
Checking the Conformance of Requirements in Agent
Designs Using ATL

Nitin Yadav and John Thangarajah 1

Abstract. Intelligent agent systems built using the BDI model of
agency have grown in popularity for implementing complex systems
such as UAVs, military simulations, trading agents and intelligent
games. The robust and flexible behaviours that these systems afford
also makes testing the ‘correctness’ of these systems a non-trivial
task. Whilst the main focus on existing work has been on checking
the correctness of agent-programs, in this work we present an ap-
proach to formally verify agent-based designs for a particular BDI
agent design methodology. The focus is on verifying whether the de-
tailed design of the agents conform to the requirements specification.
We present a sound and complete approach, formally verifiable prop-
erties, and an evaluation with respect to time and effectiveness.

1 Introduction

Intelligent agent systems have been used to develop software sys-
tems in a variety of application areas [19]. Agent systems of this
kind are often designed and implemented in terms of software struc-
tures that are based on metaphors of humans and human societies;
for example, events, beliefs, goals, plans and intentions. While there
are many agent development paradigms, the Belief-Desire-Intention
(BDI) model [24] is a mature paradigm that has been adopted by
several agent development platforms such as JACK [28], JASON [8]
and JadeX [7]. As with any software development, testing the ‘cor-
rectness’ of these BDI-based agent systems is an important task. See
[20] for a recent survey of the state of the art in testing agent systems.

Most existing work on verifying BDI agent systems has focused
on formal verification (e.g. [10]), particularly using model checking
techniques (e.g. [13]) and theorem proving (e.g. [25]), or on run-
time testing (e.g. [30, 31]) of agent programs. That is, testing the
correctness after the system (or part of it) has already been imple-
mented. However, the notion that identifying and correcting errors
early in the software development cycle is well accepted in software
engineering [6, Page 1466]. In this work we present a formal model-
checking based approach for verifying the correctness of the agent
design models at the design stage prior to implementation.

There has not been much work on testing the correctness of
detailed agent designs with the exception of the recent work by
Abushark et al.[1, 2]. They provide an approach for checking the
correctness of interaction protocols [1] and requirement models [2].
Their approach in [1] is to extract all possible behaviour traces of
the detailed agent design (comprising goals, plans and message ex-
changes) related to a particular protocol and report the ones that do
not conform by checking against an execution structure of the pro-
tocol. They adapt a similar approach for checking requirements in
[2].

1 RMIT University, Australia, email: firstname.lastname@rmit.edu.au

Although their approach is able to identify traces that do not con-
form to the interaction or requirement specifications, there are some
significant limitations. The first is that the approach has no formal
semantics and as mentioned by the authors in [2] the approach is nei-
ther sound nor complete. Secondly, in the design, plans that post two
or more sub-goals where the execution can be interleaved can create
a large number of traces caused by the interleaving of all the steps of
those sub-goals. As the number of parallel steps increases the possi-
ble behaviour traces grows at least exponentially and hence the time
and space to extract them. This is particularly problematic for check-
ing the requirements using scenarios, where a scenario specifies a
particular sequence of steps. If the sequence specified is one of the
possible parallel interleaving, all possible traces must be extracted to
find the one that matches. Finally, the trace extraction is carried out
independent of the requirements specification. Hence, no matter how
long or short the scenario is, the number and size of traces is only
dependent on the detailed design, which can be inefficient.

In this work, we present a formal approach to verifying the cor-
rectness of the detailed agent designs with respect to the requirement
specifications via a model checking approach. Similar to the work of
Abushark et al., we use Prometheus agent design models [22] as the
basis of our work. The proposed approach however, is formal, sound
and complete, uses model checking rather than trace extraction, and
presents the designer with a model as well as traces. In addition, the
approach is general and can be adapted to other agent design method-
ologies that follow the BDI model of agency [12] as they all share a
set of common design concepts.

The key contributions of this paper are: (i) we formalise, rather in-
formal and abstract, agent-oriented software design concepts; (ii) we
provide precise semantics for the verification problem that we (and
Abushark et.al [1]) are trying to address; (iii) we provide a formal
design framework that is amenable to automatic testing and verifi-
cation; (iv) we demonstrate how verification tools developed within
the agent community can be used for checking conformance within
agent designs; and (v) we provide an initial evaluation on the scala-
bility of the proposed approach.

2 Background and related work

2.1 Prometheus- BDI agent design paradigm

The Prometheus methodology [22], together with the design tool
(PDT) [23], supports the complete development of agent systems
from specification and design through to implementation. The de-
sign methodology presents well-defined notation and processes for
developing three key phases. The System specification where the in-
terface of the system is specified in terms of inputs (percepts), out-
puts (actions), the external entities that interact with the system, and

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-243

243

ManageAuction

AnnounceAuction IdentifyWinner AnnounceWinner

Participate

ProposeBid

AND

(a) Goal overview for the auction example.

No Type Name Role

1 Percept StartAuction Auctioneer
2 Goal AnnounceAuction Auctioneer
3 Goal Participate Bidder
4 Goal IdentifyWinner Auctioneer
5 Goal AnnounceWinner Auctioneer

(b) A scenario for the auction example.

Figure 1: Requirements spec. for the auction example.

the requirements of the system specified via scenarios and goal dia-
grams. Scenarios specify a particular run of the system akin to use
cases in traditional Object-Oriented design. Table 1b, illustrates an
example scenario related to an auction system. The Goal diagrams
specify the functionality of the system and how they may be decom-
posed into smaller sub-goals. Figure 1a, illustrates a goal diagram for
an auction system.

The Architectural design specifies the internals of the system in
terms of agents and any communication between them. The detailed
design details the internals of each agent in terms of plans, messages,
and goals that they handle and produce amongst other things. Figure
2, illustrates the detailed design of an Auctioneer agent, in a simple
auction system. The plan New Auction is triggered by the percept
StartAuction, produces the (sub)goal AnnounceAuction, this goal
then triggers the execution of the plan BroadcastAnnouncement.

2.2 Alternating-time temporal logic

Alternating-time Temporal Logic (ATL) [4] is a logic for reasoning
about the ability of agent coalitions in multi-agent game structures.
ATL formulae are obtained by combining propositional formulas,
the usual temporal operators—namely, © (“in the next state”), �
(“always”), � (“eventually”), and U (“strict until”)—and a coali-
tion path quantifier 〈〈A〉〉 taking a set of agents A as parameter.
Conceptually, an ATL formula 〈〈A〉〉φ, where A is a set of agents,
holds in an ATL model if the agents in A can force φ true, by
choosing their actions, no matter how the agents not in A happen
to move. The semantics of ATL is defined in concurrent game struc-
tures where, at each state, all agents simultaneously choose their ac-
tions from a finite set, and the next state deterministically depends on
such choices. More concretely, a concurrent game structure is a tuple
M = 〈A, Q,P,Act, d,V, σ〉, where A = {1, . . . , k} is a finite set
of agents, Q is the set of states, P is the set of propositions, Act is the
set of all domain actions, d : A × Q �→ 2Act indicates all available
actions for an agent in a state, V : Q �→ 2P is the valuation function
stating what is true in each state, and lastly σ : Q × Act|A| �→ Q is
the transition function mapping a state q and a joint-move�a ∈ D(q),
where D(q) = ×|A|

i=1d(i, q) is the set of legal joint-moves in q, to the
resulting next state q′.

A path λ = q0q1 · · · in a structure M is a, possibly infinite, se-
quence of states such that for each i ≥ 0, there exists a joint-move
�ai ∈ D(qi) for which σ(qi, �ai) = qi+1. To provide semantics to
formulas 〈〈·〉〉ϕ, ATL relies on the notion of agent strategies. Techni-

Figure 2: Auctioneer agent - detailed design.

cally, an ATL strategy for an agent agt is a function fagt : Q
+ �→ Act,

where fagt(λq) ∈ d(agt, q) for all λq ∈ Q+, stating a particular ac-
tion choice of agent agt at path λq. A collective strategy for group of
agents A ⊆ A is a set of strategies FA = {fagt | agt ∈ A} providing
one specific strategy for each agent agt ∈ A. For a collective strat-
egy FA and an initial state q, the set of all possible outcomes of FA

starting at state q, denoted out(q, FA), are the set of all computation
paths that may ensue when the agents in A behave as prescribed by
FA, and the remaining agents follow any arbitrary strategy (see [4]).
The semantics for the coalition modality is then defined as follows
(here φ is a path formula; and M, λ |= φ is defined in the usual
way [4]):

M, q |= 〈〈A〉〉φ iff there is a collective strategy FA such that for all
computations λ ∈ out(q, FA), we have M, λ |= φ.

Given a concurrent game structure M and an ATL formula φ, the
model checking problem of ATL asks for the set of states in M that
satisfy formula φ. Let [φ]M denote the maximal set of states of M
that satisfy φ. A state q in M is said to be winning for φ if q ∈ [φ]M.

2.3 Related work

The BDI agent-oriented paradigm is a popular and successful ap-
proach for building agent systems. We have a long history (20+
years) of collaboration with multiple industry partners that use BDI
agents and the Prometheus methodology (or its variants) to design
the agents. The overarching goal in this paper is to provide our user
community with tools that would enable them to develop more reli-
able systems which is a need that has emerged from them.

As is with any software development approach, a complex sys-
tem is generally conceptualized first using software design method-
ologies (e.g., Prometheus in our case), and then this design is im-
plemented using a programming language (e.g., JACK, JASON,
JADEX, etc). Although there is a large body of work on verifying
BDI agent systems using formal verification techniques [17, 13, 26,
3, 11], these approaches either assume the presence of a formal BDI
system or testing is done on an agent system that is already imple-
mented. Though recent work [1, 2] has tried to address verification
at the level of agent designs, that is before a system is even pro-
grammed, the use of formal verification techniques for this purpose
is not widespread.

With respect to agent designs, the Tropos methodology supports
validating requirements using T-Tool [14] and reasoning about agent
goals using the GR-Tool [15]. However, Tropos does not provide
support for verification of requirements against agent designs. The
approach that comes closest to ours is that of Abushark et.al. [2].
In their work the authors verify requirements against detailed de-
signs via an algorithmic approach. The key idea there is to construct
a Petri net from the given requirements and verify the detailed de-
signs by extracting the behavior traces and executing these traces

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL244

against the constructed Petri net. The authors in [2] address the issue
of requirements verification in an ad-hoc manner without formalis-
ing the problem, and leave the soundness and completeness of their
approach as future work.

In [27], scenarios in Prometheus are extended such that they may
be propagated to the detailed design, thus reducing the chance of er-
ror, and use them in generating scenario-based run-time test cases.
Their approach complements the formal verification framework pre-
sented in this paper.

In this work we are interested in formally verifying requirements
against agent details and on the way of achieving this provide a way
to formalise agent designs based on Prometheus methodology. Fur-
ther, as shown in [9], BDI design methodologies share similar struc-
tures, and hence we believe that the key formal notions developed
here can be adapted to other BDI design methodologies.

3 Framework

We begin with formally defining the core elements of an agent de-
sign. Goals are usually captured by defining goal trees. A goal tree is
a tree (in its usual sense) whose nodes are agent goals and branches
are labelled either an AND (all sub-goals required to achieve the
goal) or an OR (only one sub-goal required to achieve the goal).
Formally, a goal tree is a tuple T = 〈G, g0,R, μ〉 where G is the set
of goals, g0 ∈ G is the top level goal, relation R defines the parent-
child relationship between goals where R(g1, g2) implies that g1 is
the parent goal of g2, and μ : G → {AND,OR} provides AND-OR
mapping for sub-goals. Given a goal g and its sub-goals g1, . . . , gn,
let sg(g) = {g1, . . . , gn}. That is, the function sg returns the set of
all sub-goals of g.

A scenario consists of a sequence of steps that need to be achieved
for it to be completed. Each step is either a percept, a goal or an
action and the entity responsible for it is defined by an agent role.
Formally, each step in a scenario is a pair (o, r) where o is a step
type and r is an agent role. A scenario is then an ordered tuple S =
〈(o1, r1), . . . , (on, rn)〉 where n ≥ 1. Given a scenario S consisting
of n steps we denote the size of S by |S| (i.e., |S| = n), its ith step
by S[i], and the step type and role of the ith step by S[i].type and
S[i].role, respectively. A requirements specification simply consists
of a scenario S and a set of k goal trees Ti = 〈Gi, gi0,Ri, μi〉,
where 1 ≤ i ≤ k.

A detailed design on the other hand consists of entities used in sce-
narios (i.e., goals, percepts, and actions) and additionally messages
and plans. A message is of the form from → to : msg where from
and to are agents and msg is the name of the message. A plan in
an agent design is defined in terms of its trigger and outputs such as
messages, actions, and sub-goals. Details of a plan body are not de-
fined at the design level (it is an implementation level detail). A plan
is a tuple p = 〈name, trigger, O〉 where name is a unique identifier
for p, trigger is its trigger, and O is the set of its outputs. For techni-
cal convenience, we shall refer to components of plan p as p.name,
p.trigger, and p.O. In the rest of the paper, we refer to the set of
all goals by Goals. Similarly, Percepts, Actions, Messages, and
Plans.

In order to track each possible plan instance we need to track
how it was triggered. We assign each plan instance an id to track
a sequence of plan activations that preceded it. Formally, the set
of ids for plan p = 〈name, trigger, O〉 is defined inductively by
Δ(p) = {id · name | ∃p′(trigger ∈ p′.O), id ∈ Δ(p′)} where for
the base case we have that Δ(p) = {name | trigger ∈ Percepts}.
Generally, an id for a plan instance p will start with a plan name

that handles a percept, followed by a sequence of plan names, subse-
quently ending with p’s name, such that the trigger for a plan was in
the output of plan preceding it in the id. Given an id = id’ · name
for a plan p = 〈name, trigger, O〉 let history(id) = id’ and let
active(id) = p.

An agent for design purposes is a collection of plans along with its
roles. A design agent is a tuple Ag = 〈n,R, P l〉 where n is agent’s
name, R is a set of agent’s roles, and Pl is agent’s plan library. A
detailed design consists of a set of design agents. Formally, a detailed
design D is a set {Ag1, . . . ,Agn} where Agi are design agents for
1 ≤ i ≤ n. Observe that goals, actions, messages are closely linked
to plans via its trigger and outputs and can be directly inferred from
the agents plan library.

3.1 Conformance of requirements and designs

The problem we are interested in is to automatically check if a de-
tailed design D conforms to a requirements specification R. Observe
that though all scenario entities (i.e., step types) are also available in
the detailed design there may not be an exact one to one mapping
between them (else the verification task will be simple). For exam-
ple, a scenario may specify a goal g whereas the detailed design may
only have plans for g’s sub-goals. Additionally, there may be mul-
tiple plans to handle a given goal, some of which may not conform
to the requirements. In order to precisely define what it means for a
detailed design to conform to a requirements specification we intro-
duce a notion of traces for a requirement specification and detailed
design.

Due to the subjective nature of the design process a requirement
may be captured in multiple ways. Hence, in general, just by look-
ing at the sub-goals one cannot infer if the designer has specified an
ordering between sub-goals or that she is indifferent towards it. For
consistency and uniformity we will assume the following interpreta-
tions:

• Listing the parent goal implies that ordering of sub-goals does not
matter; and

• Listing of sub-goals without a parent goal implies that ordering of
sub-goals matter.

Requirement traces: Informally, we say a goal is met if the goal
itself is posted, or all its sub-goals are posted in case of AND sub-
goal type, or at least one of its sub-goals is posted in case of a OR
sub-goal type. Formally, a goal g from a goal tree 〈G, g0,R, μ〉 is
met by a sequence of goals g1, . . . , gn if either one of the following
holds: (i) n = 1 and g1 = g; or (ii) if μ(g) = AND, then sg(g) =
{g1, . . . , gn}; or (iii) if μ(g) = OR, then n = 1 and g1 ∈ sg(g).

Conceptually, a trace for a requirements specification is one pos-
sible way in which an underlying scenario can be achieved. For-
mally, a trace for a requirement specification with scenario S =
〈(o1, r1), . . . , (on, rn)〉 and goal trees {T1, . . . , Tk} is a sequence
of pairs τ = (o′1, r1) · · · (o′m, rm) with m ≥ n such that for each
step type oi there exists indices si and ei where:

1. if oi.type ∈ Percepts ∪ Actions, then si = ei and oi = o′si ;
2. if oi.type ∈ Goals, then oi is met through o′si · · · o′ei ;
3. for all indices it holds that ej = sj+1 − 1, s1 = 1, and en = m,

where 1 ≤ j < n.

Informally, a trace for a requirements specification is a concate-
nation of sequences (with start index si and end index ei) such that
each sequence achieves a scenario step. If the step is a percept or

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL 245

an action then the sequence is just one element containing the same
percept or action. If a scenario step is a goal, then the sequence is
such that the goal in the scenario step is met as per the assumptions
discussed before.

Design traces: We define a trace for a detailed design incre-
mentally by introducing traces for a plan, an agent, and finally for
a group of agents. The idea is to define a trace for a design agent
as an interleaving of its plan traces such that each posted goal is
handled by at most one plan (goals are posted internally in an agent).
We define a trace for a design as a collection of design agent traces
such that each posted message is handled by at most one plan in the
receiver agent (messages are posted across agents).

A trace for a plan p = 〈name, trigger, O〉 is a sequence of the
form τ = trigger·name·o1, · · · , on where |O| = n and o1, · · · , on
is a permutation of elements in O. (An agent activates a plan by
acknowledging its trigger, executing the plan body, and then posting
the plan outputs one by one.)

Since an agent may have more than one active plan at a time, a
trace for a design agent will consist of interleaved active plan traces
with certain constraints. We define an interleaved trace resulting from
two traces τ1 = t11 · · · t1n and τ2 = t21 · · · t2m to be a trace τ1+2 =
t1 · · · tm+n such that τ↑τ1

1+2 = τ2 and τ↑τ2
1+2 = τ1 where τ↑τ

1+2 is a
trace obtained by projecting out τ from τ1+2. Given a set of plan
traces Γ = {τ1, . . . , τn}, a trace for a design agent is an interleaved
trace τ = t1, . . . , t� over agent’s plan traces Γ such that:

1. if ti = g is a trigger in plan trace τ ′ and g ∈ Goals, then there
exists tj = g where g is output in a plan trace τ ′′ = τ ′ where
τ ′, τ ′′ ∈ Γ, and j<i;

2. for any two ti = tj = g, where i = j, g ∈ Goals and ti, tj are
triggers for plan traces τ1 and τ2, there must exist ti′ = tj′ = g
with i′ = j′, i′ < i, j′ < j such that ti′ , tj′ are plan outputs in
traces τ1′ , τ2′ , respectively.

Intuitively:(1) a goal should be posted before it can be handled;
and (2) only one plan gets activated for a posted goal.

A design trace then is simply a set of traces, one for each design
agent, where we allow an agent to be inactive if it does not have
any active plans. Formally, a design trace for a set of k agents is a
sequence τ = (t11, . . . t

k
1) · · · (t1� , . . . tk�) such that each element tagtj

can either be ε (here ε denotes an empty token) or from design agent
agt’s trace with the following constraints:

1. for all agents i it holds that tim · · · tin is agent i’s trace such that
either m = 1 or tim−1 = ε, and n = 	 or tin+1 = ε;

2. for each tim = msg where msg ∈ Messages is a trigger of agent
i, there exists a unique ti

′
n = msg where ti

′
n is an output in a plan

of agent i′ = i, n < m, agent i is msg’s receiver and agent i′ is
msg’s sender;

3. if tim = msg is a message (that is, msg ∈ Messages) and in
output of agent i’s plan, then for an agent i′ such that i′ is msg’s
receiver and for all indices m < j < n where ti

′
n = msg is a

trigger for a plan in agent i′’s trace it is the case that ti
′
j = ε.

Intuitively:(1) an agent trace cannot have empty tokens; (2) each
message is handled by at most one plan; (3) the receiver agent must
handle a message posted for it (i.e., it cannot choose to stay idle in
presence of a pending message).

3.1.1 Comparing requirements and design traces

Conceptually, a trace for a detailed design is said to conform with
a requirements trace if the design trace contains elements from the
requirements trace in the right order. Formally, a design trace τD =
(t11, . . . t

k
1) · · · (t1� , . . . tk�) for a design D conforms to a trace τR =

(o1, r1) · · · (om, rm) of requirements specification R if there exists
a set of indices j1, . . . , jm such that for all 1 ≤ i ≤ m there exists
agent agt where tagt

ji
= oi and ri is in agt’s roles. We say a detailed

design D conforms to a requirements specification R if there exists
a trace τD of D for which there exists a trace τR of R such that τD
conforms to τR.

A design trace will generally be much longer in length than a sce-
nario trace because a detailed design fleshes out how a particular re-
quirement is achieved.

4 Model checking agent designs

Conceptually, an ATL model (also known as concurrent game struc-
ture) consists of a set of agents that act concurrently in order for the
game to progress. The game consists of a set of states that evolve
based on agents’ moves and one checks temporal formulae against
these states to verify properties. For our conformance checking prob-
lem, the set of agents will consist of a requirements agent and a num-
ber of detailed design agents. The requirements agent will select its
actions as per the underlying scenario and goal trees, whereas the
design agents will move as per their active plans. In the ATL game
structure we will match each design agent’s action against the ac-
tion of the requirements agent to check if a scenario step has been
achieved. The objective then is to verify if all scenario steps have
been achieved in the right order.

We do this in two steps: (i) we build two kinds of finite state au-
tomatons (see [16] for details on FSA.) one that will accept all traces
for a requirements specification, and second that will accept all traces
for a given plan; (ii) we use these automatons to build a concurrent
game structure that will serve as our ATL model for model check-
ing. A game state in our ATL model will consist of underlying states
of these automatons (a requirements automaton and multiple plan au-
tomatons) and these states will be appropriately updated based on the
agents’ actions (that is, based on scenario steps achieved, plan trig-
gers, and plan completions). Finally, to verify that a given detailed
design conforms to the requirements specification, we will check the
formula 〈〈A〉〉�final, where A is the set of all design agents and final
captures the condition that the requirements automaton has reached
its final state.

4.1 Requirements and agent plan automatons

We introduce two technical notations required for constructing the
automatons. First, given a sequence τ = t1t2 · · · tntn+1 let a
set of states for accepting τ indexed by a number be θ(τ, i) =
{qiε, qit1 , qit1t2 , . . . , qit1···tn}. Intuitively, the role of states in θ(τ, i)
is to track the sequence τ and since we may need to track the same
sequence more than once we index it by a number. Second, given a
set of elements E, let the set of all possible sequences (that is, per-
mutations) of length |E| that can be generated from E be perm(E).

Next, we build an automaton such that its language is the set of
traces for a given requirements specification. Formally, an automaton
for a given scenario S = 〈(o1, r1), . . . , (on, rn)〉 and set of k goal
trees Ti = 〈Gi, gi0,Ri, μi〉, where 1 ≤ i ≤ k, is a tuple FR =
〈Q, q0,Σ, δ, {qf}〉 where:

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL246

q0 q1 q2 q3 q4 q5

(a) Automaton for requirements (A:=Auctioneer, B:=Bidder)

StartAuction,A
ManageAuction,A

AnnounceAuction,A
ManageAuction,A

Participate,B

ProposeBid,B

IdentifyWinner,A
ManageAuction,A

AnnounceWinner,A
ManageAuction,A

q0 q1 q2

q3

q4

q5

(b) Automaton for plan DecideWinner

Bid DecideWinner

IdentifyWinner

IdentifyWinnerAnnounceWinner

AnnounceWinner

Figure 3: Automatons for the auction example.

1. Q = {qo0 , qon}∪ {qo | ∃i S[i].type = o} ∪{θ(τ, i) |
τ ∈ perm(sg(g)), ∃i(g = S[i].type), g ∈ G∧

S } ∪{qg |
∃i, j S[i].type = g′, g ∈ sg(g′), g′ ∈ G∨

S } where G∧
S (G∨

S)
is the set of AND (OR) goals in scenario S;

2. qo0 is the initial state and qf is the final state where qf =qon ;
3. Σ = {(o, r) | ∃i S[i] = (o, r)}∪{(o, r) | ∃i, g S[i] = (g, r), o ∈

sg(g)} is the alphabet consisting of elements in traces of require-
ments R; and

4. δ : Q×Σ→Q is the transition function where δ(q, σ)=q′ if:

(a) σ = (oi, ri), q = qoi−1 , q′ = qoi for 1 ≤ i ≤ n;

(b) σ = (o′i, ri) such that there exists oi ∈ G∨
S , o′i ∈ sg(oi),

q = qoi−1 , q′ = oi where 1 ≤ i ≤ n;

(c) σ = (o′i, ri) such that there exists oi ∈ G∧
S , o′i ∈ sg(oi) and

one of the following holds:

i. q = qoi−1 and q′ = qio′i
;

ii. q = qiτ and q′ = qoi where τ · o′i ∈ perm(sg(oi));
iii. q = qiτ and q′ = qiτ ′ where τ · o′i = τ ′ and τ ′ · τ ′′ ∈

perm(sg(oi)) for some |τ ′′| ≥ 1.

Intuitively, the set of states (1) of an automaton for a require-
ments specification consists of a state per each scenario step and ad-
ditional states to cater for sub-goals where a scenario step has AND
sub-goals. In addition, we index the states required for AND sub-
goals (with the step number) as the same goal may appear more than
once in a scenario. The alphabet (3) of the automaton consists of re-
quirements trace elements, that is, a pair consisting of step type and
step role. The first condition (4a) of the transition function connects
each scenario step sequentially, the second (4b) provides alternatives
where an OR goal could be achieved by one of its sub-goals, and the
third (4c) caters for each permutation of an AND goal. Figure 3 (a)
shows the finite state automaton for the auction requirements speci-
fication described in Figure 1b.

Theorem 1. The language of automaton FR for requirements spec-
ification R having a scenario S and goal trees {T1, . . . , Tk} is the
set of all possible traces of R.

PROOF (SKETCH). Let w = σ1 · · ·σ� ∈ L(FR), automa-
ton FR = 〈Q, q0,Σ, δ, {qf}〉 and scenario S = 〈(o1, r1),
. . . , (on, rn)〉. Hence, there exists a sequence of transitions λ =

q0
σ1−→ q1

σ2−→ · · · σ�−→ q� where δ(qi−1, σi) = qi for 1 ≤ i ≤ 	 and
q� = qf . The sequence λ contains states q1, . . . , qn such that qi =
qoi for 1 ≤ i ≤ n (from condition 4). From the states q1, . . . , qn one
can extract index pairs (sj , ej) where λ[sj] = qj and ej = sj+1 − 1
where 1 ≤ j < n and en = 	. Each sub-sequence λ[sj] · · ·λ[ej]
achieves step oj , for 1 ≤ j ≤ 	; hence w is a trace for requirements
R. For the other side, assume τ = (o′1, r

′
1) · · · (o′m, r′m) is a trace

for requirements R. Then, there exists indices si, ei for each step oi,
where 1 ≤ i ≤ m, such that sequence o′si · · · o′ei achieves step oi.
If oi is a percept or action, for 1 ≤ i ≤ m, then there exists transi-
tion from qoi to qoi+1 on symbol (oi, ri) (condition 4a in definition
of FR). If oi is a goal, for 1 ≤ i ≤ m, then either (i) si = ei
and τ [si] = oi (condition 4a in definition of FR), or (ii) si = ei,
τ [si] ∈ sg(oi), and μ(g) = OR (condition 4b in definition of FR),
or (iii) oi is met through sequence τ [si] · · · τ [ei] (condition 4c in def-
inition of FR). Observe that the first condition in transition function

of FS caters for condition (i), and second and third condition in tran-
sition function of FS cater for condition (ii) above. Combined with
the fact that qon is the final state, we get that τ ∈ L(FR).

Next we construct an automaton for a plan such that the automaton
will accept only the possible traces of the plan. An automaton for a
plan p = 〈n, t, O〉 is a tuple Fp = 〈Q, q0,Σ, δ, qf 〉 where:

1. Q={q0, q1, qf} ∪ {θ(τ, 1) |τ ∈perm(O)} is set of states;
2. q0 and qf are the initial and final states, respectively;
3. Σ = {n, t} ∪O is the alphabet;
4. δ : Q×Σ→Q is the transition function where δ(q, σ)=q′ if:

(a) q = q0, σ = t, and q′ = q1; or
(b) q = q1, σ = n, and q′ = q1ε ; or
(c) q = q1τ , σ ∈ O, and q′ = q1τ ·σ where τ · σ · τ ′ ∈ perm(O) for

some |τ ′| ≥ 1; or
(d) q = q1τ , σ ∈ O, and q′ = qf where τ · σ ∈ perm(O).

The alphabet of the automaton is the elements of the plan.The transi-
tion function ensures that any trace accepted by the automaton starts
with the plan trigger (4a), followed by its name (4b), and then any
legal permutation of the plan’s outputs (4c, 4d). Figure 3 (b) shows
the finite state automaton for the DecideWinner plan of the Auc-
tioneer. For the purpose of implementation the number of states of
the automaton of plan p = 〈n, t, O〉 will be exponential in |O|.
Theorem 2. The language of the automaton Fp for a plan p =
〈name, trigger, O〉 is the set of all traces of p.

PROOF (SKETCH). Observe that any word in the language of au-
tomaton Fp has the form trigger · name · λ where λ is from the set
perm(O). Hence, any word in the language of Fp is a trace of plan
p. Similarly, it can be shown that the first two symbols in a trace τ
of plan p result Fp to transition from its initial state to state q1ε ; and
subsequent symbols of τ cause Fp to transition from q1ε to qf .

These automatons provide a cleaner mapping to build the ATL
game structure and also provide a straightforward translation to ISPL
encoding for MCMAS [18] (please see the Appendix for the ISPL
encoding for the auction example.)

4.2 ATL concurrent game structure

The ATL model that we will build consists of a requirements agent
and a number of design agents. Observe that the automaton for a
given scenario encapsulates all legal scenario traces (see Theorem 1),
and hence models the behavior of the requirements agent. A design
agent on the other hand consists of multiple plans, and therefore its
behavior will be modelled by multiple automatons, one for each of
its (potential) plans that might get activated.

A concurrent game structure for an agent design consists of an
ATL requirements agent and one ATL agent per detailed design
agent. The requirements agent executes actions as per the automaton
obtained from the requirements specification and design agents exe-
cute actions as per automatons of their active plans. A game state cap-
tures the completion status of the requirements specification along

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL 247

with the status of plan instances. A key feature in our reduction is that
the state of requirements specification progresses only when a design
agent executes an action as expected by the requirements. Intuitively,
this implies that a next step in a (partial) requirements trace has been
achieved by one of the detailed design agents. We assume that the
percept in the first scenario step is posted by default, and hence a plan
that can handle it will be the first to get activated. Formally, given an
automaton FR = 〈QR, qR0 ,ΣR, δR, {qRf }〉 for a requirements spec-
ification R (consisting of a scenario and a set of goal trees) and a
detailed design D containing k design agents agti = 〈ni, Ri, P li〉
and automatons Fp = 〈Qp, q0,Σp, δp, {qf}〉 for each plan p ∈ Pl
(let Pl = ∪1≤i≤kPli), a concurrent game structure for R and D is
a tuple M〈R,D〉 = 〈{Req, n1, . . . , nk}, Q,P, Act, d,V, δ〉 where:

1. There are k + 1 agents: Req is the requirements agent, and
n1, . . . , nk are design agents (one per detailed design agent);

2. States Q consist of the following finite range functions:
(a) scn∈QR (QR is set of states for automaton FR);
(b) planid

i ∈Qp∪{inact} where id ∈ Δ(p), p ∈ Pli where 1 ≤ i ≤
k, and inact is used to capture if a plan is inactive;

3. P is the set of propositions asserting value assignments to the
above defined functions and V is the mapping from a game state
q to the values returned by the above defined functions. For con-
venience, we will write (scn(q) = qr) ∈ V(q) as scn(q) = qr .

4. Act = {a | ∃r(a, r) ∈ ΣR} ∪ {id · a | a ∈ Σp, id ∈ Δ(p), p ∈
Pl} ∪ {fin, nop} is the set of domain actions, where ΣR is the
alphabet for the automaton FR, Σp is the alphabet for the au-
tomaton for plan p, fin and nop are special actions to denote that
a scenario has finished and an agent has no active plans, respec-
tively. The action id · a denotes symbol a of alphabet Σp prefixed
by id of its plan instance p. Given an annotated action id · a, let
action(id · a) = a.

5. d(j, q) defines the moves available for agent j in state q:
(a) Requirements agent (j = Req):

d(j, q) =

{
{a | ∃r, qR〈scn(q), (a, r), qR〉∈δR}, if scn(q) =qRf

{fin}, otherwise.

(b) Design agents (j ∈ {n1, . . . , nk}):

d(j, q) =

{
next-actions(j, q), if |next-actions(j, q)| > 0

{nop}, otherwise.

where, next-actions(j, q) =
{id·a | ∃qp〈planid

j (q), action(id·a), qp〉∈δp, id ∈ Δ(p)}
6. δ :Q×Actk→Q is the transition function such that δ(q,�a) = q′,

where �a = ar, a1, . . . , ak is the move vector containing actions
for requirements and design agents, and q′ is as follows:

(a) Requirements: updated if a design agent acts as expected:

scn(q′) =

⎧⎪⎨
⎪⎩
s = δR(scn(q), (action(ai), r)), if s is defined

for some 1 ≤ i ≤ k where r ∈ Ri;

scn(q), otherwise

(b) Plans: updated as follows (j ∈ {n1, . . . , nk}):

i. if planid
j (q) = q0 and aj = id · a, then planid

j (q
′) = q1

and planid’
j (q′) = inact where history(id) = history(id’) and

active(id) · trigger = active(id’) · trigger;
ii. if planid

j (q) = q1 and aj = id · a, then planid
j (q

′)=q1ε ;

iii. if planid
j (q) = qp and aj = id·a, then planid

j (q
′) = δp(qp, a)

where p = active(id), and:
A. if a ∈ Goals, then planid’

j (q′) = q0 where id’ = id · name
such that p = 〈name, a, O〉 ∈ Plj ;

B. if a ∈ Messages, then planid’
i (q′) = q0 where id’ = id ·

name such that p = 〈name, a, O〉 ∈ Pli where i = j;
iv. if aj = nop, then planid

j (q
′) = planid

j (q);

Given a requirements specification R and detailed design D, the
states of the concurrent game structure M〈R,D〉 consist of states
from the automaton of requirements R, and states from the automa-
tons of possible plan instances of design agents in D. The function
scn returns the current state of automaton FR whereas functions
planid

j returns the current state of plan active(id) of design agent
j (2). Moves of the requirements agent (5a) from a state q consist
of scenario step types that are part of outgoing transitions of current
state of automaton FR (that is, scn(q)). If there are no outgoing tran-
sitions (because FR has reached its final state) then the requirements
agent’s moves consist of the special action fin, implying that the re-
quirements have been met. Moves of a design agent (5b) consists
of a union of all possible symbols that are part of outgoing transi-
tions of automatons of its active plans. A design agent j does the
special action nop in a state q if it does not have any active plans,
that is, the set of next-actions(j, q) is empty. The transition function
of game structure M〈R,D〉 models how the underlying automaton
states are updated (6). For practical purposes, encoding a concurrent
game structure to ISPL [18] is straightforward. We present the ISPL
encoding for the auction example in the Appendix.

4.3 Verifiable design properties

The ATL model M〈R,D〉 for a requirements specification R and
detailed design D can be now used to verify design time properties
such as conformity and coverage. Requirements conformity (as
formalized in Section 3.1.1) deals with checking if a detailed
design can achieve a given requirements specification, whereas
coverage signifies in how many different ways can a requirements
specification be achieved.

Requirements conformity: Given an ATL model M〈R,D〉 for
a requirements specification R and detailed design D we are
interested in checking whether design D conforms to requirements
R. Observe that the requirements agent in the ATL model has limited
freedom in its behavior: it repeatedly selects one of its expected
scenario steps until one of the agents with an appropriate role
executes an expected action. What it implies is that we are trying to
match a trace of detailed design with a trace of requirement. Hence,
in order to check the conformity of requirements with detailed
design we model check the formula ϕ = 〈〈A〉〉 � final where A is
the set of all design agents in the ATL model and final is defined as
sch = qRf where qRf is the final state of scenario automaton FR.
Finally, we check this formula from a state qI (in the game structure)
such that the requirements automaton and the plans that will handle
that percept in the first scenario step are in their initial states, and
all other design agent plan instances have the value inact. Formally,
given a ATL model M〈R,D〉 for requirements R with scenario
S = 〈(o1, r1), . . . , (on, rn)〉 and detailed design D it is the case
that: (i) sch(qI) = qR0 where qR0 is the initial state of requirements
automaton FR, (ii) planid

j (qI) = q0 for all design agents j such that
active(id).trigger = o1, and (iii) planid

j (qI) = inact for all design
agents j such that active(id) · trigger = o1.

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL248

Theorem 3. A detailed design D conforms to requirements specifi-
cation R iff M〈R,D〉, qI |= 〈〈A〉〉 � (scn = qRf) where A is the set
of all detailed design agents in M〈R,D〉 and qRf is the final state of
requirements automaton FR.

PROOF (SKETCH). Suppose M〈R,D〉, qI |= 〈〈A〉〉 � (scn = qRf).
Hence, there exists a collective strategy FA, one for each agent in
A such that �(scn = qRf) is satisfied in all computations λ ∈
out(qI , FA). Let λ = q0 · · · q� where q0 = qI , sch(q�) = qRf , and
�a1 · · ·�a� be the sequence of move vectors such that δ(qi−1,�ai) = qi,
for 1 ≤ i ≤ 	, where δ is the transition function of M〈R,D〉.
Let each �ai = 〈ar

i , a
1
i , . . . , a

k
i 〉 where ar

i is the action of require-
ments agent and a1

i , . . . , a
k
i are actions of the design agents. From

the definition of δ (condition 6) one can observe that by construction
(a1

1, . . . , a
k
1) · · · (a1

� , . . . , a
k
�) is the design trace that conforms to the

scenario trace τ = (a′r
1 , r1) · · · (a′r

m, rm) where τ is extracted from
ar
1 · · · ar

� by removing adjacent duplicate elements. For the other
side, given a trace τD = (a1

1, . . . , a
k
1) · · · (a1

� , . . . , a
k
�) of design that

conforms to a trace τR = (ar
1, r1) · · · (ar

m, rm) of requirements R
(that is, there exists indices w1, . . . , wm where each step type was
achieved for scenario), one can construct a path λ = q0 · · · q� fol-
lowing the transition function δ of M〈R,D〉 such that (i) actions of
design agents between states qi−1 and qi are τD[i], (ii) requirements
agent executes action (oi, ri) at wi and repeats its action between
each wi’s, for 1 ≤ i ≤ m, (iii) q0 = qI , and (iv) scn(q�) = qRf .

Design nonconformity: Even though a given design may conform to
a scenario, it may still contain traces that do not achieve any scenario
trace. These design traces are not necessarily faulty as the ordering
of plan outputs is not specified in the detailed design. Nonetheless,
such design traces should be highlighted to the designer to spot
potential errors in the agent design. Interestingly, we can extract
all such traces from the winning states of the concurrent game
structure M〈R,D〉 by checking the formula ϕ̃ = 〈〈A〉〉�¬final
where A is the set of all design agents in the ATL model. In general,
such traces will have incorrect ordering of scenario steps or plan
activations that do not achieve a scenario step. Intuitively, one ex-
tracts such traces by extracting actions of design agents from move
vectors responsible for transitions in the winning states. We omit the
details of the approach to extract such traces due to space limitations.

Requirements coverage: Given the set of maximal winning
states [ϕ] in ATL model M〈R,D〉 one can extract all the require-
ments specification traces that can be achieved by at least one
design trace. Since the language of automaton FR (L(FR)) is all the
possible requirements traces, one can compute the words in L(FR)
that are not in the traces extracted from the winning game states to
denote requirements traces that a designer might want to cater for
in the detailed design. For the discussed design properties, the set
of maximal winning states serves as a model from which all the
relevant design and requirements traces can be extracted.

5 Scalability Evaluation

In this section, we present initial scalability results to show the fea-
sibility our approach. We generated test cases with a single scenario
and multiple goal trees, and a single detailed design agent. The de-
tailed designs were varied by: (i) goals per plan (g/p), (ii) plans per
goal (p/g), and (iii) the depth of the design (d). (i) and (ii) were var-
ied from 1 to 3, and depth was sequentially changed from 1 to 8,
resulting in 72 test cases. Each scenario, with the number of steps
matching the depth of the design, was constructed such that its cor-
responding design always conforms to it. These designs were then
verified for conformance in McMAS [18] and their execution time

0

50

100

150

200

250

300

#plans

2 3 4 5 6 7 8

100

200

300

400

500

600

700

800

900

depth

time(s)

g/p = 2, p/g = 1

g/p = 2, p/g = 2

g/p = 2, p/g = 3

g/p = 3, p/g = 1

g/p = 3, p/g = 2

g/p = 3, p/g = 3

Figure 4: Scalability analysis of approach (see text for details).

was recorded from its output.2 We had put an upper time limit of one
hour.

In addition, to control the branching factor the percentage of tar-
get goals and plans at a depth d was always 1/d. The rest of the
goals/plans were simply one p/g and one g/p. If we do not con-
trol the branching factor, the number of possible traces (due to inter-
leavings) grows at a rate factorial to the depth and branching. Given
that in practice, not all plans and goals have high branching factors,
our approach provides a balance between relevance and reliability.

Figure 4 shows the scalability results of our approach where on
the x-axis is the depth, on the left y-axis is the time in seconds, and
on the right y-axis is the number of plans in the design. For example,
the line with square marks has: g/p = 2 and p/g=2; each point in
the line is a test case; the last point is test case of depth 8 with an
average execution time of more than 600 seconds and more than 70
plans. Note that the colored lines denote time and the faded gray lines
denote the number of plans.

All cases with depth less than 4 were trivial to solve in terms of
time (maximum time of 2.5 sec. for case 3-3-3). With depth 4 on-
wards the branching contributes significantly and as it appears from
Figure 4 (respective cases with g/p = 3 have higher execution times
than cases with g/p = 2) that goals per plan affect the execution time
more than plans per goal. However, we point out that our approach
tests one scenario at a time (along with its goal trees) against its rele-
vant detailed design. A design that caters for one scenario, generally,
will not have a large number of plans. Even so, our approach demon-
strates that it can handle large design components within reasonable
time bounds for design time verification.

To compare our technique with the one presented in [2], we re-
quested the authors to run our test designs. For smaller test cases
their approach was faster than ours (0.11 sec vs 1.2 sec. for case 2-
2-4 and 0.13 vs 1.8 sec. for case 3-2-3). However, by increasing the
depth by one in both test cases the trace based approach lagged con-
siderably. For example, it took 70.57 sec. for the case 2-2-5 and it
was still executing after 4.5 hours for the case 3-2-4. The same in our
approach took 5.5 sec. and 97.5 sec., respectively. This is expected,
as mentioned, since our approach relies on model checking, it scales
significantly better than the trace based approach.

6 Conclusion

This paper presented a framework for formally verifying agent de-
sign models with respect to the requirements specifications. We
show how informal and semi-structured design artefacts can be trans-
formed into formal structures that can be model checked and we pro-
vide details on how to model check via ATL games.

2 The system had a quad core i7 3.4GHz CPU with 8GB RAM.

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL 249

1 Agent Requirements
2 Vars:
3 state: {s0, s1, s2, s3, s4, s5};
4 end Vars
5 Actions = {Ann_Auction, Start, Manage, finish,
6 Bid, Ann_Winner, Id_Winner, nop};
7 Protocol:
8 state = s0: {Start_Auction};
9 state = s1: {Ann_Auction, Manage};

10 state = s2: {Bid};
11 state = s3: {Id_Winner, Manage};
12 state = s4: {Ann_Winner, Manage};
13 state = s5: {finish};
14 Other: {nop};
15 end Protocol
16 Evolution:
17 state = s1 if (state = s0) and
18 ((Auctioneer.Action = Start));
19 state = s2 if (state = s1) and
20 ((Auctioneer.Action = Ann_Auction));
21 state = s2 if (state = s1) and
22 ((Auctioneer.Action = Manage));
23 state = s3 if (state = s2) and
24 ((P1.Action = Bid) or (P2.Action = Bid));
25 state = s4 if (state = s3) and
26 ((Auctioneer.Action = Id_Winner));
27 state = s4 if (state = s3) and
28 ((Auctioneer.Action = Manage));
29 state = s5 if (state = s4) and
30 ((Auctioneer.Action = Ann_Winner));
31 state = s5 if (state = s4) and
32 ((Auctioneer.Action = Manage));
33 end Evolution
34 end Agent

Figure 5: ISPL encoding for the requirements agent.

While there is existing work on formally verifying the correctness
of agent programs via model checking (e.g. [13, 10, 29] and theorem
proving (e.g. [25]) to the best of our knowledge this paper is the first
to propose a formal verification of detailed agent designs, even prior
to any implementation. This allows early detection of errors which
is well known to save costs in software development. With respect
to agent implementations recent work by Zhang et al.[21] has shown
that, across 14 different agent programs, 34% of errors were due to
faults in the design.

Although, in general, there is a lack of much work on checking the
correctness of detailed agent designs with respect to the requirements
specification, recent work by Abushark et al. [2] and Thangarajah
et al. [27] are exceptions. We have highlighted some of the limita-
tions of [2], and shown empirically that our approach is significantly
more computationally effective as the parallelism within the design
increases.

The problem we address also bears resemblance to specifications
modelled using modal transition systems [5] in the sense that agent
designs have parts that are “required” and parts that are “allowed”.
This required part is checked with respect to a scenario. However,
due to the presence of goal hierarchies/decomposition we usually do
not get a one to one mapping between the transitions.

Our main purpose in this paper was to demonstrate the use of a
formal verification approach and we chose ATL for two key reasons.
First, ATL model checking supports synthesis of strategies and this is
essential for checking properties such as requirements coverage. Sec-
ond, we are currently extending this framework to verifying AUML
protocols and in that setting we require the ability to model an en-
vironment for messages that arise external to an agent. In addition,
ATL’s multi agent modelling allows for natural extensions that can
be built in our framework, such as verifying agent capabilities. This
work presents a base from which various other aspects of the agents’
designs could be formally verified.

7 Appendix: ISPL Encoding

In this section we present the ISPL [18] encoding for the auction ex-
ample used in the paper. Briefly, an agent in ISPL is modelled by four
key elements: i) set of local states, ii) set of actions that the agent can

1 Agent Auctioneer
2 Vars:
3 P_NewAuction: {..};
4 P_Broadcast: {..};
5 P1_DecdWin: {init, s0, s1, s2, s3, s4, s5};
6 P2_DecdWin: {..};
7 P1_NotfyWin: {..};
8 P2_NotfyWin: {..};
9 ...

10 end Vars
11 Actions = {NewAuction, Auction, finish, Ann_Winner,
12 Id_Winner, nop, NotfyWin, Ann_Auction, Start,
13 LogBid, Bid, WinnerAnnouncement, Broadcast,
14 DecdWin, NewAuction, Bid, NomWin};
15 Protocol:
16 P1_DecdWin = DecdWin0: {Bid};
17 P1_DecdWin = DecdWin1: {DecdWin};
18 P1_DecdWin = DecdWin2: {Id_Winner, Ann_Winner};
19 P1_DecdWin = DecdWin4: {Ann_Winner};
20 P1_DecdWin = DecdWin5: {Id_Winner};
21 ...
22 end Protocol
23 Evolution:
24 P1_DecdWin=s1 if (P1_DecdWin=s0) and (Action=Bid);
25 P1_DecdWin=s2 if (P1_DecdWin=s1) and (Action=DecdWin);
26 P1_DecdWin=s3 if (P1_DecdWin=s4) and (Action=Ann_Winner);
27 P1_DecdWin=s4 if (P1_DecdWin=s2) and (Action=Id_Winner);
28 P1_DecdWin=s5 if (P1_DecdWin=s2) and (Action=Ann_Winner);
29 ...
30 end Evolution
31 end Agent

Figure 6: ISPL encoding for the Auctioneer agent.

execute, iii) a protocol that defines which actions are legal to exe-
cute based on its state, and iv) an evolution function that defines how
states evolve. An ISPL file consists of the agent definitions, the win-
ning condition, the initial states, and the coalition formula to check.
In our case, the winning condition in the ISPL encoding is simply
the last state of the requirements agent. In our auction example this is
specified as win if Requirements.state = s5;. The for-
mula we check for verifying requirements is <g1> F win; where
g1 is the coalition of agents.

The encoding for our auction example consists of 4 agents, a re-
quirements agent named Requirements that models the under-
lying scenario, an auctioneer agent named Auctioneer, and two
bidder agents named P1 and P2 (not shown here). Figure 5 shows the
requirements agent. Observe the straightforward translation from the
scenario (please see Figure 1b) in the agent design to its automaton
(as shown in Figure 3) and finally to an ISPL encoding. The critical
part in the encoding for the requirements agent is its evolution func-
tion. The requirements agent changes its state only when an expected
action is executed by the correct design agent. For example, the re-
quirements agent will update its state from s2 to s3 only when one
of the bidder agents sends their bid (lines 23-24 in Figure 5).

Figure 6 shows the (partial) code for the auctioneer design agent.
The state variables of design agents consist of variables to track the
plans that the agent has. For example, the auctioneer agent has plans
to start an auction, broadcast the announcement, handle bids, notify
winner, etc. Multiple copies of a plan are required where its trig-
ger can occur multiple times. For example, since multiple agents can
send their bids, the auctioneer agent has multiple copies of the De-
cideWinner plan, one per bidder agent (that is, P1 DecdWin and
P2 DecdWin in Figure 6). Also observe that the encoding for a de-
sign agent consists of an aggregation of plans it has and the plan au-
tomatons built earlier provide a clean way to map these to ISPL. The
evolution function in the encoding of a design agent keeps a track of
its active plans and allows the agent to progress one plan at at a time.
The resulting behavior of a design agents emerges from the possible
ways the active plans can be interleaved.

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL250

REFERENCES

[1] Y. Abushark, J. Thangarajah, T. Miller, and J. Harland. Checking con-
sistency of agent designs against interaction protocols for early-phase
defect location. In International conference on Autonomous Agents and
Multi-Agent Systems, AAMAS ’14, pages 933–940, Paris, France, May
2014.

[2] Yoosef Abushark, Michael Winikoff, Tim Miller, James Harland, and
John Thangarajah. Checking the correctness of agent designs against
model-based requirements. In ECAI 2014, volume 263, pages 953–954,
Prague, 2014. IOS Press.

[3] N. Alechina, M. Dastani, B. S. Logan, and John-Jules Meyer. A logic
of agent programs. pages 795–800, 2007.

[4] R. Alur, T. A. Henzinger, and O. Kupferman. Alternating-time temporal
logic. Journal of the ACM, (49):672–713, 2002.

[5] Adam Antonik, Michael Huth, Kim Guldstrand Larsen, Ulrik Nyman,
and Andrzej Wasowski. 20 years of modal and mixed specifications.
Bulletin of the European Association for Theoretical Computer Science,
(95), 2008.

[6] B. Boehm. Understanding and controlling software costs. Journal of
Parametrics, 8(1):32–68, 1988.

[7] R. Bordini, L. Braubach, H. Dastani, A. El-Fallah-Seghrouchni,
J. Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci. A sur-
vey of programming languages and platforms for multi-agent systems.
Informatica, 30(1):33–44, 2006.

[8] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. Pro-
gramming multi-agent systems in AgentSpeak using Jason, volume 8.
John Wiley & Sons, 2007.

[9] P. Bresciani, A. Perini, P. Giorgini, F. Giunchiglia, and J. Mylopoulos.
Tropos: An agent-oriented software development methodology. JAA-
MAS, 8(3):203–236, 2004.

[10] M. Dastani, K. Hindriks, and J.J. Meyer, editors. Specification and
Verification of Multi-agent systems. Springer, Berlin/Heidelberg, 2010.

[11] M. Dastani and W. Jamroga. Reasoning about strategies of multi-agent
programs. pages 997–1004, 2010.

[12] S. DeLoach, L. Padgham, J. Thangarajah, A. Perini, and A. Susi. Using
three AOSE toolkits to develop a sample design. IJAOSE, 3(4):416–
476, 2009.

[13] L. Dennis, M. Fisher, M. Webster, and R. Bordini. Model check-
ing agent programming languages. Automated Software Engineering,
19(1):5–63, 2012.

[14] Ariel Fuxman, Marco Pistore, John Mylopoulos, and Paolo Traverso.
Model checking early requirements specifications in Tropos. In Re-
quirements Engineering, 2001. Proceedings. Fifth IEEE International
Symposium on, pages 174–181. IEEE, 2001.

[15] Paolo Giorgini, John Mylopoulos, and Roberto Sebastiani. Goal-
oriented requirements analysis and reasoning in the Tropos method-
ology. Engineering Applications of Artificial Intelligence, 18(2):159–
171, 2005.

[16] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages and Computation. Pearson Addison-
Wesley, 3 edition, 2007.

[17] Wojciech Jamroga and Wojciech Penczek. Specification and verifica-
tion of multi-agent systems. In Lectures on Logic and Computation,
pages 210–263. Springer, 2012.

[18] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. MCMAS: A
model checker for the verification of multi-agent systems. pages 682–
688, 2009.

[19] S. Munroe, T. Miller, R. Belecheanu, M. Pechoucek, P. McBurney, and
M Luck. Crossing the agent technology chasm: Lessons, experiences
and challenges in commercial applications of agents. Knowledge engi-
neering review, 21(4):345, 2006.

[20] CuD. Nguyen, Anna Perini, Carole Bernon, Juan Pavn, and John
Thangarajah. Testing in multi-agent systems. In Marie-Pierre Gleizes
and JorgeJ. Gomez-Sanz, editors, Agent-Oriented Software Engineer-
ing X, volume 6038 of Lecture Notes in Computer Science, pages 180–
190. Springer Berlin Heidelberg, 2011.

[21] L. Padgham, J. Thangarajah, Z. Zhang, and T. Miller. Model-based test
oracle generation for automated unit testing of agent systems. IEEE
Transactions on Software Engineering, 39(9):1230–1244, 2013.

[22] L. Padgham and M. Winikoff. Developing intelligent agent systems: A
practical guide. John Wiley & Sons, Chichester, 2004.

[23] Lin Padgham, John Thangarajah, and Michael Winikoff. Prometheus

design tool. In Proceedings of The AAAI Conference on Artificial Intel-
ligence, pages 1882–1883, Chicago, USA, 2008.

[24] Anand S Rao, Michael P Georgeff, et al. Bdi agents: From theory to
practice. In ICMAS, volume 95, pages 312–319, 1995.

[25] S. Shapiro, Y. Lespérance, and H. Levesque. The cognitive agents spec-
ification language and verification environment for multiagent systems.
In AAMAS’02, pages 19–26, 2002.

[26] Steven Shapiro, Y Lespérance, and HJ Levesque. The cognitive agents
specification language and verification environment. In Specifica-
tion and Verification of Multi-agent Systems, pages 289–315. Springer,
2010.

[27] John Thangarajah, Gaya Buddhinath Jayatilleke, and Lin Padgham.
Scenarios for system requirements traceability and testing. In Proceed-
ings of 10th International Conference on Autonomous Agents and Mul-
tiagent Systems AAMAS 2011, pages 285–292, Taipei, Taiwan, 2011.

[28] Michael Winikoff. JACK Intelligent Agents: An Industrial Strength
Platform. In Multi-Agent Programming, pages 175–193. Springer,
2005.

[29] Nitin Yadav and Sebastian Sardina. Reasoning about BDI agent pro-
grams using ATL-like logics. volume 7519, pages 437–449, 2012.

[30] Zhiyong Zhang, John Thangarajah, and Lin Padgham. Model Based
Testing for Agent Systems, pages 399–413. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

[31] Zhiyong Zhang, John Thangarajah, and Lin Padgham. Automated Test-
ing for Intelligent Agent Systems, pages 66–79. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011.

N. Yadav and J. Thangarajah / Checking the Conformance of Requirements in Agent Designs Using ATL 251

	Introduction
	Background and related work
	Prometheus- BDI agent design paradigm
	Alternating-time temporal logic
	Related work

	Framework
	Conformance of requirements and designs
	Comparing requirements and design traces

	Model checking agent designs
	Requirements and agent plan automatons
	ATL concurrent game structure
	Verifiable design properties

	Scalability Evaluation
	Conclusion
	Appendix: ISPL Encoding

