
A Probabilistic Logic Programming Approach to
Automatic Video Montage

Bram Aerts and Toon Goedemé and Joost Vennekens 1

Abstract. Hiring a professional camera crew to cover an event
such as a lecture, sports game or musical performance may be pro-
hibitively expensive. The CAMETRON project aims at drastically
reducing this cost by developing an (almost) fully automated sys-
tem that can produce video recordings of such events with a quality
similar to that of a professional crew. This system consists of dif-
ferent components, including intelligent Pan-Tilt-Zoom cameras and
UAVs that act as “virtual camera men”. To combine the footage of
these different cameras into a single coherent and pleasant-to-watch
video, a “virtual editor” is needed. This paper describes the devel-
opment of such a component. We adopt a declarative approach, in
which we build a model of the decision process that a human edi-
tor might follow to edit a video. To achieve a montage that obeys
various cinematographic rules while at the same time retaining a nat-
ural, non-mechanical feel, we construct this model in a Probabilis-
tic Logic Programming language. We demonstrate that the resulting
system can be run in real-time and that it delivers montages that are
almost indistinguishable from those made by a professional editor.

1 INTRODUCTION

Events such as lectures, sports games, musical performance, etc. are
often recorded on video. When produced by a professional video
crew, these recordings are typically of high quality, but also quite ex-
pensive. Because good-quality cameras are no longer overly expen-
sive, organizers may be tempted to instead produce a “home-made”
recording of their event, filmed by amateurs. However, while this
option is much cheaper, the end results tend to be noticeably lower
quality than those produced by a professional crew.

The research described in this paper fits within the CAMETRON
project. The goal of this project is to fill the gap between videos pro-
duced by a professional crew and home-made productions, by cre-
ating a system to produce recordings whose quality approaches that
of professionally produced video, but without the price tag. It will
rely on an almost completely automatic system, thereby eliminating
the expensive personnel cost. Its focus is on producing full-length re-
ports of events, i.e., our goal is to produce videos that span the entire
lengths of the event itself, rather that a summary or a set of highlights.

The CAMETRON system will consist of two separate compo-
nents, mimicking the roles found in a typical film crew: virtual “cam-
era men” (consisting of fixed cameras, pan-tilt-zoom cameras and
cameras mounted on UAVs, together with the software to operate
them) will capture the footage, while a virtual “editor” combines
footage of the different cameras. The ongoing development of the
first component has been described elsewhere [11, 5]. In this paper,

1 KU Leuven, Technology Campus De Nayer, Research Group EAVISE, Bel-
gium, email: {b.aerts, toon.goedeme, joost.vennekens}@kuleuven.be

we present the second component: a virtual editor system, that is able
to produce a single coherent, qualitative video from a number of dif-
ferent feeds of raw footage from the same event.

Creating a video that is both interesting and easy-to-follow is not
a straightforward task. Human editors typically follow a number of
different—and sometimes contradictory—cinematographic “rules”
to accomplish this task. To develop our virtual editor, we will follow
a declarative approach, in which we explicitly represent these rules.
This approach has the benefit that it offers a great deal of flexibility
in deciding which rules should be taken into account and how they
should take priority over each other. An additional advantage is that
it also allows us to reuse the same knowledge to perform different
tasks: we cannot only use the rules to generate a montage, but also to
evaluate the quality of a given montage or to learn certain properties
of good montages from given examples.

To represent the rules, we need a suitable knowledge representa-
tion language. A particular challenge in this application is that cine-
matographic rules are not strict: they are guidelines that are typically
followed, but not always. Indeed, the rules may sometimes contradict
each other, and even if they do not, a human editor may still choose to
ignore a rule, simply because the result “feels” better. A virtual editor
should therefore not rigidly follow the rules, but it should sometimes
deviate from them in order to give the montage a more interesting
and natural flavour, thereby mimicking the creativity of a human ed-
itor. For this reason, we have chosen to make use of a Probabilistic
Logic Programming (PLP) language, which allows us to represent
these rules in a non-deterministic way. This has the additional ben-
efit that—just like a human editor—the system is able to produce
different montages from the same input streams.

In this paper, we restrict attention to videos of relatively simple
settings, like a lecture, a sports event or a concert. More challenging
settings, such as fiction, are left for future work. Our work differs
from existing approaches in various ways. First, unlike techniques
that construct summaries of an event’s highlights [9, 7], our method
produces a video of the complete event. Second, unlike approaches
that are developed for a specific setting [13, 18, 8], we do not assume
a fixed number of cameras, a fixed camera setup or a particular sub-
ject matter. Third, our system assumes as input only video footage,
in contrast to, e.g., the virtual editor systems that are present in game
design and which use a 3D model of the scene [3, 10]. Fourth, our
system is able to make the required editing decisions in real-time
(for 25fps video), unlike, e.g., [4, 12]. Fifth, we incorporate variety
of different cinematographic rules into our system and demonstrate
that the resulting montages are almost indistinguishable from those
produced by a professional editor. Existing work either does not per-
form such validation [12, 18, 8] or appears to have worse results than
our method [4, 13]. Finally, systems such as [4, 12] are determinis-

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-234

234



tic, in the sense that they always produce the same montage for the
same video stream. The fact that our approach is more flexible in this
respect may prove useful if the user for some reason does not like the
montage initially proposed by the system.

The remainder of this paper is structured as follows. We describe
Problog, the PLP system that we will use, in Section 2. In Section 3,
we discuss a number of cinematographic rules. Section 4 describes
our editing system in detail, in Section 5 we describe how this system
can be used. Section 6 discusses the computational performance of
this system, while Section 7 investigates the quality of its output. In
Section 8, related work is discussed in more detail. We conclude in
Section 9.

2 PRELIMINARIES: CP-LOGIC AND THE
PROBLOG SYSTEM

CP-logic [20] is an expressive PLP language, based on Sato’s distri-
bution semantics [19]. A theory in CP-logic consists of a set of rules
of the following form:

α0 :: A0 ; · · · ; αn :: An :− φ. (1)

Here, φ is a formula (typically, a conjunction of literals), the Ai are
atoms and the αi are probabilities with

∑
i αi ≤ 1. Each such rule

represents a non-deterministic causal mechanism: the body φ triggers
a non-deterministic event which causes at most one of the Ai; for
each i, αi is the probability that Ai is the outcome of this event.

We first consider only the ground case, in which no variables are
allowed. In this case, the formal semantics of CP-logic can be char-
acterized in terms of the well-founded semantics for normal logic
programs as follows. Suppose that, for a rule of form (1), we proba-
bilistically either replace this rule by one of the rules Ai :− φ, each
with probability αi, or we remove this rule altogether with proba-
bility 1 −∑

i αi. If we do this independently for each of the rules
r in a CP-logic theory T , then we probabilistically reduce T to a
normal logic program P . By πT , we denote the resulting probabil-
ity distribution over these normal logic programs P . The formal se-
mantics of the CP-logic theory is then the probability distribution
PT over possible worlds (i.e., Herbrand interpretations) that is de-
fined by π∗

T (I) =
∑

P |=I πT (P ); here, the sum is taken over all
normal logic programs P that have the interpretation I as their well-
founded model. These semantics are only well-defined for theories
T that have the property that all logic programs P that can be pro-
duced from them (with non-zero probability) have a two-valued well-
founded model (which is then also the unique stable model of P ).
CP-logic disallows theories that do not have this property.

A small example is the following CP-logic theory TSB . It de-
scribes two children, Billy and Suzy, who each may decide to throw
a rock at a bottle. Both children throw with 75% accuracy.

0.5::throws(billy).
0.6::throws(suzy).
0.75::breaks :- throws(billy).
0.75::breaks :- throws(suzy).

According to this theory, for instance π∗
TSB

(breaks) =
0.5 ∗ 0.6 ∗ 0.75 + 0.5 ∗ 0.4 ∗ 0.75 + 0.5 ∗ 0.6 ∗ (1− (1− 0.75)2)
= 0.65625.

This semantics is extended to the non-ground case by viewing a
non-ground rule as a template for the set of all of its ground instan-
tiations. This approach is identical to how variables are treated in
Answer Set Programming [14, 15]. It requires all rules to be finitely

groundable. This can be ensured by disallowing function symbols
and requiring that all variables must appear in a positive body atom.

The above example is therefore equivalent to:

0.5::throws(billy).
0.6::throws(suzy).
0.75::breaks :- throws(X).

The Problog system [16] is a state-of-the-art inference system for
CP-logic. It supports such inference tasks as querying the probability
π∗
T (A) of an atom A and sampling a particular interpretation I ac-

cording to this distribution π∗
T . Its input language extends CP-logic

with a number of features that make it easier to write Prolog-style
programs. In particular, it allows lists, the use of predicates such as
findall and the use of variables as probability labels in the head.
In the remainder of this paper, we will use this input language.

The small example given above can also be tried out in the online
Problog inference engine: http://tinyurl.com/jqdtrlm

3 CINEMATOGRAPHIC MODEL

Whether they are movies, documentaries, lecture recordings, or any
other form of edited video, all compositions tend to follow some
generally accepted cinematographic rules. These rules exist to avoid
confusing the viewer. While more experimental movies may delib-
erately violate these rules to shock or confuse the viewer, they are
typically obeyed in the kind of objective event reports that form the
focus of this paper. Indeed, following these rules leads to informative,
pleasant-to-watch reports, that do not confuse or distract the viewer.

Cinematographic rules can be divided in two main groups. The
first group are rules that need to be taken into account while filming.
These rules concern concepts such as depth of field, rule of thirds,
headroom and the 180 degrees rule as described in e.g. [11]. These
rules are outside the scope of this paper, because they need to be
taken into account by the virtual “camera men”, not the virtual editor.
We therefore assume that the raw video feeds satisfy these rules.

The second group of rules concern the ways in which multiple
video streams should be put together. These are the focus of our
editing system. Before discussing these rules, we define some ter-
minology. A shot is a sequence of successive frames from the same
camera. A cut is a transition from one shot to the next. A montage
is a sequence of shots. Figure 1 shows a montage composed of shots
taken from different video streams. Note also that, at any particular
point in time, some of the cameras may not be producing footage.

start of montage end of montage

1:000:00 2:00 3:00

video 1
video 2
video 3

montage

Figure 1. Making a montage out of video streams.

Length of shots. A shot should neither be too long nor too short.
If it is too long, the viewer will get bored and his attention will drift.
On the other hand, when shots are too short, the video becomes too
jumpy and the viewer is presented with too much information in too
little time. In general, shot lengths between 7 and 90 seconds are
considered acceptable. However, the length of a shot also depends

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage 235

http://tinyurl.com/jqdtrlm


on the amount of action in the scene: in energetic scenes, shorter
shots can accentuate the ongoing action, while longer shots are more
suitable for static scenes. For instance, a lecture recording will tend
to have longer shots than a recording of a basketball game.

In order to prevent the montage from appearing too mechanical
or predictable, there should also be some variation in the shot length.
Instead of striving towards some “ideal” shot length, we should there-
fore make use of different shot lengths, within the bounds of what is
neither too long nor too short.

Order of shots. Certain transitions between shots work well,
while others should be avoided. When two consecutive shots mis-
match, this is referred to as a jump cut. Jump cuts can occur when
there is either too much or too little difference between the shots.
When the footage of two different cameras is almost, but not com-
pletely the same, a “jumpy” effect occurs when switching from one
to the other. As a rule, there should be a minimum angle of 30 de-
grees between the view points of two different cameras in order to
avoid these kinds of jump cuts.

On the other hand, when the footage of two different cameras is
completely different, the viewer will feel lost when switching from
one to the other, because he has no clue about the context of the new
subject. A quite common order of shots is therefore to start with a
long shot, that establishes an overview of the scene. The next shot is
then typically a medium shot, that shows a closer picture of, e.g., a
particular person in the scene. Then, a close-up shot of the person’s
face could follow. The close-up can then be followed up with another
overview or medium shot.

Although this order of shots is often pleasing, it is not necessarily
always followed. Indeed, as with the shot length, there should also
be some variation in the sequence of different kinds of shots in order
to avoid montages that appear too mechanical.

Continuity. To ensure coherence between shots, continuity should
be respected. Cutting between disparate locations should be avoided,
because it violates spatial continuity.When multiple cameras are
filming one scene, all actions taking place in this scene should ap-
pear fluid and continuous. In other words, when switching between
cameras, footage before and after the switch should be contiguous.
This principle is called temporal continuity.

In this paper, our goal is to record footage of an event that takes
place in a single location. We can therefore assume that spatial con-
tinuity is satisfied by our camera setup. In addition, our goal is also
to cover the full length of the event (as opposed to summarizing the
highlights). Therefore, temporal continuity will be satisfied because
subsequent shots in the video will correspond to subsequent events
in real life.

Action and reaction. Video coverage of an event should capture
all the relevant action. When filming an action, three separate phases
are important: premeditation, the action itself and the reaction. First,
whenever an action is about to take place, there is a brief moment
in advance when the person is thinking about undertaking this ac-
tion. To prepare the viewer for the action that is about to take place,
showing this premeditation is important. Second, showing the action
itself is of course the most important thing. Third, when the action is
complete, the viewer expects to see the reaction of a person to it.

4 OVERVIEW OF THE EDITING SYSTEM

An overview of our editing system is shown in Figure 2. It takes as
input a number of different video streams, together with an analysis
of each of these streams. This analysis is performed by computer
vision algorithms, which have been described elsewhere [11, 1, 2, 6].
For each frame in each stream, we expect these algorithms to provide
the following information:

• Whether people are present in the shot;
• Which kind of shot (long shot, medium shot, . . . ) it is;
• Which person is the most prominent subject of the shot;
• Which action (walking, talking, . . . ) the main subject performs.

The goal of our editing system is to decide for each point in time
which of the available camera feeds will be used. The output of the
system is the single video stream that is thus constructed.

The Editing system we propose consists of 3 components. The
first component is the preprocessor, which comes in after the com-
puter vision. This is a program written in python, which synchronizes
camera footage, cleans up noisy detection data and parses this data
to a format readable by problog. The problog core works out a mon-
tage, taking into account the cinematographic rules described in 3.
After that, another python program edits the original video streams
into one final montage, in the order the problog core calculated.

Figure 2. Overview of the editing system.

4.1 Data Representation

We assume that all cameras are synchronized with respect to a global
time line. This time line is divided into discrete frames. For each
frame, we need to represent which kind of footage each of the avail-
able cameras is providing for that particular frame.

We represent camera sources as camera(ID). When a new cam-
era connects, or any active camera disconnects, it is possible to add or
remove the corresponding ID. A connected camera does not neces-
sarily produce useful footage at each point in time, e.g., a UAV does
not produce footage while at its loading station. Valid video footage
is represented as frame(Frame,CameraID). Even when a cam-
era is providing footage, this may not be usable if the camera is being
adjusted. We denote this as adjust(Frame,CameraID, Type)
where Type is either zoom or focus.

Valid video footage may contain people or not. The video
analysis system assigns each person—or rather, group of pix-
els that might be a person—a detection score that indicates how
likely this is to be an actual person. We assume that the de-
tection with the highest score corresponds to the most promi-
nent person in the frame. We identify this person by means of
a person(Frame,CameraID, PersonID) fact. When a per-
son is detected, we make a distinction between the different shot
types: long shot, medium shot or close-up. We represent this as
shot type(Frame,CameraID, Type). In addition, the person
may perform a specific action: stand still, walk, point, or talk. We

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage236



represent this as action(Frame,CameraID,Action). For im-
ages in which no person is detected, we make a distinction between
overview shots and noperson shots. An overview shot is one in
which people are too small to be detected by the video analysis,
whereas a noperson shot is one that actually does not contain any
people. The video analysis may use knowledge of the position of the
different cameras in the scene to try to distinguish between the two.

4.2 Cinematographic model

The editor system is based on a Problog model of the decision pro-
cess that a human editor might follow to produce a live montage. At
each point in time (i.e., for each frame), the editor needs to decide
which camera to use, based on the footage that he has previously
used and the footage is currently available from the different cam-
eras (and possibly also a small lookahead at future footage to avoid,
e.g., switching to a camera that is about to stop producing footage).

For every time point T , the program decides which camera
C to use at that time. This decision is recorded in a predicate
use camera(T,C, Torig). The third argument records the starting
time point Torig of the shot that is ongoing at time T . This is merely
for efficiency reasons, since we could also recompute Torig by look-
ing at the preceding use camera(T ′, C, ) atoms with T ′ < T .

We define use camera(T,C, Torig) by means of the following
two rules. The value of this predicate depends on two decisions that
the editor must make: first, whether to cut away from the ongoing
shot and, if so, which other camera to switch to. The first decision
is recorded by the predicate change(T ) and we will discuss below
how it is made. The effect of not changing is of course simply that
the ongoing shot continues.

use_camera(T,C,Torig):-
previous_camera(T,C,Torig),
not(change(T)).

previous_camera(T,C,Torig):-
time(T),Tp is T-1,use_camera(Tp,C,Torig).

If the editor does decide to change at time T , it will pick at random
one of the other cameras C that are good candidates to switch to at
that particular time (as given by change candidate(T,C)).

use_camera(T, C, T):-
time(T),change(T),
findall(Cam,change_candidate(T,Cam),Cams),
uniform(Cams,C,T).

The predicate uniform(Cams,C, T ) expresses that C is randomly
selected, according to a uniform distribution, from the list Cams.
The third argument T is present to ensure that, at different time
points, a different camera may be selected from the same list. The
definition of uniform is as follows. In order to make a uniform se-
lection from a list [H | T ] of length N , this predicate either selects
the head H with probability 1

N
, or it performs a uniform selection

from the list T of length N−1 with the remaining probability 1− 1
N

.

uniform(List,El,ID):-
length(List,L),uniform(List,L,El,ID).

uniform([H|T],N,H,ID):-
P is 1/N,s(P,[H|T],ID).

uniform([H|T],N,E,ID):-
P is 1/N,not(s(P,[H|T],ID)),
NN is N-1,uniform(T,NN,E,ID).

P::s(P,_,_).

The predicate change(T ) contains the essence of our cinemato-
graphic model. In general, there are two reasons to change: we can
either do so because we want to, or because we have to. The lat-
ter case occurs when the current camera no longer provides usable
footage, either because it no longer produces any footage at all, or
because it starts to zoom or refocus.

change(T):-not(can_stay(T)).
can_stay(T):-

previous_camera(T,C,_),
frame_ok(T,C).

frame_ok(T,C):-frame(T,C),not(adjust(T,C,_)).

In addition to changing because we have to, we might also switch
cameras because we want to. In general, this will occur if there is
at least one camera whose footage we prefer over that of the current
shot and if we have already met the minimal shot length requirement.

change(T):-
change_candidate(T,_),not(too_short(T)).

In order to decide whether the current shot is long enough, we of
course need to know the current shot length. This is easily computed
by means of the third argument of the use cam predicate:

shot_length_until(T, Len):-
previous_camera(T,C,Torig),Len is T-Torig.

The minimal shot length is not a fixed number. Some shots are
definitely long enough and some shots are definitely too short, but
there is also a gray area, in which an editor might make a judgment
call to cut away slightly sooner than he would like in order to, e.g.,
better capture the beginning of an action. For this reason, we define
too short in a probabilistic way, as shown in Figure 3.

Figure 3. The probability of a shot being considered too short.

Here, Up is an upper bound on the minimal shot length (i.e., longer
than Up is never too short), while Low is a lower bound (i.e., shorter
than Low is always too short).

P::too_short(T):-
shot_length_until(T,Len),
min_length_ub(Up),min_length_lb(Low),
Len=<Up,P is min(1,(Up-Len)/(Up-Low)).

We similarly define a predicate too long in terms of
max length lb and max length ub. The effect of the current
shot becoming too long is that this gives a reason to switch to a
different camera:

P::too_long(T):-
shot_length_until(T,Len),
max_length_ub(Up),max_length_lb(Low),
Len>=Low,P is min(1,(Len-Low)/(Up-Low)).

should_switch(T):-too_long(T).

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage 237



We can now determine whether there exist cameras that it would
be appropriate to switch to. Recall that if we find at least one such
change candidate, we will terminate the current shot unless it is
still too short. To make this decision, we divide the other cameras
into three different categories: poor, fair and good change candidates.
A good candidate is one that we always want to switch to, i.e., the
existence of such a camera is in itself a reason to change. Poor and
fair candidates are those that we might switch to if the current shot
is getting too long and there is no better alternative available, i.e.,
we only consider switching to a fair candidate if there are no good
candidates and we only consider switching to a poor candidate if
there are neither fair nor good candidates.

change_candidate(T,C):-
change_candidate(T,C,good).

change_candidate(T, C):-
change_candidate(T,C,fair),
should_switch(T),
not(change_candidate(T,_,good)).

change_candidate(T,C):-
change_candidate(T,C,poor),
should_switch(T),
not(change_candidate(T,_,fair)),
not(change_candidate(T,_,good)).

A poor candidate is any camera to which it is possible to change to.
If, in addition, the candidate camera provides a good transition from
the camera that is currently in use, it is considered a fair candidate.
Finally, a good candidate is a fair candidate that also has more inter-
esting footage than the current camera.

change_candidate(T,C,good):-
change_candidate(T,C,fair),
better_frame(T,C).

change_candidate(T,C,fair):-
change_candidate(T,C,poor),
good_transition(T,C).

change_candidate(T,C,poor):-can_change(T,C).

The predicate can change is similar to the predicate can stay
that was defined above, but it is more stringent. In addition to
demanding that the camera is currently providing a usable frame
(frame ok(T,C)), can change also demands that the camera will
keep on providing usable frames in the near future. This is to prevent
us from falling below the minimal shot length by cutting to a camera
that is about to stop filming.

can_change(T,C1):-
previous_camera(T,C,_),camera(C1),C\=C1,
future_ok(T,C1).

future_ok(T,C):-
camera(C),min_length_lb(M),T2 is T+M,
not(between(T,T2,T1),not(frame_ok(T1,C))).

As discussed above, the difference between a poor candidate and
a fair one lies in the quality of the transition that can be achieved by
switching from the current camera to the candidate.

good_transition(T,C):-
previous_camera(T,Cp,_),Tp is T-1,
shot_type(Tp,Cp,STp),shot_type(T,C,STcur),
shot_transition(T,STp,STcur).

Here, shot transition(T, STp, STcur) represents the fact that,
at time T , it is a good idea to switch from shot type STp to shot

type STcur. As mentioned before, we do not want to impose a strict
order in which the different shot types are used. For this reason,
shot transition will be a probabilistic predicate. It will allow all
possible transitions in principle, but assign a higher probability to
those transitions that are generally considered better.

P::shot_transition(T,From,To):-
time(T),qualtity(From,To,P).

quality(ls,ls,0.8).
quality(ls,ms,1).
...

The first argument of the shot transition predicate is needed to
allow different choices to be made at different time points, i.e., it
should be possible that a transition from ls to ms is considered a
good idea at time point t but not at t′ �= t. The quality predicate
defines the probability that each kind of transition is considered a
good idea, as shown in Table 1.

Table 1. The probabilities of different shot transitions.

To
From ls ms cu os np

long shot 0.8 1 0.2 0.8 0.1
medium shot 1 1 0.6 0.8 0.1

close up 0.8 0.7 0.2 0.8 0.1
overview shot 0.8 0.7 0.1 0.8 0.1

no person 1 1 0.2 1 0.1

The difference between a fair candidate and a good candidate is
that the latter not only offers a good transition but also provides more
interesting footage. This will mainly be determined by the actions
that are taking place in the footage. Again, in order to avoid giving
the montage a mechanical feel, we do not place a strict priority on the
different kinds of actions that might occur. Instead, we assign the dif-
ferent kinds of actions a probability that they will be selected in the
video. Selecting an action can only happen at the time point when it
starts. The video analysis module detects the actions of talking, walk-
ing and pointing. We also introduce a special action, called emerging,
that we assign to a person who newly appears in the footage.

0.55::select_action(Taction,C,emerge):-
start_person(Taction,C).

0.80::select_action(Taction,C,talk):-
start_action(Taction,C,talk).

0.55::select_action(Taction,C,walk):-
start_action(Taction,C,walk).

0.65::select_action(Taction,C,point):-
start_action(Taction,C,point).

start_action(T,C,AT):-
action(T,C,AT),Tprev is T-1,
not(action(Tprev,C,AT)).

start_person(T,C):-
person(T,C,ID),Tprev is T-1,
not(person(Tprev,C,ID)).

As explained before, it is important to not just show the action
itself, but also the “premeditation” leading up to it. The length of
this lead-in may depend on the action in question. Moreover, as with
shot lengths, there is a window of acceptable options, rather than a
single fixed value. We define these windows for the different actions
as follows:

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage238



pre_action_window(emerge,0, 1).
pre_action_window(talk, 2, 10).
pre_action_window(walk, 0, 2).
pre_action_window(point, 0, 5).

If an action AT starts at time Taction in the footage of camera
C, then we can cut to camera C at any time point in the inter-
val [Taction − Max, Taction − Min], where [Min,Max] is the
pre-action window of action AT , as defined by the above predicate
pre action window(AT,Min,Max). For instance, if a talk ac-
tion is initiated at time point 20, we can cut at any time point in
the interval [10,18]. However, in doing so, we should take care that
whenever we decide to switch at time Tswitch, the camera actually
produces a stream of valid frames between Tswitch and Taction. For
instance, if the camera produces no frames between time point 14
and 16, we should not yet switch to it at time point 12.

Starting from time point T , the following predicate gathers into a
list all the time points T ′ ≤ T such that camera C has produced only
valid frames between T ′ and T . We do not go back arbitrarily far in
the history, but only look Len frames back.

valid_since(T,C,Len,[]):-not(frame_ok(T,C)).
valid_since(T,C,-1, []).
valid_since(T,C,Len,[T|Tail]):-

Len>=0,frame_ok(T,C),
Tp is T-1,Newlen is Len-1,
valid_since(Tp,C,Newlen,Tail).

We can now use this predicate to gather into a List all time points
at which we could possibly switch to a camera C that shows action
AT starting at Taction.

valid_action_window(Taction,C,List,AT):-
pre_action_window(AT,Min,Max),
T is Taction-Min,Delta is Max-Min,
valid_since(T,C,Delta,List).

If we now switch to camera C at any time point Tswitch ∈ List,
we will have good footage from Tswitch up to the time point Taction

when action AT starts. In addition to this, we also want to avoid
showing an action that does not last long enough for the viewer to
make sense of it. We therefore also require that the person doing the
action remains visible for a minimal amount of time after the start of
the action.

action_visible(Taction,C,AT):-
minimal_length(M),Tmin is Taction+M-1,
not(between(Taction,Tmin,T),

not(frame_ok(T,C),person(T,C,PID))).

If the starting action that we have selected (with select action)
satisfies both of these conditions (i.e., before and after the starting
time of the action there is a sufficient amount of valid footage), then
we can select one of its possible switching times (as given by the
valid action window predicate) as a time to cut to the camera in
question.

better_frame(T,C):-
select_action(TAct,C,Act),
action_visible(TAct,C,Act),
valid_action_window(TAct,C,List,Act),
uniform(List,T,TAct).

In addition to switching to a different camera because it is starting
an interesting new action, we might also switch because the footage
of the current camera has become less interesting than the footage of
another. We consider footage showing a person to be typically more
interesting than footage not showing a person, and footage in which
someone is talking more interesting than other footage.

0.55::better_frame(T,C):-
previous_camera(T,Cp,_),
not(any_person(T,Cp)),any_person(T,C,_).

any_person(T,C):- person(T,C,_).
0.60::better_frame(T,C):-

previous_camera(T,Cp,_),
not(action(T,Cp,talk)),action(T,C,talk).

This concludes the usual decision process of the editor. A special
case that we have not yet discussed is the very first time point of the
montage. Here, we prefer an overview shot. Failing that, we might
choose a long shot, medium shot, close-up, or, as a final resort, a no-
person shot. We record this preference in a list and gather the list of
all possible candidates, taking these preferences into account. Then
we select randomly one of the candidates.

initial_priority([os, ls, ms, cu, np]).
initial_candidate(T,C):-

initial_priority(List),T2 is T+1,
initial_candidate(T2, C, List).

initial_candidate(T, C, [First|Tail]):-
shot_type(T,C,First),future_ok(T,C).

initial_candidate(T,C,[First,Second|Tail]):-
not(shot_type(T,C,First),future_ok(T, C)),
initial_candidate(T,C,[Second|Tail]).

use_camera(T,C,T):-initial_time_point(T),
findall(Cam,initial_candidate(T,Cam),Cams),
uniform(Cams,C,T).

5 USING THE CINEMATOGRAPHIC MODEL

The Problog model of the previous section describes the decision
process that an editor might follow in order to produce a montage in
accordance with cinematographic rules. This model defines a proba-
bility distribution over all possible ways in which a number of given
input streams can be edited into a single video. It can be used to
perform different tasks.

By querying the probability of a given montage according to this
distribution, we can obtain an estimate of the quality of this montage:
highly probable montages satisfy many of the rules, whereas unlikely
montages contain many “violations”. Sampling from this distribution
will produce a single montage. This is of course the task that we fo-
cus on in this paper. Because the probability distribution defined by
the Problog program assigns a higher probability to montages that
respect more of the cinematographic rules, sampling is more likely
to produce a good montage than a poor one. If we compute differ-
ent samples for the same input, we will obtain a different montage
each time. We view this as a desirable property, because it corre-
sponds to how human editors perform their task: it is unlikely that a
human editor would produce precisely the same output each time, if
he were asked to edit together the same input streams multiple times.
Capturing this variance in our virtual editor helps to ensure that our
montages have a natural feel.

An alternative to sampling is to compute the most likely montage,
given a set of input streams. However, such an approach would have
significant disadvantages when compared to the sampling approach:

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage 239



• The task of computing the most likely outcome is computationally
significantly harder than that of sampling from a distribution.

• To compute the most likely montage, we need to consider the en-
tire time line at once. Such an approach would therefore only be
usable in an offline editing system. By contrast, as we will discuss
in Section 6, sampling can be used to implement a system that
edits input streams in (slightly delayed) real-time.

• Under the same circumstances, the most likely montage will al-
ways make the same choices (namely, it will choose the most
likely alternative). By contrast, sampling will occasionally make a
less likely choice, thereby producing a less mechanical and more
interesting montage.

However, a disadvantage of the greater variation allowed by the sam-
pling approach is that it may occasionally produce a poor montage.
To compensate for this, our editing system will construct a set of
samples. From this set, the most likely sample will be returned as
the output of our system. By making this set larger, we increase the
computational cost of our method, but reduce the risk of returning a
poor montage. Our current implementation uses 10 samples.

In addition to querying and sampling, the Problog system also con-
tains algorithms that perform the task of parameter learning. Cur-
rently, the probabilistic parameters of our Problog model have been
manually filled in, based on our understanding of cinematographic
rules. An alternative approach would be to derive these parameters
automatically from a number of examples videos. In this case, we
might also be able to train our model to emulate particular editing
styles. We will investigate this topic in future work.

6 ACHIEVING REAL-TIME PERFORMANCE

In order to create a montage, our editing system calls on Problog to
compute a number of different samples according to the probability
distribution defined by the cinematographic model. There are two
main parameters that affect the computational performance of the
sampling algorithm: the number of time points and the number of
cameras. Indeed, for each time point T and camera C, the sampling
procedure must decide whether to switch to C at time T . We expect
that the number of cameras will not vary greatly and will be dictated
to a large extent by the setting in which the video must be produced.
By contrast, the number of time points is a more flexible parameter.
Indeed, the granularity of the time line used by our Problog model
need not coincide with that of the actual input video. In other words,
it is not necessary that each frame of the incoming video streams
corresponds to an individual time point in the Problog model.

We will group together a number of actual frames into a sequence
that we call a pframe. These pframes will act as time points for the
Problog model. The number of real frames that go into one pframe is
therefore a key parameter of our system. On the one hand, this num-
ber affects the performance of the sampling algorithm: the higher it
is, the faster execution will be. On the other hand, this number also
affects the quality of the montage that is produced, because our sys-
tem will only be able to switch cameras at the start of a new pframe.
Therefore, the smaller the pframes are, the more fine-grained this de-
cision process will be and the higher the quality of the output.

Figure 4 shows the execution time needed to compute 10 samples
in function of the length of a single pframe. The y-axis expresses the
execution time as a fraction of the length of the video stream that
needs to be edited. If this value is ≤ 1, we have a system that is able
to make the required editing decisions in real-time. The figure shows
a graph for both a 3-camera and a 6-camera setup. In both cases,

taking a pframe to be equal to a single real frame (= 0.04s, since the
video was shot at 25fps) produces a runtime that is much too slow.
However, as the length of a pframe increases, the runtime drastically
decreases. For the 3-camera setup, we reach real-time performance
as soon as at least 6 frames are combined in a single pframe. With 6
cameras, we need 10 frames per pframe. Because it is unlikely that
a viewer would be able to tell the difference between cutting 0.4s
earlier or later in a montage, we consider this an acceptable way of
reaching real-time performance.

Figure 4. Execution time vs. length of pframes (in seconds)

7 EXPERIMENTAL RESULTS

Our system is able to produce real-time edits of different video
streams. The only question remaining is whether the resulting mon-
tages are of a quality similar to those produced by professional ed-
itors. Since there is no single right way to edit video, we have no
“ground truth” to compare the output of our system to. Instead, we
have subjected the virtual editor to a “Turing test”: we have asked a
number of test subjects to distinguish between the output of our sys-
tem and a professionally made montage of the same video streams.

The test case used in this experiment is a lecture recording made
by three cameras. This footage was edited by a professional editor,
who was present during the recording. From the entire video stream,
we selected a fragment of three minutes in which there was a lot
of “action”, namely one speaker introducing another speaker, who
then came to the stage. We presented 58 students with two video
clips: this particular fragment as edited by the professional and the
same fragment edited from the same input streams by our system.
The student were then asked to identify the clip produced by the
professional. As an incentive, a small prize (worth around 75e) was
given to a random student among those who guessed correctly.

The two video clips can be viewed online:

1. https://www.youtube.com/watch?v=7vrfhzD4G0c
2. https://www.youtube.com/watch?v=Bzl10YKGeI4

In case the reader would like to perform this experiment himself: the
professionally edited video is Montage i, where i is the 22nd digit in
the decimal expansion of π.

Of the 58 students, 31 (= 53%) correctly identified the profession-
ally edited clip. This difference between this outcome and one that
could be produced by random guessing is not statistically significant
(T [57] = 0.5; p = 0.6), i.e., the data does not allow to reject the hy-
pothesis that the subjects were unable to tell the difference between
the professional editor and our system. In addition, the subjects were
also asked to indicate (on a scale of 1 to 3) how confident they were in

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage240

https://www.youtube.com/watch?v=7vrfhzD4G0c
https://www.youtube.com/watch?v=Bzl10YKGeI4


their choice. The results are shown in Figure 5. Those students who
guessed incorrectly were on average actually slightly more confident
of their choice than those who guessed correctly, although again the
difference is not statistically significant (a χ2[2] = 1.69 test provides
a p-value of 43%).

We conclude that our editing system indeed provides a good ap-
proximation of the quality delivered by a professional editor for this
particular case study of lecture recording.

Figure 5. Confidence of subjects in their choice.

8 RELATED WORK

There exist several systems that perform automatic video montage
for the purpose of creating a summary of some event(s). Examples in
the scientific literature are [7, 9]. Also commercially available soft-
ware offers this functionality, e.g., Muvee2, Aescripts3, Magisto4 and
Google Photos5. While related, this is essentially a different problem
from the one that we have considered in this paper, where we want
to produce full-length coverage of an event.

This problem of producing full-length coverage is also studied by
[12]. Their approach also takes into account cinematographic rules
regarding shot transitions and view selection. However, it requires
about one second of computation time per frame and does not include
an experimental validation of the quality of the produced video. In
[17], a general scheduling algorithm is proposed to achieve optimal
observability using multiple adjustable sensors. This algorithm is ap-
plied to the video editing problem in [4]. It requires cameras with
(partially) overlapping field of views, and constructs a 3D-map with
areas of higher interest. Quality of view is determined by amount
of action, number of objects, visible events and a combined object
score. The video montage is then made by maximizing this quality,
while simultaneously minimizing inter-camera switching. This is a
significantly different approach from ours, in which the cinemato-
graphic rules are not as explicitly present. The quality of videos cre-
ated by this system was compared to that of professionally edited
videos in an experiment similar to ours: 83% of their test subjects
labeled the computer generated montage as professionally edited,
while 93% of the test subjects labeled the professionally edited video
as such. While this is not precisely the same experiment as we per-
formed, this 10% difference strikes us as more significant than the
3% deviation from a 50-50 split that we observed. In addition, this
method also requires 0.16s of decision making time per frame, which
does not suffice to reach real-time performance at 25fps.

2 http://www.muvee.com/home
3 http://aescripts.com/automated-video-editing
4 https://www.magisto.com/how-it-works
5 https://photos.google.com

Both of these methods reduce the video editing problem to an op-
timisation problem. On the one hand, this explains their greater com-
putational complexity, while, on the other hand, it also means that
these methods can only edit each particular set of input streams in
one particular way. By contrast, our probabilistic sampling method
is more flexible and may offer the user a number of different alterna-
tive montages to choose from.

In [13], an automatic video editor is developed specifically for
lecture recording. Three cameras are used, each with a specific pur-
pose: an overview camera, an audience facing camera and a lecturer
tracker. This work includes cinematographic rules that are specific to
this setting (e.g., if a person in the audience asks a question, show
that person in the montage). The quality of the produced montages
was tested by an experiment in which subjects were asked to assign a
score of 1 to 5 to both an automatically produced and professionally
made montage. The automatically generated video scored an average
of 2.8, while man-made video had an average score of 3.7. Again,
this difference of 22.5% is more significant that the differences we
observed in our experiments. This system was later extended to al-
low a greater variety of settings [18]. This work also added some
additional rules to the system, but their impact on the quality of the
montages was not experimentally verified.

Another setting-specific system is that of [8], which performs of-
fline automatic video editing of a theater play. This system uses a
setup with one static camera, from which a range of sub-views are
cut to create multiple shots. The quality of the montages produced
by this system was not experimentally verified.

9 CONCLUSIONS AND FUTURE WORK

This paper has presented an automated video editing system, which
may play a role in reducing the cost of producing a video report of
an event such as a lecture, sports game or musical performance. We
have developed this system in a declarative way, by building a model
of the non-deterministic decision process that a human editor could
follow in order to produce a montage. By using the state-of-the-art
Probabilistic Logic Programming system Problog, we are to sam-
ple from this distribution and thereby produce a montage. We have
demonstrated that the computations needed to make all the required
decisions can be performed in real-time and that—at least for the par-
ticular case study of lecture recording—the quality of the produced
montage is almost indistinguishable from that produced by a profes-
sional editor.

In future work, we will examine the performance of this system
in more complex settings than lecture recording and investigate how
the same declarative model may be used for machine learning of the
probabilistic parameters.

ACKNOWLEDGEMENTS

This work was funded by the KU Leuven Research Fund as part of
the GOA project “CAMETRON”. The authors thank Dries Hulens
for providing the video analysis module used in this work.

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage 241

http://www.muvee.com/home
http://aescripts.com/automated-video-editing
https://www.magisto.com/how-it-works
https://photos.google.com


REFERENCES

[1] Punarjay Chakravarty, Sayeh Mirzaei, Tinne Tuytelaars, et al., ‘Who’s
speaking?: Audio-supervised classification of active speakers in video’,
in Proceedings of the 2015 ACM on International Conference on Mul-
timodal Interaction, pp. 87–90. ACM, (2015).

[2] Punarjay Chakravarty and Tinne Tuytelaars, ‘Cross-modal supervi-
sion for learning active speaker detection in video’, arXiv preprint
arXiv:1603.08907, (2016).

[3] David B Christianson, Sean E Anderson, Li-wei He, David H Salesin,
Daniel S Weld, and Michael F Cohen, ‘Declarative camera control for
automatic cinematography’, in AAAI/IAAI, Vol. 1, pp. 148–155, (1996).

[4] Fahad Daniyal and Andrea Cavallaro, ‘Multi-camera scheduling for
video production’, in Visual Media Production (CVMP), 2011 Confer-
ence for, pp. 11–20. IEEE, (2011).

[5] F. De Smedt, D. Hulens, and T. Goedem, ‘On-board real-time track-
ing of pedestrians on a UAV’, in The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops. Embedded Vision
Workshop, (2015).

[6] Ali Diba, Ali Mohammad Pazandeh, Hamed Pirsiavash, and Luc Van
Gool, ‘Deepcamp: Deep convolutional action & attribute mid-level pat-
terns’, in CVPR 2016, International Conference on Computer Vision
and Pattern Recognition., (2016).

[7] Yanwei Fu, Yanwen Guo, Yanshu Zhu, Feng Liu, Chuanming Song, and
Zhi-Hua Zhou, ‘Multi-view video summarization’, Multimedia, IEEE
Transactions on, 12(7), 717–729, (2010).

[8] Vineet Gandhi, Remi Ronfard, and Michael Gleicher, ‘Multi-clip video
editing from a single viewpoint’, in Proceedings of the 11th European
Conference on Visual Media Production, p. 9. ACM, (2014).

[9] Andreas Girgensohn, John Boreczky, Patrick Chiu, John Doherty,
Jonathan Foote, Gene Golovchinsky, Shingo Uchihashi, and Lynn
Wilcox, ‘A semi-automatic approach to home video editing’, in Pro-
ceedings of the 13th annual ACM symposium on User interface soft-
ware and technology, pp. 81–89. ACM, (2000).

[10] Li-wei He, Michael F Cohen, and David H Salesin, ‘The virtual cin-
ematographer: a paradigm for automatic real-time camera control and
directing’, in Proceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pp. 217–224. ACM, (1996).

[11] Dries Hulens, Toon Goedemé, and Tom Rumes, ‘Autonomous lecture
recording with a ptz camera while complying with cinematographic
rules’, in Computer and Robot Vision (CRV), 2014 Canadian Confer-
ence on, pp. 371–377. IEEE, (2014).

[12] Hao Jiang, Sidney Fels, and James J Little, ‘Optimizing multiple object
tracking and best view video synthesis’, Multimedia, IEEE Transac-
tions on, 10(6), 997–1012, (2008).

[13] Qiong Liu, Yong Rui, Anoop Gupta, and Jonathan J Cadiz, ‘Automating
camera management for lecture room environments’, in Proceedings of
the SIGCHI conference on Human factors in computing systems, pp.
442–449. ACM, (2001).

[14] V.W. Marek and M. Truszczynski, ‘Stable models and an alternative
logic programming paradigm’, in The Logic Programming Paradigm:
a 25-Year Perspective, eds., K.R. Apt, V.W. Marek, M. Truszczynski,
and D.S. Warren, 375–398, Springer, Berlin, (1999).

[15] I. Niemelä, ‘Logic programs with stable model semantics as a con-
straint programming paradigm’, Annals of Mathematics and Artificial
Intelligence, 25, 241–273, (1999).

[16] L. De Raedt, A. Kimmig, and H. Toivonen, ‘ProbLog: A probabilistic
Prolog and its application in link discovery’, in Proceedings of the 20th
International Joint Conference on Artificial Intelligence (IJCAI), pp.
2462–2467, (2007).

[17] Mohammad Rezaeian, ‘Estimation entropy and optimal observability’,
in PerCom/PerSeNS conference, (2006).

[18] Yong Rui, Anoop Gupta, Jonathan Grudin, and Liwei He, ‘Automating
lecture capture and broadcast: technology and videography’, Multime-
dia Systems, 10(1), 3–15, (2004).

[19] T. Sato and Y. Kameya, ‘PRISM: A language for symbolic-statistical
modeling’, in Proceedings of IJCAI, (1997).

[20] J. Vennekens, M. Denecker, and M. Bruynooghe, ‘CP-logic: A lan-
guage of causal probabilistic events and its relation to logic program-
ming’, Theory and Practice of Logic Programming, 9(3), 245–308,
(2009).

B. Aerts et al. / A Probabilistic Logic Programming Approach to Automatic Video Montage242


	INTRODUCTION
	PRELIMINARIES: CP-LOGIC AND THE PROBLOG SYSTEM
	CINEMATOGRAPHIC MODEL
	OVERVIEW OF THE EDITING SYSTEM
	Data Representation
	Cinematographic model

	USING THE CINEMATOGRAPHIC MODEL
	ACHIEVING REAL-TIME PERFORMANCE
	EXPERIMENTAL RESULTS
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK

