
A Uniform Account of Realizability in
Abstract Argumentation

Thomas Linsbichler1 and Jörg Pührer2 and Hannes Strass2

Abstract. We introduce a general framework for analyzing real-
izability in abstract dialectical frameworks (ADFs) and various of
its subclasses. In particular, the framework applies to Dung argu-
mentation frameworks, SETAFs by Nielsen and Parsons, and bipolar
ADFs. We present a uniform characterization method for the ad-
missible, complete, preferred and model/stable semantics. We em-
ploy this method to devise an algorithm that decides realizability for
the mentioned formalisms and semantics; moreover the algorithm al-
lows for constructing a desired knowledge base whenever one exists.
The algorithm is built in a modular way and thus easily extensible to
new formalisms and semantics. We have implemented our approach
in answer set programming, and used the implementation to obtain
several novel results on the relative expressiveness of the abovemen-
tioned formalisms.

1 Introduction

The abstract argumentation frameworks (AFs) introduced by
Dung [9] have garnered increasing attention in the recent past. In
his seminal paper, Dung showed how an abstract notion of argu-
ment (seen as an atomic entity) and the notion of individual attacks
between arguments together could reconstruct several established
KR formalisms in argumentative terms. Despite the generality of
those and many more results in the field that was sparked by that pa-
per, researchers also noticed that the restriction to individual attacks
is often overly limiting, and devised extensions and generalizations
of Dung’s frameworks: directions included generalizing individual
attacks to collective attacks [23], leading to so-called SETAFs; oth-
ers started offering a support relation between arguments [8], prefer-
ences among arguments [1, 22], or attacks on attacks into arbitrary
depth [2]. This is only the tip of an iceberg, for a more comprehensive
overview we refer to the work of Brewka, Polberg, and Woltran [5].

One of the most recent and most comprehensive generalizations
of AFs has been presented by Brewka and Woltran [6] (and later
continued by Brewka et al. [4]) in the form of abstract dialectical
frameworks (ADFs). These ADFs offer any type of link between
arguments: individual attacks (as in AFs), collective attacks (as in
SETAFs), and individual and collective support, to name only a few.
This generality is achieved through so-called acceptance conditions
associated to each statement. Roughly, the meaning of relationships
between arguments is not fixed in ADFs, but is specified by the
user for each argument in the form of Boolean functions (accept-
ance functions) on the argument’s parents. However, this generality
comes with a price: Strass and Wallner [29] found that the complex-
ity of the associated reasoning problems of ADFs is in general higher

1 Institute of Information Systems, TU Wien, Vienna, Austria
2 Computer Science Institute, Leipzig University, Leipzig, Germany

than in AFs (one level up in the polynomial hierarchy). Fortunately,
the subclass of bipolar ADFs (defined by Brewka and Woltran [6]) is
as complex as AFs (for all considered semantics) while still offering
a wide range of modeling capacities [29]. However, there has only
been little concerted effort so far to exactly analyze and compare the
expressiveness of the abovementioned languages.

This paper is about exactly analyzing means of expression for ar-
gumentation formalisms. Instead of motivating expressiveness in nat-
ural language and showing examples that some formalisms seem to
be able to express but others do not, we tackle the problem in a formal
way. We use a precise mathematical definition of expressiveness: a
set of interpretations is realizable by a formalism under a semantics
if and only if there exists a knowledge base of the formalism whose
semantics is exactly the given set of interpretations. Studying real-
izability in AFs has been started by Dunne et al. [11, 10], who ana-
lyzed realizability for extension-based semantics, that is, interpreta-
tions represented by sets where arguments are either accepted (in the
extension set) or not accepted (not in the extension set). While their
initial work disregarded arguments that are never accepted, there
have been continuations where the existence of such “invisible” ar-
guments is ruled out [3, 20]. Dyrkolbotn [12] began to analyze realiz-
ability for labeling-based semantics of AFs, that is, three-valued se-
mantics where arguments can be accepted (mapped to true), rejected
(mapped to false) or neither (mapped to unknown). Strass [28] star-
ted to analyze the relative expressiveness of two-valued semantics
for ADFs (relative with respect to related formalisms). Most re-
cently, Pührer [26] presented precise characterizations of realizab-
ility for ADFs under several three-valued semantics, namely admiss-
ible, grounded, complete, and preferred. The term “precise charac-
terizations” means that he gave necessary and sufficient conditions
for an interpretation set to be ADF-realizable under a semantics.

The present paper continues this line of work by lifting it to a much
more general setting. We combine the works of Dunne et al. [10],
Pührer [26], and Strass [28] into a unifying framework, and at the
same time extend them to formalisms and semantics not considered
in the respective papers: we treat several formalisms, namely AFs,
SETAFs, and (B)ADFs, while the previous works all used differ-
ent approaches and techniques. This is possible because all of these
formalisms can be seen as subclasses of ADFs that are obtained by
suitably restricting the acceptance conditions.

Another important feature of our framework is that we uniformly
use three-valued interpretations as the underlying model theory. In
particular, this means that arguments cannot be “invisible” any more
since the underlying vocabulary of arguments is always implicit in
each interpretation. Technically, we always assume a fixed underly-
ing vocabulary and consider our results parametric in that vocabu-
lary. In contrast, for example, Dyrkolbotn [12] presents a construc-

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-252

252

tion for realizability that introduces new arguments into the realizing
knowledge base; we do not allow that. While sometimes the intro-
duction of new arguments can make sense, for example if new in-
formation becomes available about a domain or a debate, it is not
sensible in general, as these new arguments would be purely tech-
nical with an unclear dialectical meaning. Moreover, it would lead
to a different notion of realizability, where most of the realizability
problems would be significantly easier, if not trivial.

The paper proceeds as follows. We begin with recalling and intro-
ducing the basis and basics of our work – the formalisms we analyze
and the methodology with which we analyze them. Next we intro-
duce our general framework for realizability; the major novelty is
our consistent use of so-called characterization functions, firstly in-
troduced by Pührer [26], which we adapt to further semantics. The
main workhorse of our approach will be a parametric propagate-and-
guess algorithm for deciding whether a given interpretation set is
realizable in a formalism under a semantics. We then analyze the rel-
ative expressiveness of the considered formalisms, presenting several
new results that we obtained using an implementation of our frame-
work. We conclude with a discussion.

2 Preliminaries

We make use of standard mathematical concepts like functions and
partially ordered sets. For a function f : X → Y we denote the up-
date of f with a pair (x, y) ∈ X × Y by f |xy : X → Y with z �→ y
if z = x, and z �→ f(z) otherwise. For a function f : X → Y and
y ∈ Y , its preimage is f−1(y) = {x ∈ X | f(x) = y}. A partially
ordered set is a pair (S,�) with � a partial order on S. A partially
ordered set (S,�) is a complete lattice if and only if every S′ ⊆ S
has both a greatest lower bound (glb)

�
S′ ∈ S and a least upper

bound (lub)
⊔

S′ ∈ S. A partially ordered set (S,�) is a complete
meet-semilattice iff every non-empty subset S′ ⊆ S has a greatest
lower bound

�
S′ ∈ S (the meet) and every ascending chain C ⊆ S

has a least upper bound
⊔

C ∈ S.

Three-Valued Interpretations Let A be a fixed finite set of state-
ments. An interpretation is a mapping v : A → {t, f ,u} that assigns
one of the truth values true (t), false (f) or unknown (u) to each
statement. An interpretation is two-valued if v(A) ⊆ {t, f}, that is,
the truth value u is not assigned. Two-valued interpretations v can be
extended to assign truth values v(ϕ) ∈ {t, f} to propositional for-
mulas ϕ as usual.

The three truth values are partially ordered according to their in-
formation content: we have u <i t and u <i f and no other pair in
<i, which intuitively means that the classical truth values contain
more information than the truth value unknown. As usual, we denote
by ≤i the partial order associated to the strict partial order <i. The
pair ({t, f ,u} ,≤i) forms a complete meet-semilattice with the in-
formation meet operation �i. This meet can intuitively be interpreted
as consensus and assigns t �i t = t, f �i f = f , and returns u oth-
erwise.

The information ordering ≤i extends in a straightforward way to
interpretations v1, v2 over A in that v1 ≤i v2 iff v1(a) ≤i v2(a) for
all a ∈ A. We say for two interpretations v1, v2 that v2 extends v1
iff v1 ≤i v2. The set V of all interpretations over A forms a com-
plete meet-semilattice with respect to the information ordering ≤i.
The consensus meet operation �i of this semilattice is given by
(v1 �i v2)(a) = v1(a) �i v2(a) for all a ∈ A. The least element of
(V,≤i) is the valuation vu : A → {u} mapping all statements to un-
known – the least informative interpretation. By V2 we denote the set
of two-valued interpretations; they are the ≤i-maximal elements of

the meet-semilattice (V,≤i). We denote by [v]2 the set of all two-
valued interpretations that extend v. The elements of [v]2 form an
≤i-antichain with greatest lower bound v =

�
i[v]2.

Abstract Argumentation Formalisms An abstract dialectical
framework (ADF) is a tuple D = (A,L,C) where A is a set of
statements (representing positions one can take or not take in a
debate), L ⊆ A×A is a set of links (representing dependencies
between the positions), C = {Ca}a∈A is a collection of functions
Ca : 2

par(a) → {t, f}, one for each statement a ∈ A. The func-
tion Ca is the acceptance condition of a and expresses whether
a can be accepted, given the acceptance status of its parents
par(a) = {b ∈ S | (b, a) ∈ L}. We usually represent each Ca by a
propositional formula ϕa over par(a). For the acceptance condition
Ca, we take Ca(M ∩ par(a)) = t to hold iff M is a model of ϕa.

Brewka and Woltran [6] introduced a useful subclass of ADFs: an
ADF D = (A,L,C) is bipolar iff all links in L are supporting or
attacking (or both). A link (b, a) ∈ L is supporting in D iff for all
M ⊆ par(a), we have that Ca(M) = t implies Ca(M ∪ {b}) = t.
Symmetrically, a link (b, a) ∈ L is attacking in D iff for all
M ⊆ par(a), we have that Ca(M ∪ {b}) = t implies Ca(M) = t.
Intuitively, a link (b, a) ∈ L is supporting iff it can never be the case
that there is some state of affairs where we accept a and reject b, but
after additionally also accepting b do not accept a any more. Sym-
metrically, a link (b, a) ∈ L is attacking iff it can never be the case
that we reject a and b, but after accepting b also accept a. If a link
(b, a) is both supporting and attacking then b has no actual influence
on a. (But the link does not violate bipolarity.) We write BADFs
as D = (A,L+ ∪ L−, C) and mean that L+ contains all supporting
links and L− all attacking links; see also Example 1 below.3

The semantics of ADFs can be defined using an operator ΓD over
three-valued interpretations [6, 4]. For an ADF D and a three-valued
interpretation v, the interpretation ΓD(v) is given by

a �→ �
i {w(ϕa) | w ∈ [v]2}

That is, for each statement a, the operator returns the consensus truth
value for its acceptance formula ϕa, where the consensus takes into
account all possible two-valued interpretations w that extend the in-
put valuation v. If this v is two-valued, we get [v]2 = {v} and thus
ΓD(v)(a) = v(ϕa).

The standard semantics of ADFs are now defined as follows. For
ADF D, an interpretation v : A → {t, f ,u} is

• admissible iff v ≤i ΓD(v);
• complete iff ΓD(v) = v;
• preferred iff it is ≤i-maximal admissible;
• a two-valued model iff it is two-valued and ΓD(v) = v.

We denote the sets of interpretations that are admissible, complete,
preferred, and two-valued models by adm(D), com(D), prf (D)
and mod(D), respectively. These definitions are proper generaliz-
ations of Dung’s notions for AFs: For an AF (A,R), where R ⊆
A × A is the attack relation, the ADF associated to (A,R) is
D(A,R) = (A,R,C) with C = {ϕa}a∈A and ϕa =

∧
b:(b,a)∈R ¬b

for all a ∈ A. AFs inherit their semantics from the definitions for
ADFs [4, Theorems 2 and 4]. In particular, an interpretation is stable
for an AF (A,R) if and only if it is a two-valued model of D(A,R).

3 Other than a part of the name, there is no relationship of bipolar ADFs with
the bipolar framework of Cayrol and Lagasquie-Schiex [8]; Brewka and
Woltran gave a more detailed comparison of the two formalisms [6].

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation 253

Example 1. Consider the bipolar ADF D = (A,L+ ∪ L−, C) over
vocabulary A = {a, b, c} with

ϕa = b ∧ c, ϕb = ¬a, ϕc = a ∨ ¬b

whence it follows that L+ = {(b, a), (c, a), (a, c)} and
L− = {(a, b), (b, c)}. (The types of links can be read off the
polarities of the statements in the acceptance formulas [28, The-
orem 1]; statements occurring only positively are supporting, those
that occur only negatively are attacking.) Intuitively, the acceptance
condition ϕa is a group support: a can only be accepted if both b
and c are accepted. For b, we have an individual attack just like in
standard AFs: b is attacked by a, and therefore only be accepted if a
is not accepted. The acceptance condition of c consists of a support
by a that overpowers an attack by b; in other words, to be able to
accept c, the support from a must be present or the attack from b
must be absent, and if both are present then the support is stronger.
(We could have specified that the attack is stronger than the support
by writing ϕc = a ∧ ¬b.) Regarding the semantics of D, we find that
mod(D) = prf (D) = {v1} with v1 = {a �→ f , b �→ t, c �→ f}.
Furthermore, we have adm(D) = com(D) = prf (D) ∪ {v2}
where v2 = {a �→ u, b �→ u, c �→ u}. Intuitively, setting all state-
ments to u is always admissible; in this case it is also complete
because no statement is unconditionally accepted or rejected. The
non-trivial interpretation v1 is a model of the BADF because
intuitively: a is rejected since it misses the support of c; b is accepted
because the attack from a does not materialize; c is rejected because
it misses support from a and at the same time is attacked by b. �

A SETAF is a pair S = (A,X) where X ⊆ (2A \ {∅})×A is the
(set) attack relation. We define three-valued counterparts of the se-
mantics introduced by Nielsen and Parsons [23], following the same
conventions as in three-valued semantics of AFs [7] and argument-
ation formalisms in general. Given a statement a ∈ A and an inter-
pretation v we say that a is acceptable with respect to v if and only
if ∀(B, a) ∈ X∃a′ ∈ B : v(a′) = f and a is unacceptable with re-
spect to v if and only if ∃(B, a) ∈ X∀a′ ∈ B : v(a′) = t.

For an interpretation v : A → {t, f ,u} it holds that

• v ∈ adm(S) iff for all a ∈ A, a is acceptable wrt. v if v(a) = t
and a is unacceptable wrt. v if v(a) = f ;

• v ∈ com(S) iff for all a ∈ A, a is acceptable wrt. v iff v(a) = t
and a is unacceptable wrt. v iff v(a) = f ;

• v ∈ prf (S) iff v is ≤i-maximal admissible; and
• v ∈ mod(S) iff v ∈ adm(F) and �a ∈ A : v(a) = u.

For a SETAF S = (A,X) the corresponding ADF DS has accept-
ance formula ϕa =

∧
(B,a)∈X

∨
a′∈B ¬a′ for each statement a ∈ A.

Proposition 1. For any SETAF S = (A,X) it holds that
σ(S) = σ(DS), where σ ∈ {adm, com, prf ,mod}.

Proof. Given interpretation v and statement a, it holds that
ΓDS (v)(a) = t iff ∀w ∈ [v]2 : w(a) = t iff ∀(B, a) ∈ X
∃a′ ∈ B : v(a′) = f iff a is acceptable wrt. v and ΓDS (v)(a) = f
iff ∀w ∈ [v]2 : w(a) = f iff ∃(B, a) ∈ X ∀a′ ∈ B : v(a′) = t
iff a is unacceptable wrt. v. Hence σ(S) = σ(DS) for
σ ∈ {adm, com, prf ,mod}. �

Realizability A set V ⊆ V of interpretations is realizable in a
formalism F under a semantics σ if and only if there exists a know-
ledge base kb ∈ F having exactly σ(kb) = V . Pührer [26] charac-
terized realizability for ADFs under various three-valued semantics.

We will reuse the central notions for capturing the complete se-
mantics in this work.

Definition 1 (Pührer [26]). Let V be a set of interpretations. A
function f : V2 → V2 is a com-characterization of V iff: for each
v ∈ V we have v ∈ V iff for each a ∈ A:

• v(a) �= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2 and
• v(a) = u implies f(v′2)(a) = t and f(v′′2)(a) = f for some

v′2, v
′′
2 ∈ [v]2. �

Intuitively, a com-characterization f assigns the Boolean value
f(v)(a) to a statement a that the acceptance condition of a would
have under v in an ADF that has V as its complete semantics. From
a function of this kind we can build a corresponding ADF by the
following construction. For f : V2 → V2, we define Df as the ADF
where the acceptance formula for each statement a is given by

ϕf
a =

∨

w∈V2,

f(w)(a)=t

φw with φw =
∧

w(a′)=t

a′ ∧
∧

w(a′)=f

¬a′

Observe that for any v ∈ V2 we have v(φw) = t iff v = w by defini-
tion. Intuitively, the acceptance condition ϕf

a is constructed such that
v is a model of ϕf

a if and only if we find f(v)(a) = t.

Proposition 2 (Pührer [26]). Let V ⊆ V be a set of interpreta-
tions. (1) For each ADF D with com(D) = V , there is a com-
characterization fD for V ; (2) for each com-characterization
f : V2 → V2 for V we have com(Df) = V .

The result shows that V can be realized under complete semantics if
and only if there is a com-characterization for V .

3 A General Framework for Realizability

The underlying idea of our framework is that all abstract argument-
ation formalisms introduced in the previous section can be viewed
as subclasses of ADFs. This is clear for ADFs themselves and for
BADFs by definition; for (SET)AFs it is fairly easy to see. However,
knowing that these formalisms can be recast as ADFs is not enough.
To employ this knowledge for realizability, we must precisely charac-
terize the corresponding subclasses in terms of restricting the ADFs’
acceptance functions. Fortunately, this is also possible and paves the
way for the framework we present in this section. Most importantly,
we will make use of the fact that different formalisms and different
semantics can be characterized modularly, that is, independently of
each other.

Towards a uniform account of realizability for ADFs under differ-
ent semantics, we start with a new characterization of realizability for
ADFs under admissible semantics that is based on a notion similar in
spirit to com-characterizations.

Definition 2. Let V be a set of interpretations. A function f : V2 →
V2 is an adm-characterization of V iff: for each v ∈ V we have
v ∈ V iff for every a ∈ A:

• v(a) �= u implies f(v2)(a) = v(a) for all v2 ∈ [v]2. �

Similar as for a com-characterization, an adm-characterization f as-
signs the value f(v)(a) to a statement a that the acceptance condition
of a would evaluate to under v in an ADF that has V as its admissible
semantics. Note that the only difference to Definition 1 is dropping
the second condition related to statements with truth value u. While,

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation254

the two conditions in Definition 1 capture the relation ΓDf (v) = v,
the remaining one in Definition 2 boils down to v ≤i ΓDf (v) that
defines the admissible semantics.

Proposition 3. Let V ⊆ V be a set of interpretations. (1) For each
ADF D such that adm(D) = V , there is an adm-characterization
fD for V ; (2) for each adm-characterization f : V2 → V2 for V we
have adm(Df) = V .

Proof. (1) We define the function fD : V2 → V2 as
fD(v2)(a) = v2(ϕa) for every v2 ∈ V2 and a ∈ A where ϕa

is the acceptance formula of a in D. We will show that fD is an
adm-characterization for V = adm(D). Let v be an interpretation.
Consider the case v ∈ adm(D) and v(a) �= u for some a ∈ A
and some v2 ∈ [v]2. From v ≤i ΓD(v) we get v2(ϕa) = v(a). By
definition of fD it follows that fD(v2)(a) = v(a). Now assume
v �∈ adm(D) and consequently v �≤i ΓD(v). There must be some
a ∈ A such that v(a) �= u and v(a) �= ΓD(v)(a). Hence, there is
some v2 ∈ [v]2 with v2(ϕa) �= v(a) and fD(v2)(a) �= v(a) by
definition of fD . Thus, fD is an adm-characterization for V .

(2) Observe that for every two-valued interpretation v2 and every
a ∈ A we have f(v2)(a) = v2(ϕ

f
a). (⊆): Let v ∈ adm(Df) be an

interpretation and a ∈ A a statement such that v(a) �= u. Let v2
be a two-valued interpretation with v2 ∈ [v]2. Since v ≤i ΓDf (v)

we have v(a) = v2(ϕ
f
a). Therefore, by our observation it must also

hold that f(v2)(a) = v(a). Thus, by Definition 2, v ∈ V . (⊇): Con-
sider an interpretation v such that v �∈ adm(Df). We show that
v �∈ V . From v �∈ adm(Df) we get v �≤i ΓDf (v). There must be
some a ∈ A such that v(a) �= u and v(a) �= ΓDf (v)(a). Hence,
there is some v2 ∈ [v]2 with v2(ϕ

f
a) �= v(a) and consequently

f(v2)(a) �= v(a). Thus, by Definition 2 we have v �∈ V . �

When listing sets of interpretations in examples, for the sake of
readability we represent three-valued interpretations by sequences
of truth values, tacitly assuming that the underlying vocabu-
lary is given and has an associated total ordering. For example,
for the vocabulary A = {a, b, c} we represent the interpretation
{a �→ t, b �→ f , c �→ u} by the sequence tfu.

Example 2. Consider the sets V1 = {uuu, tff , ftu} and
V2 = {tff , ftu} of interpretations over A = {a, b, c}. The mapping
f = {ttt �→ ftt, ttf �→ tft, tft �→ ttt, tff �→ tff , ftt �→ ftf ,
ftf �→ ftt, f ft �→ ttf , f f f �→ ftf} is an adm-characterization
for V1. Thus, the ADF Df has V1 as its admissible interpretations.
Indeed, the realizing ADF has the following acceptance conditions:

ϕf
a ≡ (a ∧ b ∧ ¬c) ∨ (a ∧ ¬b) ∨ (¬a ∧ ¬b ∧ c)

ϕf
b ≡ (a ∧ c) ∨ (¬a ∧ b) ∨ (¬a ∧ ¬b ∧ ¬c)

ϕf
c ≡ (a ∧ b) ∨ (¬a ∧ b ∧ ¬c) ∨ (¬b ∧ c)

For V2 no adm-characterization exists because uuu �∈ V2, but the
implication of Definition 2 trivially holds for a, b, and c. �

We have seen that the construction Df for realizing under com-
plete semantics can also be used for realizing a set V of interpret-
ations under admissible semantics. The only difference is that we
here require f to be an adm-characterization instead of a com-
characterization for V . Note that admissible semantics can be char-
acterized by properties that are easier to check than existence of an
adm-characterization (see the work of Pührer [26]). However, us-
ing the same type of characterizations for different semantics allows
for a unified approach for checking realizability and constructing a
realizing ADF in case one exists.

For realizing under the model semantics, we can likewise present
an adjusted version of com-characterizations.

Definition 3. Let V ⊆ V be a set of interpretations. A function
f : V2 → V2 is a mod -characterization of V if and only if: (1) f
is defined on V (that is, V ⊆ V2) and (2) for each v ∈ V2, we have
v ∈ V iff f(v) = v. �

As we can show, there is a one-to-one correspondence between
mod -characterizations and ADF realizations.

Proposition 4. Let V ⊆ V be a set of interpretations. (1) For each
ADF D such that mod(D) = V , there is a mod -characterization fD
for V ; (2) vice versa, for each mod -characterization f : V2 → V2

for V we find mod(Df) = V .

A related result was given by Strass [28, Proposition 10]. The char-
acterization we presented here fits into the general framework of this
paper and is directly usable for our realizability algorithm. The next
result summarizes how ADF realizability can be captured by differ-
ent types of characterizations for the semantics we considered so far.

Theorem 5. Let V ⊆ V be a set of interpretations and consider
σ ∈ {adm, com,mod}. There is an ADF D such that σ(D) = V
if and only if there is a σ-characterization for V .

The preferred semantics of an ADF D is closely related to its ad-
missible semantics as, by definition, the preferred interpretations
of D are its ≤i-maximal admissible interpretations. As a con-
sequence we can also describe preferred realizability in terms of
adm-characterizations. We use the lattice-theoretic standard notation
max≤i V to denote the ≤i-maximal elements of a given set V .

Corollary 6. Let V ⊆ V be a set of interpretations. There is an ADF
D with prf (D) = V iff there is an adm-characterization for some
V ′ ⊆ V with V ⊆ V ′ and max≤i V

′ = V .

Finally, we give a result on the complexity of deciding realizability
for the mentioned formalisms and semantics. We assume here that
the representation of an interpretation-set V over vocabulary A has
size Θ(3|A|), that is, the size grows asymptotically in the order of
3|A|. A possible encoding could be a bit string of length 3|A| where
the presence (or absence) of each v ∈ V is encoded by a 1 (or 0)
at a particular position in the string. There might be specific V with
smaller possible representations, but we have no grounds to presume
a representation that is exponentially better in the general case.

Proposition 7. Let F ∈ {AF, SETAF,BADF,ADF} be a formal-
ism and σ ∈ {adm, com, prf ,mod} be a semantics. The decision
problem “Given a vocabulary A and a set V ⊆ V of interpretations
over A, is there a kb ∈ F such that σ(kb) = V ?” can be decided in
nondeterministic time that is polynomial in the size of V .

Proof. Roughly, we guess a function f : V2 → V2 and verify that
it is a σ-characterization. Such a function f can be represented in
size O(2|A| · |A|), that is, at most polynomial in the input of size
O(3|A|): the fact that n · 2n ∈ o(3n) ⊆ O(3n) follows from

lim
n→∞

n · 2n
3n

= lim
n→∞

n(
3
2

)n
∗
= lim

n→∞
1

ln 3
2
· (3

2

)n = 0

where the starred equality holds by L’Hôpital’s rule.
To verify that the guessed f is indeed a σ-characterization, we

check (some of) the properties of Definition 1. For σ = com , this can
be done in polynomial time as follows: for each v ∈ V and a ∈ A, we

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation 255

look at the set [v]2 ⊆ V2 (which is at most polynomial in the input)
and check for the respective witness interpretations (if v(a) = u)
or their absence (if v(a) �= u). For σ = adm , there are even less
conditions to check. For σ = mod , we compute the set F of fix-
points of f (by going through V once and checking f(v) = v for
each v ∈ V) and verify that F = V . For σ = prf , we guess the V ′

(with V ⊆ V ′ ⊆ V) from Corollary 6 alongside f and verify that f
is an adm-characterization for V ′ and that max≤i V

′ = V . �

3.1 Deciding Realizability: Algorithm 1

Our main algorithm for deciding realizability is a propagate-and-
guess algorithm in the spirit of the DPLL algorithm for deciding
propositional satisfiability [19]. It is generic with respect to (1) the
formalism F and (2) the semantics σ for which should be realized.
To this end, the propagation part of the algorithm is kept exchange-
able and will vary depending on formalism and semantics. Roughly,
in the propagation step the algorithm uses the desired set V of in-
terpretations to derive certain necessary properties of the realizing
knowledge base (line 2). This is the essential part of the algorithm:
the derivation rules (propagators) used there are based on charac-
terizations of realizability with respect to formalism and semantics.
(Propagators will be explained in detail in the next two subsections.)
Once propagation of properties has reached a fixed point (line 7),
the algorithm checks whether the derived information is sufficient to
construct a knowledge base. If so, the knowledge base can be con-
structed and returned (line 9). Otherwise (no more information can
be obtained through propagation and there is not enough information
to construct a knowledge base yet), the algorithm guesses another as-
signment for the characterization (line 11) and calls itself recursively.

The main data structure that Algorithm 1 operates on is a set of
triples (v, a,x) consisting of a two-valued interpretation v ∈ V2, an
atom a ∈ A and a truth value x ∈ {t, f}. This data structure is inten-
ded to represent the σ-characterizations introduced in Definitions 1
to 3. There, a σ-characterization is a function f : V2 → V2 from two-
valued interpretations to two-valued interpretations. However, as the
algorithm builds the σ-characterization step by step and there might
not even be a σ-characterization in the end (because V is not real-
izable), we use a set F of triples (v, a,x) to be able to represent
both partial and incoherent states of affairs. The σ-characterization
candidate induced by F is partial if we have that for some v and a,
neither (v, a, t) ∈ F nor (v, a, f) ∈ F ; likewise, the candidate is in-
coherent if for some v and a, both (v, a, t) ∈ F and (v, a, f) ∈ F .
If F is neither partial nor incoherent, it gives rise to a unique σ-
characterization that can be used to construct the knowledge base
realizing the desired set of interpretations. The correspondence to
the characterization-function is then such that f(v)(a) = x iff
(v, a,x) ∈ F .

In our presentation of the algorithm we focused on its main fea-
tures, therefore the guessing step (line 11) is completely “blind”. It is
possible to use techniques known from constraint satisfaction prob-
lems, such as shaving (removing guessing possibilities that directly
lead to inconsistency). Finally, we remark that the algorithm can be
extended to enumerate all possible realizations of a given interpreta-
tion set – by keeping all choice points in the guessing step and thus
exhaustively exploring the whole search space.

In the case where the constructed relation F becomes functional
at some point, the algorithm returns a realizing knowledge base
kbFσ (F). For ADFs, this just means that we denote by f the σ-
characterization represented by F and set kbADF

σ (F) = Df . For the
remaining formalisms we will introduce the respective constructions

Algorithm 1 realize(F , σ, V, F)

Input: • a formalism F
• a semantics σ for F
• a set V of interpretations v : A → {t, f ,u}
• a relation F ⊆ V2 ×A× {t, f}, initially empty

Output: a kb ∈ F with σ(kb) = V or “no” if none exists
1: repeat

2: set FΔ :=
⋃

p∈PF
σ

p(V, F) \ F
3: set F := F ∪ FΔ

4: if ∃v ∈ V2, ∃a ∈ A : {(v, a, t), (v, a, f)} ⊆ F then

5: return “no”
6: end if

7: until FΔ = ∅
8: if ∀v ∈ V2, ∀a ∈ A, ∃x ∈ {t, f} : (v, a, x) ∈ F then
9: return kbFσ (F)

10: end if

11: choose v ∈ V2, a ∈ A with (v, a, t) /∈ F , (v, a, f) /∈ F
12: if realize(F , σ, V, F ∪ {(v, a, t)}) �= “no” then

13: return realize(F , σ, V, F ∪ {(v, a, t)})
14: else

15: return realize(F , σ, V, F ∪ {(v, a, f)})
16: end if

in later subsections.
The algorithm is parametric in two dimensions, namely with re-

spect to the formalism F and with respect to the semantics σ. These
two aspects come into the algorithm via so-called propagators. A
propagator is a formalism-specific or semantics-specific set of deriv-
ation rules. Given a set V of desired interpretations and a partial σ-
characterization F , a propagator p derives new triples (v, a,x) that
must necessarily be part of any total σ-characterization f for V such
that f extends F . In what follows, we present semantics propagators
for admissible, complete and two-valued model (in (SET)AF terms
stable) semantics, and formalism propagators for BADFs, AFs, and
SETAFs.

3.2 Semantics Propagators

The semantics propagators are defined in Figure 1. They are dir-
ectly derived from the properties of σ-characterizations presented in
Definitions 1 to 3. While the definitions provide exact conditions to
check whether a given function is a σ-characterization, the propagat-
ors allow us to derive definite values of partial characterizations that
are necessary to fulfill the conditions for being a σ-characterization.

For admissible semantics, the condition for a function f to be an
adm-characterization of a desired set of interpretations V (cf. Defin-
ition 2) can be split into a condition for desired interpretations v ∈ V
and two conditions for undesired interpretations v /∈ V . Propagator
p∈adm derives new triples by considering interpretations v ∈ V . Here,
for all two-valued interpretations v2 that extend v, the value f(v2)
has to be in accordance with v on v’s Boolean part, that is, the al-
gorithm adds (v2, a, v(a)) whenever v(a) �= u. On the other hand,
p/∈
adm derives new triples for v /∈ V in order to ensure that there is a

two-valued interpretation v2 extending v where f(v2) differs from v
on a Boolean value of v. Note that while p∈adm immediately allows us
to derive information about F for each desired interpretation v ∈ V ,
propagator p/∈

adm is much weaker in the sense that it only derives
a triple of F if there is no other way to meet the conditions for an
undesired interpretation. Special treatment is required for the inter-
pretation vu that maps all statements to u and is admissible for every

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation256

p
∈
adm(V, F) = {(v2, a, v(a)) | v ∈ V, v2 ∈ [v]2, v(a) �= u} p

∈,u
com (V, F) = {(v2, a,¬x) | v ∈ V, v2 ∈ [v]2, v(a) = u,

p
/∈
adm(V, F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, x ∈ {t, f}, ∀v′

2 ∈ [v]2 : v2 �= v
′
2 → (v

′
2, a,x) ∈ F}

v(a) �= u, ∀b ∈ A \ v
−1

(u), ∀v′
2 ∈ [v]2 : p

�∈,tf
com (V, F) = {(v2, a,¬v(a)) | v ∈ V \ V, v2 ∈ [v]2, v(a) �= u,

(a, v2) �= (b, v
′
2) → (v

′
2, b, v(b)) ∈ F} ∀b ∈ A \ v

−1
(u), ∀v′

2 ∈ [v]2 : (a, v2) �= (b, v
′
2) → (v

′
2, b, v(b)) ∈ F,

p
�

adm(V, F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, vu �∈ V } ∀b ∈ v
−1

(u), ∃v′′
2 , v

′′′
2 ∈ [v]2 : (v

′′
2 , b, t), (v

′′′
2 , b, f) ∈ F}

p
∈
mod (V, F) = {(v, a, v(a)) | v ∈ V, a ∈ A} p

�∈,u
com (V, F) = {(v2, a,¬x) | v ∈ V \ V, v2 ∈ [v]2, v(a) = u,

p
/∈
mod (V, F) = {(v, a,¬v(a)) | v ∈ V2 \ V, a ∈ A, ∀b ∈ A \ v

−1
(u), ∀v′

2 ∈ [v]2 : (v2, b, v(b)) ∈ F,

∀c ∈ A \ {a} : (v, c, v(c)) ∈ F} ∀b ∈ v
−1

(u) \ {a} : ∃v′′
2 , v

′′′
2 ∈ [v]2 : (v

′′
2 , b, t),

p
�

mod (V, F) = {(v, a, t), (v, a, f) | v ∈ V2, a ∈ A, V �⊆ V2} (v
′′′
2 , b, f) ∈ F, ∀v′′′′

2 ∈ [v]2 \ {v2} : (v
′′′′
2 , b,x) ∈ F}

Figure 1: Semantics propagators for the complete (PADF
com = {p∈,tfcom , p∈,ucom , p �∈,tfcom , p �∈,ucom} with p∈,tfcom (V, F) = p∈adm (V, F)), admissible

(PADF
adm = {p∈adm , p/∈

adm , p�adm}), and model semantics (PADF
mod = {p∈mod , p

/∈
mod , p

�

mod}).

ADF. This is not captured by p∈adm and p/∈
adm as these deal only with

interpretations that have Boolean mappings. Thus, propagator p�adm
serves to check whether vu ∈ V . If this is not the case, the propag-
ator immediately makes the relation F incoherent and the algorithm
correctly answers “no”.

For complete semantics and interpretations v ∈ V , propagator
p∈,tfcom derives triples just like in the admissible case. Propagator
p∈,ucom deals with statements a ∈ A having v(a) = u for which there
have to be at least two v2, v

′
2 ∈ [v]2 having f(v2)(a) = t and

f(v′2)(a) = f . Hence p∈,ucom derives triple (v2, a,¬x) if for all other
v′2 ∈ [v]2 we find a triple (v′2, a,x). For interpretations v /∈ V it
must hold that there is some a ∈ A such that (i) v(a) �= u and
f(v2)(a) �= v(a) for some v2 ∈ [v]2 or (ii) v(a) = u but for all
v2 ∈ [v]2, f(v2) assigns the same Boolean truth value x to a. Now
if neither (i) nor (ii) can be fulfilled by any statement b ∈ A \ {a}
due to the current contents of F , propagators p �∈,tfcom and p �∈,ucom derive
triple (v2, a,¬v(a)) for v(a) �= u if needed for a to fulfill (i) and
(v2, a,¬x) for v(a) = u if needed for a to fulfill (ii), respectively.

Example 3. Consider the set V3 = {uuu, fuu,uuf , ftf}. First,
we consider a run of realize(ADF, adm, V3, ∅). In the first itera-
tion, propagator p∈adm ensures that FΔ in line 2 contains (f f f , a, f),
(ftf , a, f), (ftf , c, f), and (f f f , c, f). Based on the latter three
tuples and fuf /∈ V3, propagator p/∈

adm derives (f f f , a, t) in the
second iteration which together with (f f f , a, f) causes the al-
gorithm to return “no”. Consequently, V3 is not adm-realizable.
A run of realize(ADF, com, V3, ∅) on the other hand returns
com-characterization f for V3 that maps ttf to tff , ftt to
f ft, ftf and f f f to ftf and all other v2 ∈ V2 to f f f . Hence,
ADF Df , given by the acceptance conditions ϕf

a = a ∧ b ∧ ¬c,
ϕf

b = (¬a ∧ b ∧ ¬c) ∨ (¬a ∧ ¬b ∧ ¬c), and ϕf
c = ¬a ∧ b ∧ c, has

V3 as its complete semantics. �
Finally, for two-valued model semantics, propagator p∈mod derives
new triples by looking at interpretations v ∈ V . For those, we must
find f(v) = v in each mod -characterization f by definition. Thus
the algorithm adds (v, a, v(a)) for each a ∈ A to the partial charac-
terization F . Propagator p/∈

mod looks at interpretations v ∈ V2 \ V ,
for which it must hold that f(v) �= v. Thus there must be a statement
a ∈ A with v(a) �= f(v)(a), which is exactly what this propagator
derives whenever it is clear that there is only one statement can-
didate left. This, in turn, is the case whenever all b ∈ A with the
opposite truth value ¬v(a) and all c ∈ A with c �= a cannot co-
herently become the necessary witness any more. The propagator
p�mod checks whether V ⊆ V2, that is, the desired set of interpret-

Algorithm 2 realizePrf (F , V)

Input: • a formalism F
• a set V of interpretations v : A → {t, f ,u}

Output: Return some kb ∈ F with prf (kb) = V if one exists or
“no” otherwise.

1: if max≤i V �= V then

2: return “no”
3: end if

4: set V <i := {v ∈ V | ∃v′ ∈ V : v <i v
′}

5: set X := ∅
6: repeat

7: choose V ′ ⊆ V <i with V ′ /∈ X
8: set X := X ∪ {V ′}
9: set V adm := V ∪ V ′

10: if realize(F , adm, V adm , ∅) �= “no” then

11: return realize(F , adm, V adm , ∅)
12: end if

13: until ∀V ′ ⊆ V <i : V ′ ∈ X
14: return “no”

ations consists entirely of two-valued interpretations. In that case
this propagator makes the relation F incoherent, following a similar
strategy as p�adm .

The Special Case of Preferred Semantics Realizing a given set
of interpretations V under preferred semantics requires special treat-
ment. We do not have a σ-characterization function for σ = prf
at hand to directly check realizability of V but have to find some
V ′ ⊆ {v ∈ V | ∃v′ ∈ V : v <i v

′} such that V ∪ V ′ is realizable
under admissible semantics (cf. Corollary 6). Algorithm 2 imple-
ments this idea by guessing such a V ′ (line 7) and then using
Algorithm 1 to try to realize V ∪ V ′ under admissible semantics
(line 11). If realize returns a knowledge base kb realizing V ∪ V ′

under adm we can directly use kb as solution of realizePrf since it
holds that prf (kb) = V , given that V is an ≤i-antichain (line 2).

3.3 Formalism Propagators

When constructing an ADF realizing a given set V of interpretations
under a semantics σ, the function kbADF

σ (F) makes use of the σ-
characterization given by F in the following way: v is a model of the
acceptance condition ϕa if and only if we find (v, a, t) ∈ F . Now
as bipolar ADFs, SETAFs and AFs are all subclasses of ADFs by
restricting the acceptance conditions of statements, these restrictions
also carry over to the σ-characterizations. The propagators defined

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation 257

p
SETAF

(V, F) = {(vf , a, t) | a ∈ A} ∪ {(w, a, t) | (v, a, t) ∈ F,w ∈ V2, w <t v} ∪ {(w, a, f) | (v, a, f) ∈ F,w ∈ V2, v <t w}
p

AF
(V, F) = p

SETAF
(V, F) ∪ {(v1 	t v2, a, t) | (v1, a, t) ∈ F, (v2, a, t) ∈ F} L

+
=

{
(b, a)

∣∣∣ (v, a, f) ∈ F, v(b) = f , (v|bt, a, t) ∈ F
}

p
BADF

(V, F) = {(v|bt, a,x) | (v, a,x) ∈ F, (w, a,¬x) ∈ F,w(b) = f , (w|bt, a,x) ∈ F} L
−

=
{
(b, a)

∣∣∣ (v, a, t) ∈ F, v(b) = f , (v|bt, a, f) ∈ F
}

Figure 2: Formalism propagators. For formalism F ∈ {AF, SETAF,BADF} and any σ ∈ {adm, com, prf ,mod}, we set the respective propagator for F to
PFσ = P ADF

σ ∪ {
pF

}
with pF as defined above. L+ and L− define link polarities for kbBADF

σ .

in Figure 2 use structural knowledge on the form of acceptance con-
ditions of the respective formalisms to reduce the search space or to
induce incoherence of F whenever V is not realizable.

Bipolar ADFs For bipolar ADFs, we use the fact that each of their
links must have at least one polarity, that is, must be supporting or
attacking. Therefore, if a link is not supporting, it must be attacking,
and vice versa. For canonical realization, we obtain the polarities of
links, that is, the sets L+ and L−, as defined in Figure 2.

AFs To explain the AF propagators, we first need some more defin-
itions. On the two classical truth values, we define the truth order-
ing f <t t, whence the operations �t and �t with f �t t = t and
f �t t = f result. These operations can be lifted pointwise to two-
valued interpretations as usual, i.e., (v1 �t v2)(a) = v1(a) �t v2(a)
and (v1 �t v2)(a) = v1(a) �t v2(a). Again, the reflexive version of
<t is denoted by ≤t. The pair (V2,≤t) of two-valued interpretations
ordered by the truth ordering forms a complete lattice with glb �t and
lub �t. This complete lattice has the least element vf : A → {f},
the interpretation mapping all statements to false, and the greatest
element vt : A → {t} mapping all statements to true, respectively.

Acceptance conditions of AF-based ADFs have the form of con-
junctions of negative literals. In the complete lattice (V2,≤t), the
model sets of AF acceptance conditions correspond to the lattice-
theoretic concept of an ideal, a subset of V2 that is downward-
closed with respect to ≤t and upward-closed with respect to �t. The
propagator directly implements these closure properties: application
of pAF ensures that when a σ-characterization F that is neither in-
coherent nor partial is found in line 8 of Algorithm 1, then there
is, for each a ∈ A, an interpretation va such that (va, a, t) ∈ F and
v ≤t va for each (v, a, t) ∈ F . Hence va is crucial for the accept-
ance condition, or in AF terms the attacks, of a and we can define
kbAF

σ (F) = (A, {(b, a) | a, b ∈ A, va(b) = f}).
SETAFs The propagator for SETAFs, pSETAF, is a weaker version of
that of AFs, since we cannot presume upward-closure with respect to
�t. In SETAF-based ADFs the acceptance formula is in conjunctive
normal form containing only negative literals. By a transformation
preserving logical equivalence we obtain an acceptance condition in
disjunctive normal form, again with only negative literals; in other
words, a disjunction of AF acceptance formulas. Thus, the model set
of a SETAF acceptance condition is not necessarily an ideal, but a
union of ideals. For the canonical realization we can make use of
the fact that, for each a ∈ A, the set V t

a = {v ∈ V2 | (v, a, t) ∈ F}
is downward-closed with respect to ≤t, hence the set of models of∨

v∈max≤t
V t

∧
v(b)=f ¬b is exactly V t

a . The clauses of its corres-
ponding CNF-formula exactly coincide with the sets of arguments
attacking a in kbSETAF

σ (F).

3.4 Correctness

For a lack of space, we could not include a formal proof of soundness
and completeness of Algorithm 1, but rather present arguments for
termination and correctness.

Termination With each recursive call, the set F can never decrease
in size, as the only changes to F are adding the results of propagation
in line 3 and adding the guesses in line 11. Also within the until-loop,
the set F can never decrease in size; furthermore there is only an
overall finite number of triples that can be added to F . Thus at some
point we must have FΔ = ∅ and leave the until-loop. Since F always
increases in size, at some point it must either become functional or
incoherent, whence the algorithm terminates.

Soundness If the algorithm returns kbFσ (F) as a realizing know-
ledge base, then according to the condition in line 8 the relation F in-
duced a total function f : V2 → V2. In particular, because the until-
loop must have been run through at least once, there was at least one
propagation step (line 2). Since the propagators are defined such that
they enforce everything that must hold in a σ-characterization, we
conclude that the induced function f indeed is a σ-characterization
for V . By construction, we consequently find that σ(kbFσ (F)) = V .

Completeness If the algorithm answers “no”, then the execution
reached line 5. Thus, for the constructed set F , there must have
been an interpretation v ∈ V2 and a statement a ∈ A such that
{(v, a, t), (v, a, f)} ⊆ F , that is, F is incoherent. Since F is initially
empty, the only way it could get incoherent is in the propagation step
in line 2. (The guessing step cannot create incoherence, since exactly
one truth value is guessed for v and a.) However, the propagators
are defined such that they infer only assignments (triples) that are
necessary for the given F . Consequently, the given interpretation set
V is such that either there is no realization within the ADF fragment
corresponding to formalism F (that is, the formalism propagator de-
rived the incoherence) or there is no σ-characterization for V with
respect to general ADFs (that is, the semantics propagator derived
the incoherence). In any case, V is not σ-realizable for F .

4 Implementation

As Algorithm 1 is based on propagation, guessing, and checking
it is perfectly suited for an implementation using answer set pro-
gramming (ASP) [24, 21] as this allows for exploiting conflict learn-
ing strategies and heuristics of modern ASP solvers. Thus, we de-
veloped ASP encodings in the gringo language [17] for our ap-
proach. Similar as the algorithm, our declarative encodings are mod-
ular, consisting of a main part responsible for constructing set F
and separate encodings for the individual propagators. If one wants,
e.g., to compute an AF realization under admissible semantics for
a set V of interpretations, an input program encoding V is joined
with the main encoding, the propagator encoding for admissible
semantics as well as the propagator encoding for AFs. Every an-
swer set of such a program encodes a respective characterization
function. Our ASP encoding for preferred semantics is based on
the admissible encoding and guesses further interpretations follow-
ing the essential idea of Algorithm 2. For constructing a know-
ledge base with the desired semantics, we also provide two ASP
encodings that transform the output to an ADF in the syntax of

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation258

the DIAMOND tool [14], respectively an AF in ASPARTIX syn-
tax [13, 15]. Both argumentation tools are based on ASP themselves.
The encodings for all the semantics and formalisms we covered in the
paper can be downloaded from http://www.dbai.tuwien.
ac.at/research/project/adf/unreal/.

5 Expressiveness Results

In this section we briefly present some results that we have obtained
using our implementation. We first introduce some necessary nota-
tion to describe the relative expressiveness of knowledge representa-
tion formalisms [18, 28]. For formalisms F1 and F2 with semantics
σ1 and σ2, we say that F2 under σ2 is at least as expressive as F1

under σ1 and write Fσ1
1 ≤e Fσ2

2 if and only if Σσ1
F1

⊆ Σσ2
F2

, where
Σσ
F = {σ(kb) | kb ∈ F} is the signature of F under σ. As usual,

we define F1 <e F2 if and only if F1 ≤e F2 and F2 �≤e F1.
We now start by considering the signatures of AFs, SETAFs and

(B)ADFs for the unary vocabulary {a}:

Σadm
AF = Σadm

SETAF = {{u} , {u, t}}
Σcom

AF = Σcom
SETAF = {{u} , {t}}

Σprf
AF = Σprf

SETAF = {{u} , {t}}
Σmod

AF = Σmod
SETAF = {∅, {t}}

Σadm
ADF = Σadm

BADF = Σadm
AF ∪ {{u, f} , {u, t, f}}

Σcom
ADF = Σcom

BADF = Σcom
AF ∪ {{f} , {u, t, f}}

Σprf
ADF = Σprf

BADF = Σprf
AF ∪ {{f} , {t, f}}

Σmod
ADF = Σmod

BADF = Σmod
AF ∪ {{f} , {t, f}}

The following result shows that the expressiveness of the formalisms
under consideration is in line with the amount of restrictions they
impose on acceptance formulas.

Theorem 8. For any σ ∈ {adm, com, prf ,mod}:

1. AFσ <e SETAFσ .
2. SETAFσ <e BADFσ .
3. BADFσ <e ADFσ .

Proof. (1) AFσ ≤e SETAFσ is clear (by modeling individual at-
tacks via singletons). For SETAFσ �≤e AFσ the witnessing interpret-
ation sets over vocabulary A = {a, b, c} are {uuu, ttf , tft, ftt} ∈
Σσ

SETAF \ Σσ
AF and {ttf , tft, ftt} ∈ Στ

SETAF \ Στ
AF with

σ ∈ {adm, com} and τ ∈ {prf ,mod}. By each pair of argu-
ments of A being t in at least one model, a realizing AF can-
not feature any attack, immediately giving rise to the model ttt.
The respective realizing SETAF is given by the attack relation
X = {({a, b}, c), ({a, c}, b), ({b, c}, a)}.

(2) It is clear that SETAFσ ≤e BADFσ holds (SETAFs are bipolar
since all parents are always attacking). For BADFσ �≤e SETAFσ the
respective counterexamples can be read off the signatures above:
for σ ∈ {adm, com} we find {u, t, f} ∈ Σσ

BADF \ Σσ
SETAF and for

τ ∈ {prf ,mod} we find {t, f} ∈ Στ
BADF \ Στ

SETAF. The realizing bi-
polar ADF has acceptance condition ϕa = a.

(3) For σ = mod the result is known [28, Theorem 14]; for the
remaining semantics the model sets witnessing ADFσ �≤e BADFσ

over vocabulary A = {a, b} are

{uu, tu, tt, tf , fu} ∈ Σadm
ADF \ Σadm

BADF

{uu, tu, tt, tf , fu} ∈ Σcom
ADF \ Σcom

BADF

{tt, tf , fu} ∈ Σprf
ADF \ Σprf

BADF

A witnessing ADF is given by ϕa = a and ϕb = a ↔ b. �

Theorem 8 is concerned with the relative expressiveness of the
formalisms under consideration, given a certain semantics. Consider-
ing different semantics we find that for all formalisms the signatures
become incomparable:

Proposition 9. Fσ1
1 �≤e Fσ2

2 and Fσ2
2 �≤e Fσ1

1 for all form-
alisms F1,F2 ∈ {AF, SETAF,BADF,ADF} and all semantics
σ1, σ2 ∈ {adm, com, prf ,mod} with σ1 �= σ2.

Proof. First, the result for adm and com follows by {u, t} ∈ Σadm
AF ,

but {u, t} /∈ Σcom
ADF and {t} ∈ Σcom

AF , but {t} /∈ Σadm
ADF . Moreover,

taking into account that the set of preferred interpretations (resp. two-
valued models) always forms a ≤i-antichain while the set of admiss-
ible (resp. complete) interpretations never does, the result follows for
σ1 ∈ {adm, com} and σ2 ∈ {prf ,mod}. Finally, since a kb ∈ F
may not have any two-valued models and a preferred interpretation
is not necessarily two-valued, the result for prf and mod follows. �

Disregarding the possibility of realizing the empty set of interpret-
ations under the two-valued model semantics, we obtain the follow-
ing relation for ADFs.

Proposition 10. (Σmod
ADF \ {∅}) ⊆ Σprf

ADF.

Proof. Consider some V ∈ Σmod
ADF with V �= ∅. Clearly V ⊆ V2

and by Proposition 4 there is a mod -characterization f : V2 → V2

for V , that is, f(v) = v iff v ∈ V . Define f ′ : V2 → V2 such
that f ′(v) = f(v) = v for all v ∈ V and f ′(v)(a) = ¬v(a) for
all v ∈ V \ V and a ∈ A. Now it holds that f ′ is an adm-
characterization of V ′ = {v ∈ V | ∀v2 ∈ [v]2 : v2 ∈ V } ∪ {vu}.
Since max≤i V

′ = V we get that the ADF D with acceptance for-
mula ϕf ′

a for each a ∈ A has prf (D) = V whence V ∈ Σprf
ADF. �

In contrast, this relation does not hold for AFs, which was shown for
extension-based semantics by Linsbichler et al. [20, Theorem 5] and
immediately follows for the three-valued case.

6 Discussion

We presented a framework for realizability in which AFs, SETAFs,
BADFs and general ADFs can be treated in a uniform way. The
centerpiece of our approach is an algorithm for deciding realizab-
ility of a given interpretation-set in a formalism under a semantics.
The algorithm makes use of so-called propagators, by which it can be
adapted to the different formalisms and semantics. We also presented
an implementation of our framework in answer set programming and
several novel expressiveness results that we obtained using our im-
plementation. In unpublished related work, our colleague Sylwia Pol-
berg studied a wide range of abstract argumentation formalisms, in
particular their relationship with ADFs [25]. This can be the basis for
including further formalisms into our realizability framework: all that
remains to do is figuring out suitable ADF fragments and developing
propagators for them, just like we did exemplarily for Nielsen and
Parsons’ SETAFs. For further future work, several semantics whose
realizability is yet unstudied could be added to our framework, for
example semantics based on conflict-freeness, like three-valued ver-
sions of conflict-free, naive, and stage semantics [27, 16, 29].

Acknowledgements This research was supported by the German
Research Foundation (DFG) under project BR 1817/7-1 and the Aus-
trian Science Fund (FWF) under projects I1102, I2854 and P25518.

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation 259

References

[1] Leila Amgoud and Claudette Cayrol, ‘A reasoning model based on the
production of acceptable arguments’, Annals of Mathematics and Arti-
ficial Intelligence, 34(1–3), 197–215, (2002).

[2] Pietro Baroni, Federico Cerutti, Massimiliano Giacomin, and Giovanni
Guida, ‘AFRA: Argumentation framework with recursive attacks’, In-
ternational Journal of Approximate Reasoning, 52(1), 19–37, (2011).

[3] Ringo Baumann, Wolfgang Dvořák, Thomas Linsbichler, Hannes
Strass, and Stefan Woltran, ‘Compact argumentation frameworks’, in
Proceedings of the 21st European Conference on Artificial Intelli-
gence (ECAI 2014), eds., Torsten Schaub, Gerhard Friedrich, and Barry
O’Sullivan, volume 263 of Frontiers in Artificial Intelligence and Ap-
plications, pp. 69–74. IOS Press, (2014).

[4] Gerhard Brewka, Stefan Ellmauthaler, Hannes Strass, Johannes P. Wall-
ner, and Stefan Woltran, ‘Abstract Dialectical Frameworks Revisited’,
in Proceedings of the 23rd International Joint Conference on Artificial
Intelligence (IJCAI 2013), ed., Francesca Rossi, pp. 803–809. AAAI
Press / IJCAI, (2013).

[5] Gerhard Brewka, Sylwia Polberg, and Stefan Woltran, ‘Generalizations
of Dung frameworks and their role in formal argumentation’, IEEE In-
telligent Systems, 29(1), 30–38, (2014). Special Issue on Representation
and Reasoning.

[6] Gerhard Brewka and Stefan Woltran, ‘Abstract Dialectical Frame-
works’, in Proceedings of the 12th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR 2010), eds.,
Fangzhen Lin, Ulrike Sattler, and Mirosław Truszczyński, pp. 102–111.
AAAI Press, (2010).

[7] Martin Caminada and Dov Gabbay, ‘A logical account of formal argu-
mentation’, Studia Logica, 93(2–3), 109–145, (2009).

[8] Claudette Cayrol and Marie-Christine Lagasquie-Schiex, ‘On the ac-
ceptability of arguments in bipolar argumentation frameworks’, in Pro-
ceedings of the 8th European Conference on Symbolic and Quantitat-
ive Approaches to Reasoning with Uncertainty (ECSQARU 2005), ed.,
Lluis Godo, volume 3571 of Lecture Notes in Computer Science, pp.
378–389. Springer, (2005).

[9] Phan M. Dung, ‘On the acceptability of arguments and its funda-
mental role in nonmonotonic reasoning, logic programming and n-
person games’, Artificial Intelligence, 77(2), 321–357, (1995).

[10] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan
Woltran, ‘Characteristics of multiple viewpoints in abstract argumenta-
tion’, Artificial Intelligence, 228, 153–178, (2015).

[11] Paul E. Dunne, Wolfgang Dvořák, Thomas Linsbichler, and Stefan
Woltran, ‘Characteristics of multiple viewpoints in abstract argument-
ation’, in Proceedings of the Fourth Workshop on Dynamics of Know-
ledge and Belief (DKB 2013), eds., Chistoph Beierle and Gabriele Kern-
Isberner, pp. 16–30, (2013).

[12] Sjur K. Dyrkolbotn, ‘How to Argue for Anything: Enforcing Arbitrary
Sets of Labellings using AFs’, in Proceedings of the 14th International
Conference on Principles of Knowledge Representation and Reason-
ing (KR 2014), eds., Chitta Baral, Giuseppe De Giacomo, and Thomas
Eiter, pp. 626–629. AAAI Press, (2014).

[13] Uwe Egly, Sarah A. Gaggl, and Stefan Woltran, ‘Answer-set program-
ming encodings for argumentation frameworks’, Argument & Compu-
tation, 1(2), 147–177, (2010).

[14] Stefan Ellmauthaler and Hannes Strass, ‘The DIAMOND system for
computing with abstract dialectical frameworks’, in Proceedings of the
Fifth International Conference on Computational Models of Argument
(COMMA 2014), eds., Simon Parsons, Nir Oren, Chris Reed, and Fed-
erico Cerutti, volume 266 of FAIA, pp. 233–240. IOS Press, (2014).

[15] Sarah A. Gaggl, Norbert Manthey, Alessandro Ronca, Johannes P.
Wallner, and Stefan Woltran, ‘Improved answer-set programming en-
codings for abstract argumentation’, Theory and Practice of Logic Pro-
gramming, 15(4–5), 434–448, (2015).

[16] Sarah A. Gaggl and Hannes Strass, ‘Decomposing Abstract Dialectical
Frameworks’, in Proceedings of the Fifth International Conference on
Computational Models of Argument (COMMA 2014), eds., Simon Par-
sons, Nir Oren, Chris Reed, and Federico Cerutti, volume 266 of FAIA,
pp. 281–292. IOS Press, (2014).

[17] Martin Gebser, Roland Kaminski, Benjamin Kaufmann, and Torsten
Schaub, Answer Set Solving in Practice, Morgan and Claypool Pub-
lishers, 2012.

[18] Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman,
‘The comparative linguistics of knowledge representation’, in Proceed-

ings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI 1995), pp. 862–869. Morgan Kaufmann, (1995).

[19] Carla P. Gomes, Henry A. Kautz, Ashish Sabharwal, and Bart Sel-
man, ‘Satisfiability Solvers’, in Handbook of Knowledge Represent-
ation, eds., Frank van Harmelen, Vladimir Lifschitz, and Bruce W.
Porter, volume 3 of Foundations of Artificial Intelligence, 89–134, El-
sevier, (2008).

[20] Thomas Linsbichler, Christof Spanring, and Stefan Woltran, ‘The hid-
den power of abstract argumentation semantics’, in Theory and Applic-
ations of Formal Argumentation – 3rd International Workshop (TAFA
2015), Revised Selected Papers, eds., Elizabeth Black, Sanjay Modgil,
and Nir Oren, volume 9524 of Lecture Notes in Computer Science, pp.
146–162. Springer, (2015).

[21] Victor W. Marek and Mirosław Truszczyński, ‘Stable models and an
alternative logic programming paradigm’, in In The Logic Program-
ming Paradigm: a 25-Year Perspective, eds., Krzysztof R. Apt, Vic-
tor W. Marek, Mirosław Truszczyński, and David S. Warren, 375–398,
Springer, (1999).

[22] Sanjay Modgil, ‘Reasoning about preferences in argumentation frame-
works’, Artificial Intelligence, 173(9–10), 901–934, (2009).

[23] Søren Holbech Nielsen and Simon Parsons, ‘A generalization of Dung’s
abstract framework for argumentation: Arguing with sets of attack-
ing arguments’, in Proceedings of the 3rd International Workshop on
Argumentation in Multi-Agent Systems (ArgMAS 2006), eds., Nicolas
Maudet, Simon Parsons, and Iyad Rahwan, volume 4766 of Lecture
Notes in Computer Science, pp. 54–73. Springer, (2006).

[24] Ilkka Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25(3–4), 241–273, (1999).

[25] Sylwia Polberg. Understanding the Abstract Dialectical Framework
(Preliminary Report). Available at http://arxiv.org/abs/
1607.00819, July 2016.

[26] Jörg Pührer, ‘Realizability of Three-Valued Semantics for Abstract Dia-
lectical Frameworks’, in Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015), eds., Qiang Yang
and Michael Wooldridge, pp. 3171–3177. AAAI Press, (2015).

[27] Hannes Strass, ‘Approximating operators and semantics for abstract
dialectical frameworks’, Artificial Intelligence, 205, 39–70, (December
2013).

[28] Hannes Strass, ‘Expressiveness of Two-Valued Semantics for Abstract
Dialectical Frameworks’, Journal of Artificial Intelligence Research,
54, 193–231, (2015).

[29] Hannes Strass and Johannes P. Wallner, ‘Analyzing the Computational
Complexity of Abstract Dialectical Frameworks via Approximation
Fixpoint Theory’, Artificial Intelligence, 226, 34–74, (2015).

T. Linsbichler et al. / A Uniform Account of Realizability in Abstract Argumentation260

