Find z’s nearest cluster c by (12);
8: ŷ← hc(z);

teen benchmark datasets in Mulan [27], where nine datasets come
from two data sources, Rcv1 and Corel16k. The statistics of the
datasets are summarized in Table 1. For the convenience of parame-
ter setting, we treat the first six sets as regular-scale datasets, and last
twelve sets as large-scale datasets, respectively.

Table 1: The statistics of experimental multi-label datasets. “Card.”,
“Den.” and “Dist.” denote the label cardinality, label density and the
number of distinct label combinations, respectively.

Dataset N D L Card. Den. Dist. Domain
Birds 645 260 19 1.014 0.053 133 audio
Genbase 662 1186 27 1.252 0.046 32 biology
Medical 978 1449 45 1.245 0.028 94 text
Enron 1702 1001 53 3.378 0.064 753 text
Scene 2407 294 6 1.074 0.179 15 image
Yeast 2417 103 14 4.237 0.303 198 biology
Corel5k 5000 499 374 3.522 0.009 1453 image
Rcv1s1 6000 944 101 2.880 0.029 837 text
Rcv1s2 6000 944 101 2.634 0.026 800 text
Rcv1s3 6000 944 101 2.614 0.026 783 text
Rcv1s4 6000 944 101 2.667 0.022 629 text
Bibtex 7395 1836 159 2.402 0.015 1654 text
Corel16k1 13766 500 153 2.859 0.019 1791 image
Corel16k2 13761 500 164 2.882 0.018 1782 image
Corel16k3 13760 500 154 2.829 0.018 1718 image
Corel16k4 13837 500 162 2.842 0.018 1760 image
Corel16k5 13847 500 160 2.858 0.018 1784 image
Delicious 16105 500 983 19.020 0.019 3937 text

Given a test dataset T = {(xi,yi)}NT
i=1, we use four evaluation

metrics for the experimental results. Here 1 denotes the indicator
function.

• Exact-Match := 1
NT

∑NT
i=1 1ŷi=yi ,

• Hamming-Score := 1
NT

∑NT
i=1

1
L

∑L
�=1 1ŷi�=yi� ,

• Macro-F1 := 1
L

∑L
�=1

2
∑NT

i=1 ŷi�·yi�
∑NT

i=1 ŷi�+
∑NT

i=1 yi�
,

• Micro-F1 :=
2
∑L

�=1

∑NT
i=1 ŷi�·yi�

∑L
�=1

∑NT
i=1 ŷi�+

∑L
�=1

∑NT
i=1 yi�

.

The above metrics can be cast into two categories, instance-based
metrics (Exact-Match and Hamming-Score) and label-based metrics
(Macro-F1 and Micro-F1 [33]). Exact-Match is the most stringent
measure, since it does not evaluate partial match of labels. In spite
of that, it is a good metric to measure how well label correlations
are modeled. Hamming-Score emphasizes on the prediction accu-
racy on label-instance pairs, and is able to evaluate the performance
on each single label. However, since Hamming-Score treats equally

false positives ad false negatives, it is weak in imbalanced MLC prob-
lems. The label-based metrics overcome the limitations of the two
instance-based metrics. Macro-F1 computes F1-Score locally over
each label, which is more sensitive to the performance on the labels
in minority. In contrast, Micro-F1 computes F1-Score globally over
all labels, thus it tends to be influenced more by the labels in majority.

4.2 Configuration

The proposed CLMLC method was compared with four state-of-the-
art MLC methods:

• ECC [18]: an ensemble of classifier chains, where chain orders
are generated randomly. Each classifier of a single CC is trained
by taking previously assigned labels as extra attributes.

• MLHSL [21]: an FS-DR MLC method. A dataset is encoded by
mapping features into a subspace, and then an MLC method is
built on the basis of the encoded dataset.

• CPLST [5]: an LS-DR MLC method. The label space is encoded
by a feature-aware principal label space transformation, and the
round-based decoding [5] is used to predict the label set.

• CBMLC [14]: a first attempt on applying clustering analysis on
the dataset before feeding the data to a multi-label classifier.

ECC is adopted due to its superior performance compared with
other MLC decomposition methods, such as BR [3] and CC [18],
as shown in [18]. As global MLC methods, MLHSL is chosen as a
representative of FS-DR methods, while CPLST is chosen by its per-
formance advantage, especially in Hamming-Score, over several LS-
DR methods, such as Compressive Sensing, PLST and orthogonally
constraint CCA, as shown in [5]. As a local MLC method, CBMLC
is selected for comparison in cluster analysis. Note that SLEEC [2]
is excluded from the comparing methods, although it employs the
similar local strategy with CLMLC. This is because SLEEC focuses
on extreme MLC [15], where standard multi-label evaluation metrics
like our four metrics are not appropriate.

In the experiments, 5-fold cross validation was performed to eval-
uate the classification performance. For fair comparison, CC with
ridge regression1 was used as the baseline classifier for CBMLC,
MLHSL, CPLST and CLMLC. In parameter setting, for CLMLC,
we set the size of feature subspace d by min{L, 30}, and the num-
ber of clusters K by 20/100 for regular/large-scale datasets, respec-
tively. For a cluster c, the number of meta-labels n was set to 	Lc/5
.
CLMLC employed an ensemble of 2 CCs as the meta-label classifier
L. ECC used an ensemble of 10 CCs. In addition, in order to scale
up ECC, random sampling was applied to randomly select 75% of
instances and 50% of features for building each CC in ECC, as rec-
ommended in [18]. CBMLC and MLHSL shared the same value of
K and d with CLMLC, respectively. For CPLST, we set the ratio for
LS-DR by 0.8/0.6 for regular/large-scale datasets, respectively. Note
that the parameters were chosen for the comparing methods in order
to balance the classification accuracy and execution time, according
to the experimental results on conducting grid search in the param-
eter spaces (detailed discussion will be made in Section 4.4). We
obtained the MATLAB codes of CPLST1 and MLHSL2 given by the
authors, and implemented the MATLAB codes of ECC3, CBMLC3

and CLMLC3 by ourselves. Experiments were performed in a com-
puter configured with an Intel Quad-Core i7-4770 CPU at 3.4GHz
with 4GB RAM.
1 https://github.com/hsuantien/mlc_lsdr
2 http://www.public.asu.edu/˜jye02/Software/MLDR/
3 https://github.com/futuresun912/CLMLC.git
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Table 2: Experimental results (mean (rank)) on eighteen multi-label datasets in four evaluation metrics.

Method Exact-Match

Birds Genbase Medical Enron Scene Yeast Corel5k Rcv1s1 Rcv1s2 Rcv1s3 Rcv1s4 Bibtex Corel16k1 Corel16k2 Corel16k3 Corel16k4 Corel16k5 Delicious
ECC 0.515 (3) 0.974 (4) 0.640 (3) 0.121 (2) 0.607 (2) 0.197 (2) 0.006 (3) 0.098 (4) 0.214 (4) 0.216 (4) 0.329 (2) 0.157 (3) 0.009 (3.5) 0.007 (4) 0.009 (3) 0.008 (3) 0.008 (3.5) 0.001 (4.5)
MLHSL 0.524 (1.5) 0.982 (1) 0.676 (2) 0.120 (3) 0.596 (3) 0.196 (3) 0.004 (5) 0.114 (3) 0.220 (3) 0.219 (3) 0.320 (4) 0.119 (5) 0.009 (3.5) 0.008 (3) 0.007 (4) 0.007 (4) 0.008 (3.5) 0.002 (3)
CPLST 0.502 (4) 0.980 (2) 0.583 (4) 0.092 (5) 0.479 (5) 0.149 (5) 0.005 (4) 0.063 (5) 0.176 (5) 0.173 (5) 0.290 (5) 0.148 (4) 0.007 (5) 0.006 (5) 0.006 (5) 0.006 (5) 0.007 (5) 0.001 (4.5)
CBMLC 0.375 (5) 0.973 (5) 0.578 (5) 0.101 (4) 0.553 (4) 0.163 (4) 0.012 (2) 0.163 (2) 0.255 (2) 0.248 (2) 0.326 (3) 0.164 (2) 0.016 (2) 0.014 (2) 0.017 (2) 0.017 (2) 0.015 (2) 0.012 (1)
CLMLC 0.524 (1.5) 0.979 (3) 0.688 (1) 0.147 (1) 0.627 (1) 0.205 (1) 0.029 (1) 0.224 (1) 0.316 (1) 0.319 (1) 0.400 (1) 0.172 (1) 0.030 (1) 0.029 (1) 0.030 (1) 0.028 (1) 0.030 (1) 0.004 (2)
avg. rank CLMLC (1.194) � CBMLC (2.833) � MLHSL (3.194), ECC (3.194) � CPLST (4.583)

Method Hamming-Score

Birds Genbase Medical Enron Scene Yeast Corel5k Rcv1s1 Rcv1s2 Rcv1s3 Rcv1s4 Bibtex Corel16k1 Corel16k2 Corel16k3 Corel16k4 Corel16k5 Delicious
ECC 0.951 (3) 0.999 (3) 0.989 (2) 0.933 (3) 0.896 (1) 0.793 (2) 0.990 (2.5) 0.973 (2) 0.977 (2) 0.977 (2) 0.982 (1.5) 0.988 (1.5) 0.981 (2) 0.982 (2.5) 0.982 (2) 0.982 (2,5) 0.982 (2) 0.981 (2.5)
MLHSL 0.954 (1.5) 0.999 (3) 0.990 (1) 0.936 (2) 0.875 (4) 0.786 (3) 0.990 (2.5) 0.973 (2) 0.977 (2) 0.977 (2) 0.981 (3) 0.986 (4) 0.981 (2) 0.982 (2.5) 0.982 (2) 0.982 (2.5) 0.982 (2) 0.981 (2.5)
CPLST 0.950 (4) 0.999 (3) 0.986 (5) 0.911 (5) 0.887 (2) 0.797 (1) 0.991 (1) 0.973 (2) 0.977 (2) 0.977 (2) 0.982 (1.5) 0.988 (1.5) 0.981 (2) 0.983 (1) 0.982 (2) 0.983 (1) 0.982 (2) 0.982 (1)
CBMLC 0.887 (5) 0.999 (3) 0.987 (4) 0.930 (4) 0.869 (5) 0.750 (5) 0.988 (4) 0.966 (5) 0.971 (5) 0.969 (5) 0.976 (5) 0.986 (4) 0.972 (5) 0.976 (5) 0.975 (5) 0.975 (5) 0.975 (5) 0.976 (5)
CLMLC 0.954 (1.5) 0.999 (3) 0.988 (3) 0.940 (1) 0.885 (3) 0.779 (4) 0.986 (5) 0.969 (4) 0.973 (4) 0.973 (4) 0.979 (4) 0.986 (4) 0.977 (4) 0.979 (4) 0.978 (4) 0.979 (4) 0.979 (4) 0.979 (4)
avg. rank CPLST (2.167), ECC (2.167) � MLHSL (2.417) � CLMLC (3.583) � CBMLC (4.667)

Method Macro-F1

Birds Genbase Medical Enron Scene Yeast Corel5k Rcv1s1 Rcv1s2 Rcv1s3 Rcv1s4 Bibtex Corel16k1 Corel16k2 Corel16k3 Corel16k4 Corel16k5 Delicious
ECC 0.290 (3) 0.725 (5) 0.340 (4) 0.196 (1) 0.703 (1) 0.354 (4) 0.014 (4) 0.118 (4) 0.131 (3) 0.108 (3.5) 0.109 (3) 0.193 (3) 0.014 (4.5) 0.016 (4) 0.017 (4) 0.010 (4.5) 0.013 (4) 0.034 (4)
MLHSL 0.302 (2) 0.767 (1) 0.354 (3) 0.160 (4) 0.648 (4) 0.354 (3) 0.010 (5) 0.104 (5) 0.096 (5) 0.091 (5) 0.089 (5) 0.095 (5) 0.014 (4.5) 0.014 (5) 0.014 (5) 0.010 (4.5) 0.012 (5) 0.025 (5)
CPLST 0.287 (4) 0.761 (2.5) 0.374 (1) 0.167 (3) 0.639 (5) 0.351 (5) 0.016 (3) 0.125 (3) 0.110 (4) 0.108 (3.5) 0.108 (4) 0.186 (4) 0.015 (3) 0.018 (3) 0.021 (3) 0.013 (3) 0.015 (3) 0.048 (3)
CBMLC 0.188 (5) 0.738 (4) 0.312 (5) 0.195 (2) 0.655 (3) 0.418 (1) 0.032 (2) 0.204 (2) 0.195 (2) 0.185 (2) 0.176 (2) 0.257 (1) 0.068 (1) 0.063 (1) 0.058 (1) 0.070 (1) 0.060 (1) 0.143 (1)
CLMLC 0.369 (1) 0.761 (2.5) 0.358 (2) 0.153 (5) 0.689 (2) 0.400 (2) 0.038 (1) 0.215 (1) 0.210 (1) 0.198 (1) 0.189 (1) 0.210 (2) 0.056 (2) 0.057 (2) 0.053 (2) 0.051 (2) 0.047 (2) 0.067 (2)
avg. rank CLMLC (1.861) � CBMLC (2.056) � CPLST (3.333) � ECC (3.528) � MLHSL (4.222)

Method Micro-F1

Birds Genbase Medical Enron Scene Yeast Corel5k Rcv1s1 Rcv1s2 Rcv1s3 Rcv1s4 Bibtex Corel16k1 Corel16k2 Corel16k3 Corel16k4 Corel16k5 Delicious
ECC 0.440 (4) 0.990 (3) 0.800 (2) 0.499 (1) 0.694 (1) 0.642 (1) 0.126 (4) 0.325 (4) 0.356 (4) 0.350 (4) 0.430 (3) 0.381 (4) 0.092 (3) 0.079 (4) 0.076 (4) 0.077 (4) 0.073 (4.5) 0.096 (4)
MLHSL 0.452 (2) 0.992 (1.5) 0.812 (1) 0.483 (2) 0.640 (4) 0.627 (4) 0.140 (3) 0.310 (5) 0.330 (5) 0.317 (5) 0.392 (5) 0.279 (5) 0.089 (4) 0.084 (3) 0.065 (5) 0.085 (3) 0.090 (3) 0.063 (5)
CPLST 0.450 (3) 0.992 (1.5) 0.756 (4) 0.414 (5) 0.635 (5) 0.631 (3) 0.106 (5) 0.349 (3) 0.371 (3) 0.365 (3) 0.440 (2) 0.382 (3) 0.070 (5) 0.078 (5) 0.079 (3) 0.070 (5) 0.073 (4.5) 0.194 (3)
CBMLC 0.265 (5) 0.988 (4) 0.740 (5) 0.463 (4) 0.641 (3) 0.581 (5) 0.151 (2) 0.371 (2) 0.387 (2) 0.376 (2) 0.426 (4) 0.393 (2) 0.163 (2) 0.157 (2) 0.154 (2) 0.161 (1) 0.156 (1) 0.268 (1)
CLMLC 0.474 (1) 0.987 (5) 0.782 (3) 0.480 (3) 0.676 (2) 0.632 (2) 0.173 (1) 0.401 (1) 0.423 (1) 0.422 (1) 0.472 (1) 0.396 (1) 0.164 (1) 0.164 (1) 0.160 (1) 0.157 (2) 0.148 (2) 0.214 (2)
avg. rank CLMLC (1.722) � CBMLC (2.722) � ECC (3.250) � MLHSL (3.639) � CPLST (3.667)

4.3 Experimental results

Experimental results of five comparing MLC methods on benchmark
datasets are reported in Table 2, where the averaged rank of each
method over all datasets is shown in the last row of each metric. For
each evaluation metric, the larger the value, the better the perfor-
mance. Among the five comparing methods, the best performance is
highlighted in boldface.

For all the 72 configurations (18 datasets × 4 evaluation met-
rics), CLMLC ranked 1st among five comparing MLC methods at
37.8% cases, ranked 2nd at 18.9% cases, and ranked 5th at only
3.3% cases, which was remarkably better than the other methods.
Specifically, CLMLC outperformed the other methods in Exact-
Match (ranked 1st at 88.9% cases) and Micro-F1 (ranked 1st at
55.6% cases), and was competitive in terms of Macro-F1 (ranked
1st/2nd at 33.3%/61.1% cases). It demonstrates the effectiveness of
the clustering-based local strategy adopted in CLMLC. The sim-
ilar instances with similar label sets can be grouped together by
CLMLC, leading to its strong capability on modeling label correla-
tions and thus superior performance in Exact-Match. However, such
grouped local data sometimes weaken the influence of minority la-
bels, resulting in the worse performance of CLMLC in Hamming-
Score (ranked 4nd at 66.7% cases). CPLST and ECC performed bet-
ter than the other methods in Hamming-Score (ranked 1st at 38.9%
and 16.7% cases, respectively), since it is designed to be optimized
in Hamming-Score, according to the theoretical analysis in [5]. In
Hamming-Score, MLHSL ranked in 1st/2nd place at 11.1%/61.1%
cases, but performed worse in other metrics, especially on large-scale
datasets. It is probably because large-scale datasets typically need
a sufficient number of instances for training, while FS-DR tends
to remove too many features. CBMLC outperformed other meth-
ods except CLMLC in Exact-Match (ranked 1st/2nd at 5.6%/55.5%
cases), Macro-F1 (ranked 1st/2nd at 44.4%/33.3% cases) and Micro-
F1 (ranked 1st/2nd at 16.7%/44.4% cases), but worked worst in
Hamming-Score (ranked 5th at 72.2% cases). In addition, CBMLC
worked worse than CLMLC on the average in all the four metrics,
indicating that cluster analysis should be applied after appropriate
feature dimension reduction. Note that the two local MLC methods,
CLMLC and CBMLC, worked remarkably better than ECC, MLHSL
and CPLST in terms of Exact-Match, Macro-F1 and Micro-F1 on
the twelve large-scale datasets, demonstrating the superiority of lo-
cal MLC strategy on real-world problems.

The execution time on seven large-scale datasets, including both
training and prediction time, is reported in Table 3. The least time
cost is highlighted in boldface. Among all the methods, MLHSL
needed the least execution time on the average due to the low-
dimensional feature subspace induced by FS-DR. CLMLC con-
sumed the second least time on the average. Note that, CLMLC paid
only slightly higher time cost than MLHSL on the Corel16k datasets.
On datasets with large number of labels (large values in L), like de-
licious, CLMLC consumed more execution time than MLHSL and
CPLST. Benefiting from LS-DR, CPLST cost the third least execu-
tion time, which was significantly less than ECC and CBMLC. But
such superiority of CPLST decreased as the number of features in-
creased (large values in D), like Bibtex. Due to its clustering analysis
directly applied on high-dimensional datasets, CBMLC consumed
the second largest time on all the datasets. ECC consumed the largest
time on all the seven datasets, resulting from the ensemble strategy.
In summary, the proposed CLMLC is one of the best choices for
MLC in the balance of performance and execution time, especially
when Exact-Match or Macro/Micro-F1 is the principal goal and the
practical processing speed is required in a large-scale problem.

Table 3: Execution time (103sec) over seven large-scale datasets.

Corel5k Rcv1s1 Rcv1s2 Bibtex Corel16k1 Corel16k2 Delicious
ECC 0.353 0.190 0.187 1.285 0.229 0.252 6.042
MLHSL 0.018 0.004 0.004 0.015 0.008 0.009 0.528
CPLST 0.042 0.045 0.036 0.223 0.042 0.042 0.558
CBMLC 0.097 0.112 0.127 1.002 0.131 0.151 1.916
CLMLC 0.005 0.004 0.004 0.014 0.010 0.010 0.567

To derive a more objective insistence on the experimental results,
we conducted Friedman test [7] with significance level 0.05 (5 meth-
ods, 18 datasets). The results are shown in Table 4. Since the val-
ues of the Friedman Statistic FF in terms of all metrics were higher
than the Critical Value, the null hypothesis of equal performance was
rejected. Then, we proceeded to a Nemenyi testing to confirm the
difference between any two methods. According to [7], the perfor-
mance of two methods is regarded as significantly different if their
average ranks differ by at least the Critical Difference (CD). Figure 1
shows the CD diagrams for four evaluation metrics at 0.05 signif-
icance level. In each subfigure, the value of CD is given as a rule
above the axis, where the averaged rank is marked. In Figure 1, the
algorithms which are not significantly different are connected by a
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Figure 1: CD diagrams (0.05 significance level) of five comparing methods.

thick line. In summary, among 90 comparisons (5 methods × 18
datasets), CLMLC achieved statistically superior performance than
all the other methods in terms of Exact-Match. In Macro/Micro-
F1, CLMLC achieved statistically comparable performances with
CBMLC, and statistically superior performances than ECC, MLHSL
and CPLST. Such observation demonstrates the competing perfor-
mance of the proposed CLMLC in Exact-Match and Macro/Micro-
F1, compared with the state-of-the-art MLC methods.

Table 4: Results of the Friedman Statistics FF (5 methods, 18
datasets) and the Critical Value (0.05 significance level). The null
hypothesis as the equal performance is rejected, if the values of FF

in terms of all metrics are higher than the Critical Value.

Friedman Exact Hamming Macro Micro
Test Match Score F1 F1
FF 24.166 15.992 11.680 6.051

Critical Value 2.507

Table 5 reports the reduced sizes of training datasets in CLMLC,
which are averaged by 5-fold cross validation. Here “std.” shows the
standard deviation of the values from K clusters. As shown in Ta-
ble 5, consistently with our previous assumptions, there is strong lo-
cality in datasets, especially on datasets in text domain, like Med-
ical, Rcv1 and Bibtex, where L

c � L in each data cluster c. In-
deed the problem sizes in terms of N , D and L have been signif-
icantly reduced. For example, in Bibtex, the average problem size
(N

c×d×L
c
) in each cluster c has been reduced to nearly 1/30000

by CLMLC compared with the original set, bringing the fastest exe-
cution time on Bibtex (Table 3).

Table 5: Problem sizes of training datasets in CLMLC. The values
were averaged by 5-fold cross validation. Here “std.” denotes the
standard deviation.

Dataset Original size Reduced size

N D L N
c ± std. d L

c ± std. K

Birds 516 260 19 25.80±45.36 19 7.24±2.93 20
Genbase 530 1186 27 26.48±45.28 27 2.78±2.72 20
Medical 782 1449 45 39.12±39.47 30 4.68±2.97 20
Enron 1362 1001 53 68.08±66.81 30 23.85±6.54 20
Scene 1926 294 6 96.28±30.61 6 4.75±1.33 20
Yeast 1934 103 14 96.68±18.49 14 13.31±0.69 20
Corel5k 4000 499 374 40.00±18.18 30 54.08±25.19 100
Rcv1s1 4800 944 101 48.00±28.92 30 19.54±12.62 100
Rcv1s2 4800 944 101 48.00±31.34 30 18.51±11.78 100
Rcv1s3 4800 944 101 48.00±30.69 30 18.13±12.00 100
Rcv1s4 4800 944 101 48.00±33.80 30 14.36±9.94 100
Bibtex 5916 1836 159 59.16±39.44 30 29.95±20.41 100
Corel16k1 11013 500 164 110.13±42.59 30 71.31±22.18 100
Corel16k2 11009 500 164 110.09±48.86 30 71.32±24.37 100
Corel16k3 11008 500 154 110.08±44.93 30 69.11±22.39 100
Corel16k4 11070 500 162 110.70±48.46 30 70.73±22.91 100
Corel16k5 11078 500 160 110.78±46.55 30 72.82±23.64 100
Delicious 12884 500 983 128.84±155.55 30 333.48±200.60 100

4.4 Parameter sensitivity analysis

To evaluate the potentiality of CLMLC, a parameter sensitivity anal-
ysis was conducted. First, the parameters d and K were dealt with
the Rcv1s1 and Bibtex datasets, where d controls the dimensional-
ity of the feature subspace, and K is the number of data clusters. In
this experiment, we kept the value of n by 	Lc/5
, and increased
d from 5 to 100 by step 5, and K from 10 to 200 by step 10. Fig-
ure 2 shows the experimental results in terms of four evaluation met-
rics, whose values are averaged by 5-fold cross validation. In Fig-
ure 2, the warmer the color, the better the performance. We observe
that as the values of d and K increased, its performance in Exact-
Match and Macro/Micro-F1 upgraded, and then became stable once
d and K reached 30 and 100, respectively. In contrast, as the val-
ues of d and K increased, its performance in Hamming-Score de-
graded, although the change was very slight (within 0.5%). Figure 3
shows the execution time for parameter sensitivity analysis, where
d ∈ {10, 30, 50, 70, 90}. On both two datasets, the execution time
increased as the value of d increased. As the value of K increased,
the execution time first decreased, and then increased on Rcv1s11
but became stable on Bibtex. Thus, by considering trade-off between
classification accuracy and execution time, we set values of d and K
to those as stated in Section 4.2.
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Figure 3: The execution time (sec) over different values of the dimen-
sionality d of feature subspace and the number K of clusters on the
Rcv1s1 and Bibtex datasets.

Next, keeping the values of d and K to 30 and 100, we conducted a
sensitivity analysis over n, where n is the number of meta-labels for
each cluster. Instead of directly varying the value of n, we increased
x from 2 to 20 by step 1 as n = 	Lc/x
. Figure 4 shows the exper-
imental results in four metrics averaged by 5-fold cross validation.
For convenience, the values of each metric were normalized by its
maximum. As the value of x increased, the performance increased in
Macro-F1, but decreased in Exact-Match. Note that performance in
Hamming-Score seemed irrelevant to the change of x’s value. Thus,
it was suggested to set smaller/larger value of x if the objective is to
optimize Exact-Match/Macro-F1.
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Figure 2: Parameter sensitivity analysis over the dimensionality d of feature subspace and the number K of clusters on the Rcv1s1 (the top
row) and Bibtex (the bottom row) datasets (n = 	Lc/5
). The size of d/K was increased from 5/10 to 100/200 by step 5/10.
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Figure 4: Parameter sensitivity analysis over x (n = 	Lc/x
) on the
Rcv1s1 and Bibtex datasets (d = 30, K = 100). The values of each
metric were normalized by its maximum.

To optimize the parameters of MLHSL, CPLST and CBMLC, an-
other set of parameter sensitivity analysis has been performed in-
dividually. Specifically, for MLHSL, d shared the similar tendency
with CLMLC. For CPLST, the ratio of LS-DR remarkably influ-
enced the experimental results. As the ratio increased, its perfor-
mance upgraded. As the ratio approached 0.8/0.6 on regular/large-
scale datasets, the performance became stable, while execution time
increased dramatically. For CBMLC, as the number of cluster K in-
creased, the values of evaluation metrics, except Hamming-Score, in-
creased and became stable as K approached 100. Such observations
validate the effectiveness of parameter configurations in Section 4.2.

5 CONCLUSION

In this paper, we have proposed a Clustering-based Local Multi-
Label Classification (CLMLC) method, relying on the assumption
that a multi-label dataset can be decomposed into several datasets of
smaller sizes, where meta-labels exist and are relevant to only a frac-
tion of features and training data. In CLMLC, by applying clustering
analysis on the feature subspace, similar instances associated with
similar labels are grouped together and then fed into local models.
Extensive experiments conducted on real-world benchmark datasets

verified the validity of our assumption and demonstrated the effi-
ciency of CLMLC. For the future work, we will seek a more appro-
priate method for building local models, which is currently a bottle-
neck for the application of CLMLC on extreme multi-label datasets.
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drik Blockeel, ‘Decision trees for hierarchical multi-label classifica-
tion’, Machine Learning, 73(2), 185–214, (2008).

[29] H. Wang, C. Ding, and H. Huang, ‘Multi-label linear discriminant anal-
ysis’, in Proceedings of the 11th European Conference on Computer
Vision, volume 6316, 126–139, (2010).

[30] D. Watkins, Chemometrics, mathematics and statistics in chemistry,
Reidel Publishing Company, Dordrecht, N etherlands, 1984.

[31] J. Weston, S. Bengio, and N. Usunier, ‘Wsabie: Scaling up to large
vocabulary image annotation’, in Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, pp. 2764–2770, (2011).

[32] K. Worsley, J. Poline, K. Friston, and A. Evans, ‘Characterizing the
response of PET and fMRI data using multivariate linear models’, Neu-
roimage, 6(4), 305–319, (1997).

[33] Yiming Yang and Xin Liu, ‘A re-examination of text categorization

methods’, in Proceedings of the 22Nd Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, SI-
GIR ’99, pp. 42–49, New York, NY, USA, (1999). ACM.

[34] H. Yu, P. Jain, P. Kar, and S. Dhillon, ‘Large-scale multi-label learning
with missing labels’, in Proceedings of the 31st International Confer-
ence on Machine Learning, pp. 593–601, (2014).

[35] Kai Yu, Shipeng Yu, and Volker Tresp, ‘Multi-label informed latent
semantic indexing’, in Proceedings of the 28th Annual International
ACM SIGIR Conference on Research and Development in Information
Retrieval, SIGIR ’05, pp. 258–265, (2005).

[36] B. Zhang, ‘Regression clustering’, in Proceedings of the 3rd IEEE In-
ternational Conference on Data Mining, pp. 451–458, (2003).

[37] M. Zhang and L. Wu, ‘Lift: multi-label learning with label-specific
features’, IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, 37(1), 107–120, (2015).

[38] Y. Zhang and Z. Zhou, ‘Multi-label dimensionality reduction via de-
pendence maximization’, in Proceedings of the 23rd AAAI Conference
on Artificial Intelligence, pp. 1503–1505, (2008).

L. Sun et al. / A Scalable Clustering-Based Local Multi-Label Classification Method268


