
Lexicographic Refinements in Possibilistic Decision Trees
Nahla Ben Amor1 and Zeineb El Khalfi2 and Helene Fargier´ ` 3 and Regis Sabbadin´ 4

Abstract. Possibilistic decision theory has been proposed twenty
years ago and has had several extensions since then. Because of the
lack of decision power of possibilistic decision theory, several refine-
ments have then been proposed. Unfortunately, these refinements do
not allow to circumvent the difficulty when the decision problem is
sequential. In this article, we propose to extend lexicographic refine-
ments to possibilistic decision trees. We show, in particular, that they
still benefit from an Expected Utility (EU) grounding. We also pro-
vide qualitative dynamic programming algorithms to compute lexi-
cographic optimal strategies. The paper is completed with an exper-
imental study that shows the feasibility and the interest of the ap-
proach.

1 Introduction

For many years, there has been an interest in the Artificial Intelli-
gence community towards the foundations and computational meth-
ods of decision making under uncertainty (see e.g. [1, 28, 7, 5, 16]).
The usual paradigm of decision under uncertainty is based on the
Expected Utility (EU) model [18, 23]. Its extensions to sequential
decision making are Decision Trees (DT) [20] and Markov Decision
Processes (MDP) [6, 19], where the uncertain effects of actions are
represented by probability distributions.

When information about uncertainty cannot be quantified in a
probabilistic way, possibilistic decision theory is a natural field to
consider [14, 27, 12, 15, 10, 11, 15]. Qualitative decision theory is
relevant, among other fields, for applications to planning under un-
certainty, where a suitable strategy (i.e. a set of conditional or uncon-
ditional decisions) is to be found, starting from a qualitative descrip-
tion of the initial world, of the available decisions, of their (perhaps
uncertain) effects and of the goal to reach (see [1, 3, 9, 8, 21, 22]).

Even though appealing for its ability to handle qualitative prob-
lems, possibilisitic decision theory suffers from an important draw-
back. Acts (and strategies in sequential problems) are compared
through min and max operators, which leads to a drowning effect:
plausible enough bad or good consequences may blur the comparison
between acts that would otherwise be clearly differentiable.

In order to overcome the drowning effect, refinements of possi-
bilistic decision criteria have been proposed in the non-sequential
case [13, 27]. Some refinements have the very interesting property to
remain qualitative while satisfying the properties of EU. But these re-
finements do not extend to sequential decision under uncertainty (in
the context of the present work, to decision trees) where the drowning
effect is also due to the reduction of compound possibilistic strategies
into simple ones [13].

1 LARODEC, Tunisie, email: nahla.benamor@gmx.fr
2 LARODEC, Tunisie, IRIT, France, email: zeineb.khalfi@gmail.com
3 IRIT, France, email: fargier@irit.fr
4 INRA-MIAT, France, email: rsabbadin@toulouse.inra.fr

The present paper proposes lexicographic refinements that com-
pare full strategies (and not simply their reductions) and provides a
dynamic programming algorithm to compute a lexicographic opti-
mal strategy. It is a technical challenge to establish results of equiv-
alence between lexicographic refinements of utilities of strategies in
possibilistic decision trees and EU-based criteria. We prove such re-
sults, which opens the way to define dynamic programming solutions
or even reinforcement learning algorithms for possibilistic MDPs
[26, 25], which would not suffer from the drowning effect.

The paper is structured as follows ; the next Section recalls some
results about the comparison of strategies in possibilistic decision
trees. In Section 3, we define lexicographic orderings that refine the
possibilistic criteria. Section 4 then proposes a dynamic program-
ming algorithm for the computation of lexi-optimal strategies. Sec-
tion 5 shows that the lexicographic criteria can be represented by
infinitesimal expected utilities. The last Section reports experiments
highlighting the feasibility and interest of the approach5.

2 Possibilistic decision trees
Decision trees provide an explicit modeling of sequential decision
problems by representing, simply, all possible scenarios. The graph-
ical component of a decision tree is a labelled graph DT = (N , E).
N = ND ∪NC ∪NU contains three kinds of nodes (see Figure 1):

• ND is the set of decision nodes (represented by squares);
• NC is the set of chance nodes (represented by circles);
• NU is the set of leaves, also called utility nodes.

For any node N , Out(N) denotes its outgoing edges, Succ(N)
the set of its children nodes and Succ(N, e) the child of N that is
reached by edge e ∈ Out(N). This tree represents a sequential de-
cision problem as follows:

• Leaf nodes correspond to states of the world in which a utility is
obtained (for the sake of simplicity we assume that utilities are
attached to leaves only); the utility of a leaf node Li ∈ NU is
denoted u(Li).

• Decision nodes correspond to states of the world in which a deci-
sion is to be made: Di ∈ ND represents a decision variable Yi the
domain of which corresponds to the labels a of the edges starting
from Di. These edges lead to chance nodes, i.e. Succ(Di) ⊆ NC .

• A state variable Xj is assigned to each chance node Cj ∈ NC , the
domain of which corresponds to the labels x of the edges starting
from that node. Each edge starting from a chance node Cj repre-
sents an event Xj = x. For any Cj ∈ NC , Succ(Cj) ⊆ NU∪ND

i.e. after the execution of a decision, either a leaf node or a deci-
sion node is reached.

5 The proofs are omitted for the sake of brevity but are available at
https://www.irit.fr/publis/ADRIA/PapersFargier/ecai2016.pdf

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-202

202

Start(DT) denotes the first decision nodes of the tree (it is a
singleton containing the root of the tree if it is a decision node, or its
successors if the root is a chance node). For the sake of simplicity,
we suppose that all the paths from the root to a leaf in the tree have
the same length: h, the horizon of the decision tree, is the number of
decision nodes along these paths. Given a node N of DT , we shall
also consider the subproblem DT N defined by the tree rooted in N .

The joint knowledge on the state variables is not given in extenso,
but through the labeling of the edges issued from chance nodes. In
a possibilistic context the uncertainty pertaining to the possible out-
comes of each Xj is represented by a possibility distribution: each
edge starting from Cj , representing an event Xj = x, is endowed
with a number πj(x), the possibility π(Xj = x|past(Cj))

6. A pos-
sibilistic ordered scale, L = {α0 = 0L < α1 < . . . < αl = 1L}, is
used to evaluate the utilities and possibilities.

Solving a decision tree amounts to building a strategy, i.e. a func-
tion δ : ND �→ A, where A is the set of possible actions, including a
special “undefined” action ⊥, chosen for action nodes which are left
unexplored by a given strategy. Admissible strategies assign a chance
node to each reachable decision node, i.e. must be:

• sound: ∀Di ∈ ND, δ(Di) ∈ Out(Di) ∪ {⊥} ⊆ A, and
• complete: (i) ∀Di ∈ Start(DT), δ(Di) 	= ⊥ and

(ii) ∀Di s.t. δ(Di) 	= ⊥, ∀N ∈ Succ(Succ(Di, δ(Di))) either
δ(N) 	= ⊥ or N ∈ NU .

We denote by ΔN (or simply Δ, when there is no ambiguity) the
set of admissible strategies built from a tree rooted in N . Each strat-
egy δ defines a connected subtree of DT , the branches of which
represent possible scenarios, or trajectories. Formally, a trajectory
τ = (aj0 , xi1 , aj1 , . . . , ajh−1 , xih) is a sequence of value assign-
ments to decision and chance variables along a path from a starting
decision node (a node in Start(DT)) to a leaf: Y0 = aj0 is the
first decision in the trajectory, xi1 the value taken by its first chance
variable, Xj0 in this scenario, Yi1 = aj1 is the second decision, etc.

We identify a strategy δ, the corresponding subtree and the list of
its trajectories represented by a matrix. We also consider subtrees,
and thus sub-strategies: let Cj be a chance node, Di1 , . . . , Dik its
successors and, for l = 1, k, the strategies δil ∈ ΔDil

which solve
the subproblem rooted in Dil . δi1 + · · ·+ δik is the strategy of ΔCj

resulting from the composition of the δil : (δi1 + · · · + δik)(N) =
δil(N) iff N belongs to the subtree rooted in Dil .

Example 1 Let us suppose that a “Rich and Unknown” person runs
a startup company. In every state she must choose between Invest-
ing (Inv) or Advertising (Adv) and she may be then Rich (R) or Poor
(P) and Famous (F) or Unknown (U). Figure 1 shows the possibilis-
tic decision tree (with horizon h = 2) that represents this decision
problem. This tree has 8 strategies, 16 trajectories:
τ1 = (Adv,R&U, Inv, P&U), τ2 = (Adv,R&U, Inv,R&U),
τ3 = (Adv,R&U,Adv,R&U), τ4 = (Adv,R&U,Adv,R&F),
τ5 = (Adv,R&F,Adv,R&U), τ6 = (Adv,R&F,Adv,R&F),
etc.

The evaluation of a possibilistic strategy, as proposed by [22], relies
on the qualitative optimistic and pessimistic decision criteria axiom-
atized by [11]. The utility of the strategy is computed on the basis of
the transition possibilities and the utilities of its trajectories. For each
trajectory τ = (aj0 , xi1 , aj1 , . . . , xih):

6 As in classical probabilistic decision trees, it is assumed that π(Xj =
x|past(Cj)) only depends on the variables in past(Cj) and actually only
on the decision made in the preceding node and on the state of the preceding
chance node.

u(L3)= 0.5

u(L4)= 0.7

C2

D2

u(L1)=0.3

u(L2)= 0.5

D1

D0

C1

Adv

Inv

Adv

Inv

C3

 R&U (π=0.5)

 R&F (π=1)

R&F (π=1)

R&U (π=0.5)

P&U (π=0.2)

R&U (π=1)

u(L11)= 0.5

u(L12)= 0.3

C7

C9

 D4

u(L9)= 0.3

u(L10)= 0.5

D3

C6

Adv

Inv

Inv

C8

P&U (π=0.2)

 R&U (π=1)

P&U (π=1)

P&F (π=0.5)

P&U (π=0.2)

R&U (π=1)

R&U (π=1)

P&U (π=0.2) u(L13)= 0.3

u(L14)= 0.5

C10

Adv

R&F (π=1)

R&U (π=0.5) u(L15)= 0.5

u(L16)= 0.7

C4

Adv

R&F (π=1)

R&U (π=0.5)

C5

 P&F (π=0.2)

R&F (π=1) u(L7)= 0.7

u(L8)= 0.5

Inv

u(L5)= 0.5

u(L6)= 0.5

Figure 1. The possibilistic decision tree of Example 1

• Its utility denoted u(τ), is the utility u(xih) of its leaf.
• The possibility of τ given that a strategy δ is applied from initial

node D0 is defined by:

π(τ |δ,D0) =

{
min
k=1..h

πjk−1(xik) if τ is a trajectory of δ,

0 otherwise.

where πjk−1 is the possibility distribution at Cjk−1 .

It is now possible to compute, for any δ ∈ Δ its optimistic and
pessimistic utility degrees (the higher, the better):

uopt(δ) = max
τ∈δ

min(π(τ |δ,D0), u(τ))

upes(δ) = min
τ∈δ

max (1− π(τ |δ,D0), u(τ))

This approach is purely ordinal (only min and max operations are
used to aggregate the evaluations of the possibility of events and the
ones of the utility of states). We can check that the preference order-
ings
O between strategies, derived either from uopt (O = uopt) or
from upes (O = upes), satisfy the principle of weak monotonicity:
∀Cj ∈ NCj , ∀Di ∈ Succ(Cj), δ, δ

′ ∈ ΔDi , δ” ∈ ΔSucc(Cj)\Di
:

δ
O δ′ =⇒ δ + δ”
O δ′ + δ′′

This property guarantees that dynamic programming [2] applies, and
provides an optimal strategy in time polynomial with the size of the
tree: [21, 22] have proposed qualitative counterparts of stochastic dy-
namic programming algorithms: in the finite horizon case backwards
induction, or in the infinite horizon case value and policy iteration.

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees 203

The basic pessimistic and optimistic utilities nevertheless present
a severe drawback, known as the ”drowning effect”, due to the use
of idempotent operations. In particular, when two strategies give an
identical and extreme (either good, for uopt or bad, for upes), utility
in some plausible trajectory, they may be undistinguished although
they may give significantly different consequences in other possible
trajectories, as illustrated in Example 2.

Example 2 Let δ and δ′ be the two strategies of Example 1 de-
fined by δ(D0) = δ′(D0) = Adv; δ(D1) = Inv; δ′(D1) =
Adv; δ(D2) = δ′(D2) = Adv. δ gathers 4 trajectories, τ1, τ2, τ5,
τ6 with π(τ1|D0, δ) = 0.2 and u(τ1) = 0.3; π(τ2|D0, δ) = 0.5 and
u(τ2) = 0.5 ; π(τ5|D0, δ) = 0.5 and u(τ5) = 0.5; π(τ6|D0, δ) =
1 and u(τ5) = 0.5. Hence uopt(δ) = upes(δ) = 0.5.
- δ′ is also composed of 4 trajectories (τ3, τ4, τ5, τ6). Hence
uopt(δ

′) = upes(δ
′) = 0.5.

Thus uopt(δ) = uopt(δ
′) and upes(δ) = upes(δ

′): δ′, which pro-
vides at least utility 0.5 in all trajectories, is not preferred to δ that
provides a bad utility (0.3) in some non impossible trajectory (τ1). τ2,
which is good and totally possible ”drowns” the bad consequence of
δ in τ1 in the optimistic comparison; in the pessimistic one, the bad
utility of τ1 is drowned by its low possibility, hence a global degree
upes that is equal to the one of δ′ (that, once again, guarantees a 0.5
utility degree at least).

The two possibilistic criteria thus may fail to satisfy the principle
of Pareto efficiency, that may be written as follows, for any optimiza-
tion criterion O (here upes or uopt):
∀δ, δ′ ∈ Δ, if (i) ∀D ∈ Common(δ, δ′), δD
O δ′D and (ii)
∃D ∈ Common(δD, δ′D), δD O δ′D , then δ O δ′

where Common(δ, δ′) is the set of nodes for which both δ and δ′

provide an action and δD (resp. δ′D) is the restriction of δ (resp. δ′)
to the subtree rooted in D.

Moreover, neither uopt or upes do fully satisfy the classical, strict,
monotonicity principle, that can be written as follows:
∀Cj ∈ NC , Di ∈ Succ(Cj), δ, δ

′ ∈ ΔDi , δ” ∈ ΔSucc(Cj)\Di
,

δ
O δ′ ⇐⇒ δ + δ”
O δ′ + δ′′

It may indeed happen that upes(δ) > upes(δ
′) while

upes(δ + δ”) = upes(δ
′ + δ”) (or that uopt(δ) > uopt(δ

′) while
uopt(δ + δ”) = uopt(δ

′ + δ”)).
The purpose of the present work is to build efficient preference

relations that agree with the qualitative utilities when the latter can
make a decision, and break ties when not - to build refinements 7 that
satisfy the principle of Pareto efficiency.

3 Escaping the drowning effect by leximin and
leximax comparisons

The possibilistic drowning effect is due to the use of min and max
operations. In ordinal aggregations, this drawback is well known and
it has been overcome by means of leximin and leximax comparisons
[17]. More formally, for any two vectors t and t′:

• t
lmin t′ iff ∀i, tσ(i) = t′σ(i) or ∃i∗, ∀i < i∗, tσ(i) = t′σ(i) and
tσ(i∗) > t′σ(i∗)

• t
lmax t′ iff ∀i, tμ(i) = t′μ(i) or ∃i∗, ∀i < i∗, tμ(i) = t′μ(i) and
tμ(i∗) > t′μ(i∗)

7 Formally, a preference relation �′ refines a preference relation � if and
only if whatever δ, δ′, if δ � δ′ then δ �′ δ′.

where, for any vector v (here, v = t or v = t′), vμ(i) (resp. vσ(i))
is the ith best (resp. worst) element of v.

The refinements of uopt and upes by lexicographic principles have
been considered by [13] for non sequential problems; in this context,
a decision is a possibility distribution π over the utility degrees, i.e.
a vector of pairs (π(u), u). Then it is possible to write:

• π �lmax(lmin) π′ iff ∀i, (π(u), u)μ(i) ∼lmin (π′(u), u)μ(i) or
∃i∗, ∀i < i∗, (π(u), u)μ(i) ∼lmin (π′(u), u)μ(i) and
(π(u), u)μ(i∗) lmin (π′(u), u)μ(i∗).

• π �lmin(lmax) π′ iff ∀i, (1 − π(u), u)σ(i) ∼lmax (1 −
π′(u), u)σ(i) or ∃i∗, ∀i < i∗, (1 − π(u), u)σ(i) ∼lmax (1 −
π′(u), u)σ(i) and (1− π(u), u)σ(i∗) lmax (1− π′(u), u)μ(i∗).

where (π(u), u)μ(i) is the ith best pair of (π(u), u) according to
lmin and (1 − π(u), u)σ(i) is the ith worst pair of (1 − π(u), u)
according to lmax.

A straightforward way of applying this to sequential decision is
to reduce the compound possibility distribution corresponding to the
strategy, as usually done in possibilistic (and probabilistic) decision
trees. The reduction of δ yields the distribution πδ on the utility de-
grees, defined by: πδ(u) = max

τ,u(τ)=u
π(τ |δ,D0). Then we can write:

δ �lmax(lmin) δ
′ iff πδ �lmax(lmin) πδ′ ,

δ �lmin(lmax) δ
′ iff πδ �lmin(lmax) πδ′ .

�lmax(lmin) (resp. �lmin(lmax)) refines
uopt (resp.
upes), but
neither �lmax(lmin) nor �lmin(lmax) do satisfy Pareto efficiency, as
shown by the following counterexample.

Example 3 Consider a modified version of the problem of Example
1 (Figure 2). δ and δ′ are the two strategies defined by: δ(D0) =
δ′(D0) = Adv, δ(D1) = Inv, δ′ = (D1) = Adv, δ(D2) =
δ′D2

= Adv. Common(δ, δ′) = {D0, D1, D2}, δD0 = δ′D0
,

δD2 = δ′D2
and δD1 dominates δ′D1

w.r.t. lmax(lmin), since
((1, 0.1), (1, 0.9))�lmax(lmin) ((1, 0.1)(0.5, 0.9)). δ should then be
strictly preferred to δ′. By reduction, we get πδ(0.9) = πδ(0.1) =
min(0.4, 1) = 0.4 and πδ(0.8) = min(1, 1) = 1 and for δ′ we have
πδ′(0.9) = min(0.4, 0.5) = 0.4, πδ′(0.1) = min(0.4, 1) = 0.4
and πδ′(0.8) = min(1, 1) = 1: δ and δ′ are indifferent for
�lmax(lmin). This contradicts Pareto efficiency.

Inv

Adv

0.9

0.1

C2

C4

D2

0.9

0.1

 D1

D0 C1

C3

 R&F: 0.4

 R&U : 1

 R&U: 1

 R&F: 0.5

 R&F: 1

 P&F: 1

 R&U: 1

 R&F: 1

0.8

0.8

Adv

Adv

Figure 2. A counter example at the efficiency of �lmax(lmin)

The drowning effect at work here is due to the reduction of
strategies, namely to the fact that the possibility of a trajectory

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees204

is drowned by the one of the least possible of its edges. That
is why we propose to give up the principle of reduction and to
build lexicographic comparisons on strategies considered in extenso.
Recall that: uopt(δ) = max

τ∈δ
min

{
min

k=1..h
πjk−1(xik);u(xih)

}
.

Then, for any τ = (aj0 , xi1 , . . . , ajh−1 , xih) and τ ′ =
(aj′0 , xi′1 , . . . , aj′

h−1
, xi′

h
), we define
lmin and
lmax by:

• τ
lmin τ ′ iff (πj0(xi1), . . . , πjh−1(xih), u(xih))
lmin

(πj′0(xi′1), . . . , πj′
h−1

(xi′
h
), u(xi′

h
))

• τ
lmax τ ′ iff (1 − πj0(xi1), . . . , 1 − πjh−1(xih), u(xih))

lmax (1− πj′0(xi′1), . . . , 1− πj′

h−1
(xi′

h
), u(xi′

h
))

Hence the proposition of the following preference relations8:

• δ
lmax(lmin) δ′ iff ∀i, τμ(i) ∼lmin τ ′
μ(i) or ∃i∗, ∀i ≤

i∗, τμ(i) ∼lmin τ ′
μ(i) and τμ(i∗) lmin τ ′

μ(i∗),
• δ
lmin(lmax) δ′ iff ∀i, τσ(i) ∼lmax τ ′

σ(i) or ∀i, τσ(i) ∼lmax

τ ′
σ(i) or ∃i∗, ∀i ≤ i∗, τσ(i) ∼lmax τ ′

σ(i) and τσ(i∗) lmax τ ′
σ(i∗),

where τμ(i) (resp. τ ′
μ(i)) is the ith best trajectory of δ (resp δ′) ac-

cording to
lmin and τσ(i) (resp. τ ′
σ(i)) is the ith worst trajectory of

δ (resp δ′) according to
lmax.
These relations are relevant refinements and escape the drowning

effect - they are those we are looking for:

Proposition 1
lmax(lmin) is complete, transitive and refines

uopt ;
lmin(lmax) is complete, transitive and refines
upes .

Proposition 2
lmax(lmin) and
lmin(lmax) both satisfy the prin-
ciple of Pareto efficiency as well as strict monotonicity.

Propositions 1 and 2 have important consequences; from a pre-
scriptive point of view, they outline the rationality of lmax(lmin)
and lmin(lmax) and suggest a probabilistic interpretation, which
we develop in Section 5. From a practical point of view, they allow
us to define a dynamic programming algorithm to get lexi optimal
solutions - this is the topic of the next Section.

4 Dynamic Programming for lexi qualitative
criteria

The algorithm we propose (Algorithm 1 for the lmax(lmin) variant;
the lmin(lmax) variant is similar) proceeds in the classical way, by
backwards induction: when a chance node is reached, an optimal sub-
strategy is recursively built for each of its children; these substrate-
gies are combined but the resulting strategy is NOT reduced, contrar-
ily to what is classically done; when a decision node is reached, the
program is called for each child and the best of them is selected.

The comparison of strategies is done on the basis of the matrices
of their trajectories (denoted ρ ; each line gathers the possibility and
utility degrees of a trajectory τ = (aj0 , xi1 , aj1 , . . . , ajh , xih)):

ρlt =

⎧⎨
⎩

πjt−1

(
xit

)
if t ≤ h,O = lmax

(
lmin

)
1− πjt−1

(
xit

)
if t ≤ h,O = lmin

(
lmax

)
u
(
xih

)
if t = h+ 1.

So as to allow fast comparisons, the matrices are built incrementally
and ordered on the fly by the function ConcatAndOrder: when a

8 If the strategies have different numbers of trajectories, neutral trajectories
(vectors) are added to the shortest strategy, at the bottom of the shortest list
of trajectories

Algorithm 1: DynProgLmaxLmin(N :Node)
Data: δ, the strategy built by the algorithm, is a global variable
Result: Computes δ for DT N and returns the maxtrix of its

trajectories, ρ
begin

// Leaves
if N ∈ NU then ρ = [u(N)];
// Chance nodes
if N ∈ C then

k = |Succ(N)|;
for Di ∈ Succ(N) do
ρi ← DynProgLmaxLmin(Di);
ρ ← ConcatAndOrder(ρ1, . . . , ρk, πN);

// Decision nodes
if N ∈ D then

ρ ← [0]
foreach aj ∈ Out(N) do

ρj ← DynProgLmaxLmin(Succ(N, aj));
if ρj
lmax(lmin) ρ then
ρ ← ρj and δ(N) ← aj ;

return ρ;

chance node, say Cj is reached, k = |Succ(Cj)| substrategies are
built recursively and their matrices ρ1, . . . , ρk are computed. Matrix
ρ of the current (compound) strategy, for the subtree rooted in Cj ,
is obtained by calling ConcatAndOrder

(
ρ1, . . . , ρk, πCj

)
. This

function adds a column to each ρi, filled with πj(xi) ; the matrices
are vertically concatenated; then the elements in the lines are ordered
in decreasing (resp. increasing) order, and the lines are reordered by
decreasing (resp. increasing) order w.r.t. to lmax (resp. lmin). As
a matter of fact, once ρ has been reordered, ρ1,1 is always equal to
uopt(δ) (resp. upes(δ)).

The lexicographic comparison of two strategies δ and δ′ is per-
formed by scanning the elements ρl,t and ρ′l,t of ρ and ρ′ in parallel,
line by line from the first one. The first pair of different (ρl,t, ρ′l,t) de-
termines the best matrix/strategy. If the matrices have different num-
bers of lines, neutral lines are added at the bottom of the shortest one
(filled with 0 for the optimistic case, with 1 for the pessimistic one).

Even if working with matrices rather than numerical values, the
algorithm is polynomial w.r.t. the size of the original tree. This is
because (i) the algorithm crosses each edge of the tree only once (as
in the classical version), (ii) the matrices are never bigger than the
strategies and (iii) the comparison of strategies is done in time linear
with their size - thus linear with the size of the original tree.

5 Lexi comparisons and Expected Utility

If the problem is not sequential, it is easy to see that the comparison
of possibilistic utility distributions by
lmax(lmin) and
lmin(lmax)

do satisfy the axioms of EU. [13] have indeed shown that these deci-
sion criteria can be captured by an EU - namely, relying on infinites-
imal probabilities and utilities. In this Section, we claim that such a
result can be extended to sequential problems - for decision trees.

The proof relies on a transformation of the possibilistic tree into
a probabilistic one. The graphical components are identical and so
are the sets of admissible strategies. In the optimistic case the prob-
ability and utility distributions are chosen in such a way that the
lmax(lmin) and EU criteria do provide the same preference on Δ.
To this extent, we build a transformation φ : L ⊆ [0, 1] → [0, 1]

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees 205

that maps each possibility distribution to an additive distribution and
each utility level into an additive one; this transformation is required
to satisfy the following condition:

(R) : ∀α, α′ ∈ L such that α > α′ : φ(α)h+1 > bhφ(α′),

where b is the branching factor of the tree. Condition (R) guarantees
that if uopt(δ) = α > uopt(δ

′) = α′, then a comparison based on a
sum-product approach on the new tree will also decide in favor of δ.

For any chance node Cj , a local transformation φj is then derived
from φ, such that φj satisfies both condition (R) and the normaliza-
tion condition of probability theory. EUopt denotes the preference
relation provided by the EU-criterion on the probabilistic tree ob-
tained by replacing each πj by φj ◦ πj and the utility function u by
φ ◦ u. We show that:

Proposition 3 If (R) holds, then
EUopt refines
uopt .

Proposition 4 δ
lmax(lmin) δ
′ iff δ
EUopt δ′, ∀(δ, δ′) ∈ Δ.

Example 4 φ(1) = 1, φ(0.9) = 0.2, φ(0.8) = 0.001, φ(0.5) =
10−10, φ(0.4) = 10−30, φ(0.1) = 10−91.

It holds that φ(α)3 > φ(α′) ∗ 22, for all α > α′. We ob-
tain the transformed conditional distributions by normalizing on
each node. For instance for node C1, φ1(10

−30) = 10−30

1+10−30 and
φ1(1) =

1
1+10−30 , for node C2, φ2(1) =

1
1+1

and φ2(1) = 0.5, for

node C3, φ3(10
−10) = 10−10

1+10−10 and φ3(1) = 1
1+10−10 , for node

C4, φ4(1) = 0.5 and φ4(1) = 0.5.

Adv

a1

 R&F:φ2(1)

 P&F:φ2(1)

Inv

Adv

R&F:φ4(1)

R&U:φ4(1)

R&F:φ3(10-10)

 R&U:φ3(1)

0.2

10-91

 R&F: φ1(10-30)

 R&U: φ1(1)

D0 C1

C2

C3

C4

D1

D2

0.2

10-91

0.001

0.001

Adv

Figure 3. Transformed probabilistic decision tree of possibilisic decision
tree of (counter)-example 3

The construction is a little more complex if we consider the

lmin(lmax) comparison, where the utility degrees are not directly
compared to possibility degrees π but to degrees 1 − π. Hopefully,
it is possible to rely on the results obtained for the optimistic case,
since the optimistic and pessimistic utilities are dual of each other.

Proposition 5 Let DT inv the tree obtained from DT by using util-
ity function u′ = 1 − u on leaves. It holds that: upes,DT (δ) ≥
upes,DT (δ′) iff uopt,DT inv (δ′) ≥ uopt,DT inv (δ)

As a consequence, we build an EU-based equivalent of

lmin(lmax), denoted
EUpes , by replacing each possibility distri-
bution πi in DT by the probability distribution φi ◦ πi, as for the
optimistic case and each utility degree u byφ(1) − φ(u). It is then
possible to show that:

Proposition 6 δ
lmin(lmax) δ
′ iff δ
EUpes δ′, ∀(δ, δ′) ∈ Δ.

Propositions 4 and 6 show that lexi-comparisons have a proba-
bilistic interpretation - actually, using infinitesimal probabilities and
utilities. This result comforts the idea, first proposed by [4] and then
by [13], of a bridge between qualitative approaches and probabilities,
through the notion of big stepped probabilities [4, 24]. We make here
a step further, by the identification of transformations that support
sequential decision making.

Beyond this theoretical argument, this result suggests an al-
ternative algorithm for the optimization of lmax(lmin) (resp.
lmin(lmax)): simply transform the possibilistic decision tree into
a probabilistic one and use a classical, EU-based algorithm of dy-
namic programming. In a perfect world, both approaches solve the
problem in the same way and provide the same optimal strategies -
the difference being that the first one is based on the comparison of
matrices, the second one on expected utilities in R

+. The point is
that the latter handles infinitesimals; then either the program is based
on an explicit handling of infinitesimals, and proceeds just like the
matrix-based comparison, or it lets the programming language han-
dle these numbers in its own way - and, given the precision of the
computation, provides approximations.

6 Experiments
We thus get three criteria for each of the pessimistic and optimistic
approaches: the basic possibilistic ones, the lexicographic refine-
ments described in Section 3, and the EU approximations of the lat-
ter. We compare the 3 variants within each series with two measures:
the CPU time and a pairwise success rate: SuccessA

B
is the per-

centage of solutions provided by an algorithm optimizing criterion
A that are optimal with respect to criterion B; for instance, the lower
Success uopt

lmax(lmin)
, the more important the drowning effect.

The backward induction algorithms corresponding to the six crite-
ria have been implemented in Java. As to the EU-based approaches,
the transformation function depends on the horizon h and the branch-

ing factor b (here b = 2). We used φ(1L) = 1, φ(αi) =
φ(αi+1)

h+1

bh∗1.1 ,
each φj being obtained by normalization of φ on Cj . The experi-
ments have been performed on an Intel Core i5 processor computer
(1.70 GHz) with 8GB DDR3L of RAM..

The tests were performed on complete binary decision trees,
for h = 2 to h = 7, that are randomly generated. The first
node is a decision node: at each decision level from the root
(i = 1) to the last level (i = 7) the tree contains 2i−1 deci-
sion nodes.This means that with h = 2 (resp. 3, 4, 5, 6, 7), the
number of decision nodes is equal to 5 (resp. 21, 85, 341, 1365,
5461) The utility values are uniformly randomly fired in the set
L = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. Conditional pos-
sibilities relative to chance nodes are normalized, one edge having
possibility one and the possibility degree of the other is uniformly
fired in L. For each value of h, 100 decision trees are generated.

Figure 4 presents the average execution CPU time for the six crite-
ria. We observe that, whatever the optimized criterion, the CPU time
increases linearly w.r.t. the number of decision nodes, which is in
line with what we could expect. Furthermore, it remains affordable
with big trees: the maximal CPU time is lower than 1s for a deci-
sion tree with 5461 decision nodes. It appears that uopt is always
faster than EUopt, which is 1.5 or 2 times faster than lmax(lmin)
The same conclusion is drawn when comparing lmin(lmax) to upes

and EUpes. These results are easy to explain: (i) the manipulation of
matrices is obviously more expensive than the one of numbers and

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees206

(ii) the handling of numbers by min and max operations is faster than
sum-product manipulations of infinitesimal.

0,2

1

5

25

125

625

3125

5 21 85 341 1365 5461

Average CPU time for the pessimistic criteria

upes
EUpes
lmin(lmax)CP

U
tim

e
in

 m
s

Number of decision nodes

0,2

1

5

25

125

625

5 21 85 341 1365 5461

Average CPU time for the optimistic criteria

uopt

EUopt

lmax(lmin)

CP
U

tim
e

in
 m

s

Number of decision nodes

Figure 4. Average CPU time (in ms) for h=2 to 7

As to the success rate, the results are described in Figure 5. The
percentage of solutions optimal for uopt (resp. for upes) that are also
optimal for lmax(lmin) (resp. lmin(lmax)) is never more than
82%, and decreases when the horizon increases: the drowning ef-
fect is not negligible and increases with the length of the trajectories.
Moreover EUopt (resp. EUpes) does not perform well as an approx-
imation of lmax(lmin) (resp. lmin(lmax)): the percentage of so-
lutions optimal for the former which are also optimal for the latter is
lower than 80% in all cases, and decreases when h increases. This
is easily explained by the fact that the probabilities are infinitesimals
and converge to 0 when the length of the branches (and thus the num-
ber of factors in the products) increase, as suggested in Section 5.

These experiments conclude in favor of the lexi refinements in
their full definition - their approximation by expected utilities are
comparable in terms of CPU efficiency but not precise enough. The
EU criteria nevertheless offer a better approximation than uopt and
upes when space is limited (or when h increases).

7 Concluding remarks
This work has both theoretical and practical implications. It extends
and generalizes to sequential problems the theoretical links estab-
lished in [13] between possibilistic utilities and expected utilities.
It performs better that the refinement of binary possibilistic utilities

Figure 5. Sucess rate

(BPU) proposed in [27] for Binary Possibilistic Utilities and as a
particular case, to classical, optimitic and pessimistic, possibilitistic
utilities. In [27]’s treatment indeed, two similar trajectories of the
same strategy are merged. The resulting criterion thus suffers from
a drowning effect and does no satisfy strict monotonicity: as such,
it cannot be represented by an EU-based criterion which “counts”
trajectories (weighted by their probabilities). We actually do refine
[27]’s criterion. Incorporating our lexicographic refinements in BPU
would lead to a more powerful refinement and suggests a probabilis-
tic interpretation of efficient BPU. It also leads to new planning al-
gorithms that are more “decisive” than their original counterparts.

The perspectives of our work are twofold. First, our approach
could be naturally extended to solve possibilistic Markov Decision
Processes.This extension seems theoretically straightforward, since a
finite-horizon MDP can be translated into a set of decision trees (one
for each state). Thus, our theoretical results hold for finite-horizon
MDPs as well. However, the direct application of the lexicographic
approach to possibilistic MDPs may lead to algorithms which are
exponential in time and space (w.r.t. the MDP description), since the
decision trees associated to a MDP may be of exponential size, while
(possibilistic) MDPs can be solved in polynomial time [22, 21]. De-
termining whether computing lexicographic optimal solutions to pos-
sibilistic MDPs is tractable is a perspective of this work.

The second perspective of this work, not unrelated, is to develop
simulation-based algorithms for finding lexicographic solutions to
MDPs. Reinforcement Learning algorithms [26] allow to solve large
size MDPs by making use of simulated trajectories of states to opti-
mize a strategy. It is not immediate to develop RL algorithms for pos-
sibilistic MDPs, since no unique stochastic transition function corre-
sponds to a possibility distribution. However, uniform simulation of
trajectories (with random choice of actions) may be used to gener-
ate an approximation of the possibilistic decision tree (provided that
both transition possibilities and utility of the leaf are given with the
simulated trajectory). So, interleaving simulations and lexicographic
dynamic programming may lead to RL-type algorithms for approxi-
mating lexicographic-optimal policies for (large) possibilistic MDPs.

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees 207

REFERENCES

[1] Kim Bauters, Weiru Liu, and Llu’is Godo, ‘Anytime algorithms for
solving possibilistic MDPs and hybrid MDPs’, in 9th International
Symposium on Foundations of Information and Knowledge Systems
(FoIKS’16), eds., Marc Gyssens and Guillermo Simari, Lecture Notes
in Artificial Intelligence, pp. 1–18. Springer International Publishing
Switzerland, (2016).

[2] Richard Bellman, Dynamic Programming, Princeton University Press,
1957.

[3] Nahla Ben Amor, Hélène Fargier, and Wided Guezguez, ‘Possibilis-
tic sequential decision making’, International Journal of Approximate
Reasoning, 55, 1269–1300, (2014).

[4] Salem Benferhat, Didier Dubois, and Henri Prade, ‘Possibilistic and
standard probabilistic semantics of conditional knowledge bases’, Jour-
nal of Logic and Computation, 9, 873–895, (1999).

[5] Blai Bonet and Hector Geffner, ‘Arguing for decisions: A qualitative
model of decision making’, in 12th Conference on Uncertainty in Ar-
tificial Intelligence (UAI-96), August 1-4, Portland, Oregon, USA, pp.
98–105, (1996).

[6] Anthony R. Cassandra, Leslie Pack Kaelbling, and Michael L. Littman,
‘Acting optimally in partially observable stochastic domains’, in 12th
National Conference on Artificial Intelligence (AAAI’13), July 31 - Au-
gust 4 Seattle, WA, USA, pp. 1023–1028, (1994).

[7] Francis C. Chu and Joseph Y. Halpern, ‘Great expectations. part I: on
the customizability of generalized expected utility’, in 18th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-03), August
9-15,2013, Acapulco, Mexico, pp. 291–296, (2003).

[8] Nicolas Drougard, Florent Teichteil-Konigsbuch, Jean-Loup Farges,
and Didier Dubois, ‘Qualitative possibilistic mixed-observable MDPs’,
in 29th Conference on Uncertainty in Artificial Intelligence (UAI’13),
August 11-15,2013, Bellevue, WA, USA, pp. 192–201, (2013).

[9] Nicolas Drougard, Florent Teichteil-Konigsbuch, Jean-Loup Farges,
and Didier Dubois, ‘Structured possibilistic planning using decision di-
agrams’, in 28th Conference on Artificial Intelligence (AAAI’14), July
27 -31, 2014, Québec City, Québec, Canada., pp. 2257–2263, (2014).

[10] Didier Dubois, Lluis Godo, Henri Prade, and Adriana Zapico, ‘Mak-
ing decision in a qualitative setting: from decision under uncertainty to
case-based decision’, in 6th International Conference on Principles of
Knowledge Representation and Reasoning (KR’98), June 2-5, Trento,
Italy, pp. 594–605, (1998).

[11] Didier Dubois and Henri Prade, ‘Possibility theory as a basis for quali-
tative decision theory’, in 14th international joint conference on Artifi-
cial intelligence (IJCAI’95), August 20-25, Montreal, Quebec Canada,
pp. 1925–1930, (1995).

[12] Didier Dubois, Henri Prade, and Régis Sabbadin, ‘Decision-theoretic
foundations of qualitative possibility theory’, European Journal of Op-
erational Research, 128, 459–478, (2001).

[13] Hélène Fargier and Régis Sabbadin, ‘Qualitative decision under uncer-
tainty: back to expected utility’, Artificial Intelligence, 164, 245–280,
(2005).

[14] Phan Giang and Prakash P Shenoy, ‘Two axiomatic approaches to deci-
sion making using possibility theory’, European Journal of Operational
Research, 162, 450–467, (2005).

[15] Lluis Godo and Adriana Zapico, ‘On the possibilistic-based decision
model: Characterization of preference relations under partial inconsis-
tency’, Applied Intelligence, 14, 319–333, (2001).

[16] Daniel J. Lehmann, ‘Generalized qualitative probability: Savage revis-
ited.’, in 21st Conference in Uncertainty in Artificial Intelligence (UAI
’05), July 26-29, Edinburgh, Scotland, pp. 381–388, (1996).

[17] Hervi Moulin, Axioms of Cooperative Decision Making, Cambridge
University Press, 1988.

[18] John Von Neumann and Oskar Morgenstern, Theory of games and eco-
nomic behavior, 1948.

[19] Martin L. Puterman, Markov Decision Processes, John Wiley and Sons,
1994.

[20] Howard Raiffa, Decision Analysis: Introductory Lectures on Choices
under Uncertainty, Addison Wesley, 1968.

[21] Régis. Sabbadin, ‘Possibilistic Markov decision processes’, Engineer-
ing Applications of Artificial Intelligence, 14, 287–300, (2001).

[22] Régis Sabbadin, Hélène Fargier, and Jŕome Lang, ‘Towards qualitative
approaches to multi-stage decision making’, International Journal of
Approximate Reasoning, 19, 441–471, (1998).

[23] Leonard J. Savage, The Foundations of Statistics, Wiley, 1954.

[24] Paul Snow, ‘Diverse confidence levels in a probabilistic semantics for
conditional logics’, Artificial Intelligence, 113, 269–279, (1999).

[25] Richard S. Sutton, ‘Learning to predict by the methods of temporal
differences’, in Machine Learning, pp. 9–44, (1988).

[26] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning:An
Introduction, MIT Press, 1998.

[27] Paul Weng, ‘Qualitative decision making under possibilistic uncer-
tainty: Toward more discriminating criteria’, in 21st Conference in
Uncertainty in Artificial Intelligence (UAI’05), July 26-29, Edinburgh,
Scotland, pp. 615–622, (2005).

[28] Paul Weng, ‘Axiomatic foundations for a class of generalized expected
utility: Algebraic expected utility’, in 22nd Conference Annual Con-
ference on Uncertainty in Artificial Intelligence (UAI-06), July 13-16 ,
Arlington, Virginia, pp. 520–527, (2006).

N. Ben Amor et al. / Lexicographic Refinements in Possibilistic Decision Trees208

