
A Simple Account of

Martin C. Cooper, Andreas Herzig, Faustine Maffre, Frédéric Maris, Pierre Régnier 1

Abstract. A realistic model of multi-agent planning must allow us
to formalize notions which are absent in classical planning, such as
communication and knowledge. We investigate multi-agent planning
based on a simple logic of knowledge that is grounded on the visibil-
ity of propositional variables. Using such a formal logic allows us to
prove the existence of a plan given the description of the individual
actions. We present an encoding of multi-agent planning problems
expressed in this logic into the standard planning language PDDL.
The solvability of a planning task is reduced to a model checking
problem in a dynamic extension of our logic, proving its complexity.
Feeding the resulting problem into a PDDL planner provides a prov-
ably correct plan for the original multi-agent planning problem. We
apply our method on several examples such as the gossip problem.

1 Introduction

Suppose there are n agents each of which knows some secret: a piece
of information that is not known to the others. They communicate by
phone calls, and whenever one person calls another they tell each
other all they know at that time. How many calls are required before
each item of gossip is known to everyone? This gossip problem can
be viewed as perhaps the simplest multi-agent planning problem: it
is only the agents’ knowledge that evolves, while the facts of the
world remain unchanged. We develop a formal framework in which it
possible to express some interesting generalizations of this problem.

Dynamic Epistemic Logic DEL [24] provides a formal framework
for the representation of knowledge and update of knowledge, and
several recent approaches to multi-agent planning are based on it,
starting with [5, 17]. While DEL provides a very expressive frame-
work, it was unfortunately proven to be undecidable even for rather
simple fragments of the language [1, 8]. Some decidable fragments
were studied, most of which focused on public events [17, 25]. How-
ever, the gossip problem requires private communication. There exist
other approaches on planning with uncertainty that do not use DEL.
The framework presented in [16] allows us to reason about knowl-
edge on literals in a multi-agent setting. A similar approach with
beliefs can be found in [19]. While restricted to a single agent, the
framework of [20] also deals with ‘knowing whether’ formulas (i.e.,
knowing p or knowing ¬p).

In this paper we provide a simple multi-agent epistemic logic that
we call EL-OS (Epistemic Logic of Observation), allowing us to
model actions and epistemic planning tasks such as the gossip prob-
lem. Our logic provides special variables describing what agents can
see. These variables determine indistinguishability relations, which

1 University of Toulouse, IRIT, France.
http://www.irit.fr/?lang=en

allow us to interpret arbitrary formulas containing epistemic opera-
tors in the standard way and to reduce them to boolean formulas. By
extending EL-OS with dynamic operators, we are able to formalize
the existence of a plan, giving the complexity result. We also study
an encoding of actions into PDDL, the standard Planning Domain
Definition Language [18]. This allows us to find a plan efficiently
with a PDDL planner, which we do with extensions of the gossip
problem and with the ‘exam problem’ where truth values of facts can
also evolve.

The paper is organized as follows. In Section 2 we introduce our
epistemic logic EL-OS. In Section 3 we give a formal definition of
actions and planning tasks within our framework. In Section 4 we
show how the existence of a plan can be encoded in the extension of
EL-OS with dynamic operators, and give the complexity result. In
Section 5 we present the encoding into PDDL. In Section 6 we apply
our framework to examples. We conclude in Section 7.

2 A simple epistemic logic

The logic EL-OS is a fragment of Dynamic Epistemic Logic of
Propositional Assignments and Observation DEL-PAO [13], which
is a dialect of Dynamic Logic of Propositional Assignments DL-PA
[14, 4, 3]. We start by defining its language and semantics.

The basic ingredient of DEL-PAO are atoms of the form Sip, to be
read as “agent i sees p” or “agent i knows whether p.” We understand
this as follows: when i knows whether p then either p is true and i
knows that, or p is false and i knows that. We also allow for higher-
order visibility with atoms of the form SjSip (j sees whether i sees
p), SkSjSip (k sees whether j sees whether i sees p), and so on.
Along with visibility, DEL-PAO includes joint visibility and deals
with a relation of ‘introspective consequence’ between atoms. Here
we simplify things and only consider individual visibility. We call
the resulting logic EL-OS.

2.1 Language

Let Prop = {p1, p2, . . .} be a countable set of propositional vari-
ables and Agt = {1, . . . , n} a finite set of agents. The set of visibility
operators is OBS = {Si : i ∈ Agt}. The set of all sequences of vis-
ibility operators is noted OBS∗; elements of OBS∗ are noted σ, σ′,
etc. An atom is any sequence of visibility operators Si followed by a
propositional variable. Formally,

ATM = {σp : σ ∈ OBS∗, p ∈ Prop}
Elements of ATM are noted α, α′, β, β′, etc. The depth of an atom
is the number of visibility operators composing it.

Then the language of EL-OS is defined by the following grammar:

ϕ ::= α | ¬ϕ | ϕ ∧ ϕ | Kiϕ

Multi-Agent Epistemic Planning

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-193

193

where α ranges over ATM and i over Agt .
The formula Kiϕ reads “agent i knows that ϕ, based on what

she observes.” The other boolean operators ⊥, �, ∨, → and ↔ are
defined as usual.

A boolean formula is a formula without the epistemic operator Ki.
The set of all boolean formulas is noted Fmlbool . We note ATM (ϕ)
the set of atoms appearing in the boolean formula ϕ. For example,
ATM (q ∧ Sip) = {q,Sip}. (Note that p /∈ ATM (q ∧ Sip).)

The visibility operator Si can only be applied to atoms: it means
that agent i sees the value of this atom (she sees whether it is true
or false). On the other hand, the epistemic operator Ki can be ap-
plied to any formula and means that i knows that this formula is true.
So Ki¬p is a well-formed formula but Si¬p is not. In Section 2.2
we will show that our logic nevertheless allows us to reason about
knowledge of complex formulas.

2.2 States and indistinguishability relations

Our worlds, alias states, are simply subsets of atoms, the ones that
are currently true. Therefore the set of all worlds is 2ATM . We denote
worlds by s , s ′, t, etc.

We interpret knowledge operators thanks to the visibility informa-
tion contained in states. Intuitively, for an atom α, we have:

α ∧ Siα ↔ Kiα

¬α ∧ Siα ↔ Ki¬α
For complex formulas Kiϕ, we rely on accessible worlds just as in
standard epistemic logic [11]: i knows that ϕ if ϕ is true in all worlds
indistinguishable from the current one. Unlike standard epistemic
logic however, the indistinguishability relation is not primitive but
is constructed from visibility information: two worlds s and s ′ are
indistinguishable for agent i, noted s ∼i s

′, if all atoms that i sees in
s keep the same value in s ′. Formally:

s ∼i s
′ iff for every α ∈ ATM , if Siα ∈ s then s(α) = s ′(α)

where s(α) = s ′(α) if and only if either α ∈ s and α ∈ s ′ or
α /∈ s and α /∈ s ′. It is this construction that allows us to model
knowledge in a more compact and natural way: all the information
about indistinguishability is contained in the actual state and there is
no need to explicitly give possible worlds and how they relate.

In epistemic logic, indistinguishability relations are usually as-
sumed to be equivalence relations. While ours are clearly reflexive,
they are neither transitive nor symmetric.2 To ensure transitivity and
symmetry, we impose introspection: agents must always know what
they know and what they do not know. In terms of visibility, this
means that atoms of the form SiSiα should always be true. More-
over, every agent should be aware of these facts. Generally: atoms of
the form σSiSiα with σ a sequence of visibility operators, possibly
empty, must be true. Let us define the (infinite) set of introspectively
valid atoms as:

ATMINTR = {α : α ∈ ATM and α = σSiSiα
′}.

We say that a state containing all these atoms is introspective and
denote the set of all introspective states by INTR. Formally,

INTR = {s ∈ 2ATM : ATMINTR ⊆ s}.
Clearly, s ∪ATMINTR ∈ INTR for every state s .

Proposition 1 ([13]). Relations ∼i are equivalence relations on
INTR.

Proposition 2 ([13]). Let s ∈ INTR and s ′ ∈ 2ATM . If s ∼i s ′

then s ′ ∈ INTR.
2 For example, ∅∼i{Sip, p} while {Sip, p}�∼i∅ since {Sip, p}(p) �= ∅(p).

2.3 Semantics

Formulas are interpreted over states s ∈ 2ATM . The truth conditions
are as follows:

s |= α iff α ∈ s

s |= ¬ϕ iff s �|= ϕ

s |= ϕ ∧ ϕ′ iff s |= ϕ and s |= ϕ′

s |= Kiϕ iff for every s ′ ∈ 2ATM such that s ∼i s
′, s ′ |= ϕ

Let us stress that truth conditions are defined on any state s ∈
2ATM , even if we have seen that the ∼i are equivalence relations
only on introspective states. Moreover, in the truth condition of Kiϕ
we do not require the s ′ to be introspective: by Proposition 2, s ′ will
belong to INTR if s is introspective. A formula ϕ is valid if and
only if s |= ϕ for every s ∈ 2ATM ; it is valid in INTR if and only if
s |= ϕ for every s ∈ INTR.

We say that the boolean formula ϕ is in normal form if and
only if ϕ does not contain an introspectively valid atom, i.e., no
α ∈ ATM (ϕ) belongs to ATMINTR.

Proposition 3. For every EL-OS formula ϕ, there exists a formula
ϕ′ in normal form such that ϕ ↔ ϕ′ is valid in INTR.

This formula can be obtained by replacing every introspectively
valid atom of ϕ by �.

Proposition 4. For every state s ∈ 2ATM , every boolean formula ϕ
in normal form, and every α ∈ ATMINTR, we have:

s\{α} |= ϕ if and only if s∪{α} |= ϕ.

By Proposition 4, the truth value of a formula in normal form is
the same in s and in its introspective, but infinite counterpart s ∪
ATMINTR.

2.4 From visibility to knowledge

We now show how to reduce EL-OS formulas to boolean formulas.
This will allow us to reduce multiagent planning problems that are
expressible in EL-OS to classical planning problems.

Proposition 5 ([13]). The following equivalences are valid.

Kiα ↔ Siα ∧ α

Ki¬α ↔ Siα ∧ ¬α
Ki(ϕ ∧ ϕ′) ↔ Kiϕ ∧Kiϕ

′

Ki

(∨
α∈A+

α ∨
∨

α∈A−
¬α

)
↔

⎧⎪⎪⎨
⎪⎪⎩
(∨
α∈A+

Kiα
)
∨
(∨
α∈A−

Ki¬α
)

if A+ ∩A− = ∅
� otherwise

Moreover, the rule of replacement of equivalents preserves validity.

The last equivalence may appear curious to one familiar with epis-
temic logic. It is actually inherent to the notion of visibility: if an
agent knows that p or q is true by looking at them, she immediately
knows which one is true. This is discussed in [13] and [7]; the latter
proposes an extension of DEL-PAO where the equivalence is invalid.

With the help of Proposition 5, starting with the innermost oper-
ator Ki (thanks to the rule of replacement of equivalents) we can
reduce any EL-OS formula to a boolean formula. Let us focus on
reducing formulas of the form Ki1 . . .Kimα to a conjunction of
atoms. For example, we have by Proposition 5:

KiKjp ↔ Ki(Sjp ∧ p) ↔ KiSjp ∧Kip

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning194

↔ SiSjp ∧ Sjp ∧ Sip ∧ p.

We generalize this: define the set of ‘epistemic atoms’ of an epis-
temic formula ϕ of the form Ki1 . . .Kimα with m ≥ 0 such that α
is not introspectively valid as follows:

EATM (α) = {α}
EATM (Kiϕ) = EATM (ϕ) ∪ {Siα : α ∈ EATM (ϕ) and

α is not of the form Siα
′}

The last line ensures that EATM (ϕ) does not contain any intro-
spectively valid atom as we will be interested in formulas in normal
form. Denote the conjunction of all these atoms by

∧
EATM (ϕ) =∧

α∈EATM (ϕ) α.

Proposition 6. The following equivalence is valid in INTR.

Ki1 . . .Kimα ↔
∧

EATM (Ki1 . . .Kimα)

Lemma 1. Let p ≥ 0. Let r1, . . . , rp be such that 1 ≤
r1 < . . . < rp ≤ m. Then EATM (Kir1

. . .Kirpα) ⊆
EATM (Ki1 . . .Kimα).

In words, the set of epistemic atoms of Ki1 . . .Kimα includes
every epistemic atom of a formula composed of epistemic operators
on a subsequence of i1, . . ., im.

We extend EATM (.) to a conjunction of formulas as expected:

EATM
(∧

i1,...,im∈Agt
and α∈A

Ki1 . . .Kimα
)
=

⋃
i1,...,im∈Agt

and α∈A

EATM
(
Ki1 . . .Kimα

)

where A ⊆ ATM is a set of atoms.
We will use these epistemic atoms in applications.

3 Epistemic planning with conditional effects

In this section, we formally define actions and planning tasks within
our framework EL-OS. We assume that we perform planning tasks
in fully observable, deterministic domains.

3.1 Actions with conditional effects

An conditional action is a pair a = 〈pre(a), eff (a)〉 where:

• pre(a) ∈ Fmlbool is a boolean formula: the precondition of a;
• eff (a) ⊆ Fmlbool × 2ATM × 2ATM is a set of triples ce of

the form 〈cnd(ce), ceff +(ce), ceff −(ce)〉: the conditional effects
of a, where cnd(ce) is a boolean formula (the condition) and
ceff +(ce) and ceff −(ce) are sets of atoms (added and deleted
atoms respectively).

We impose that there is no conflicting effects: for every ce1, ce2 ∈
eff (a) with cnd(ce1) and cnd(ce2) consistent, ceff +(ce1) ∩
ceff −(ce2) = ∅.

For example, consider the conditional action togglep of flipping
the truth value of the propositional variable p. It is described as
togglep = 〈pre(togglep), eff (togglep)〉 with pre(togglep) = �
and eff (togglep) = {〈p, ∅, {p}〉, 〈¬p, {p}, ∅〉}. The conditions p
and ¬p are inconsistent, thus not leading to conflict.

Example 1 (The gossip problem). Let Agt = {1, . . . , n} and
Prop = {si : i ∈ Agt}. Each propositional variable si represents
the secret of agent i. We are not interested in its value, but only in the
knowledge of its value. (We suppose each si is true.)

During the action callij , agents i and j tell each other ev-
ery secret they know among all n secrets. We have callij =
〈pre(callij), eff (callij)〉 with pre(callij) = � and

eff (callij) = {〈Sis1 ∨ Sjs1, {Sis1,Sjs1}, ∅〉,

. . . ,

〈Sisn ∨ Sjsn, {Sisn,Sjsn}, ∅〉}.
Intuitively, we add visibility of a secret to both agents if at least one
knows it. (So we add variables that are already true; in this case there
will be no effect.)

There is no possible conflict since callij has no negative effects.

A conditional action a determines a relation between states that is
a partial function:

sRas
′ iff (1) s |= pre(a), and

(2) for every ce ∈ eff (a) such that
(ceff +(ce) ∪ ceff −(ce)) ∩ ATMINTR �= ∅,
s �|= cnd(ce), and

(3) s ′ =
(
s \

⋃
ce∈eff (a)

and s|=cnd(ce)

ceff −(ce)
)
∪

⋃
ce∈eff (a)

and s|=cnd(ce)

ceff +(ce).

In words, an action adds and removes atoms as expected if its pre-
condition is satisfied and none of its conditional effects involving an
introspective atom can be triggered.

We say that the action a is in normal form if and only if (1) the
formulas pre(a) and cnd(ce) for every ce ∈ eff (a) are in normal
form, and (2) for every ce ∈ eff (a), if α ∈ ceff +(ce) ∪ ceff −(ce)
then α is not introspectively valid.

Proposition 7. For every action a, there exists an action a′ in normal
form such that for every s, t ∈ INTR, we have:

sRat if and only if sRa′ t.

Actions in normal form can be obtained by the following mod-
ification, (1) for every conditional effect ce ∈ eff (a) such that
(ceff +(ce) ∪ ceff −(ce)) ∩ ATMINTR �= ∅, replace pre(a) by
pre(a) ∧ ¬cnd(ce) and remove ce from eff (a), and (2) put the re-
sulting pre(a) and cnd(ce), for every ce ∈ eff (a), in normal form.

Proposition 8. For every s, t ∈ 2ATM , every action a in normal
form, and every α ∈ ATMINTR, we have:

s\{α} Ra t\{α} if and only if s∪{α} Ra t∪{α}.
As with Proposition 4 for formulas, Proposition 8 implies that if

there exists an execution of a from s that leads to t, then there exists
an execution of the same action from s∪ATMINTR to t∪ATMINTR.
This is ensured by the fact that actions in normal form neither test nor
add nor remove introspectively valid atoms.

3.2 Simple epistemic planning tasks

We say that a state s is reachable from a state s0 via a set of condi-
tional actions Act if there is a sequence of actions 〈a1, . . . , am〉 from
Act and a sequence of states 〈u0, . . . , um〉 with m ≥ 0 such that
s0 = u0, s = um and uk−1Rakuk for every k such that 1 ≤ k ≤ m.

A simple epistemic planning task is a triple 〈Act , s0,Goal〉 where
Act is a finite set of actions, s0 ⊆ ATM is a finite state (the initial
state) and Goal ∈ Fmlbool is a boolean formula. It is solvable if at
least one state s such that s |= Goal is reachable from s0 via Act ;
otherwise it is unsolvable.

We say that the planning task 〈Act , s0,Goal〉 is in normal form if
and only if (1) every action a ∈ Act is in normal form, and (2) the
formula Goal is in normal form.

Example 2 (Example 1, ctd.). The planning task corresponding to
the gossip problem is G1 = 〈ActG1 , sG1

0 ,GoalG1 〉 with

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning 195

• ActG1 = {callij : i, j ∈ Agt and i �= j};
• sG1

0 = {Sisi : i ∈ Agt} ∪ {si : i ∈ Agt};
• GoalG1 =

∧
i,j∈Agt Sisj .

In the initial state, every agent knows her own secret and none of
the other secrets. Secrets are also true initially, so that, since no
action can change the truth value of si, GoalG1 is equivalent to∧

i,j∈Agt Kisj .
This planning task is in normal form since every action callij is

trivially in normal form.

4 Dynamic extension and complexity results

Consider the planning task 〈Act , s0,Goal〉. In this section, we in-
troduce an extension of EL-OS with dynamic operators, which we
call DEL-PAOS (Dynamic Epistemic Logic of Propositional Assign-
ments and Observation without common knowledge). We show how
actions from Act can be encoded into DEL-PAOS programs. Then
we prove that the solvability of 〈Act , s0,Goal〉 is in PSPACE by
showing that it can be polynomially reduced to a DEL-PAOS model
checking problem.

4.1 A simple dynamic epistemic logic

The language of DEL-PAOS extends the language of EL-OS with
the dynamic operator 〈π〉, with π a program: the formula 〈π〉ϕ reads
“there exists an execution of π after which ϕ is true.”

The syntax of programs is defined by the following grammar:

π ::= +α | −α | π;π | π � π | π∗ | ϕ?
where α ranges over the set of atomic formulas ATM and ϕ over the
set of formulas.

Atomic programs +α and −α are assignments: they respectively
set the value of the atom α to true and to false. Complex programs
are composed of sequences of instructions (π;π), non-deterministic
choice between instructions (π � π), repetitions (π∗) and tests (ϕ?).

The dual operator [π]ϕ = ¬〈π〉¬ϕ (“after every execution of
π, ϕ is true”) is defined as usual. Moreover, if ϕ then π abbrevi-
ates (ϕ?;π) � ¬ϕ? and if ϕ then π else π′ abbreviates (ϕ?;π) �
(¬ϕ?;π′).

Semantically, a program is interpreted as a binary relation Rπ on
states, such that:

sR+αs
′ iff s ′ = s ∪ {α}

sR−αs
′ iff s ′ = s \ {α} and α /∈ ATMINTR

sRπ1;π2s
′ iff there exists u ∈ 2ATM such that sRπ1u and uRπ2s

′

sRπ1�π2s
′ iff sRπ1s

′ or sRπ2s
′

sRπ∗s
′ iff there exist u0, . . . , um ∈ 2ATM with m ≥ 0

such that s = u0, s
′ = um

and uk−1Rπuk for every 1 ≤ k ≤ m

sRϕ?s
′ iff s = s ′ and s |= ϕ

The truth condition of the new operator is then:

s |= 〈π〉ϕ iff there exists s ′ ∈ 2ATM such that sRπs
′ and s ′ |= ϕ

In words, 〈π〉ϕ is true if there is a state reachable by executing π
where ϕ is true. An assignment +α or −α updates the state by
adding or (unless introspectively valid) removing α; a sequential
composition π1;π2 executes first π1 and then π2; a nondeterministic
composition π1 � π2 takes the union of relations for π1 and for π2;
an iteration π∗ reaches any state attainable if we repeat π an arbitrary

number of times; a test ϕ? stays in the same state if ϕ is true there
(otherwise the program fails and produces no result world).

Observe that unlike the epistemic operators Ki, the evaluation of
dynamic operators may terminate in a non introspective state. How-
ever, trying to remove an introspectively valid atom (e.g. by execut-
ing −SiSip) will lead to a failure of the program because of the def-
inition of R−α: a program starting in INTR will never exit INTR.

4.2 Storing variables

The conditional effects of the actions that we have defined in Section
3 are produced in parallel. We have to simulate this in DEL-PAOS by
sequential composition. We therefore have to take care that the truth
value of no condition is modified by an effect. To achieve this, we
store the values of our conditions before executing our action, and
evaluate such values. This problem does not arise in PDDL where all
conditions are checked before any effects are produced.

We use new atomic variables noted c, called storage variables,
which we suppose do not appear in the planning task under concern.
Then the program storing the value of a formula is defined as:

str(ϕ, c) = if ϕ then +c else −c.

Proposition 9. If c does not occur in ϕ then the equivalence ϕ ↔
[str(ϕ, c)]c is valid.

We will see that after the execution of our program, we will make
all the storage variables false so that we do not have to worry about
them. The program resetting the value of a given set of storage vari-
ables is simply defined as:

rst({c1, . . . , cm}) = −c1; . . . ;−cm.

4.3 Encoding of actions

Intuitively, an action is a DEL-PAOS program, only executed
if the precondition is fulfilled, applying each conditional effect
whose condition is satisfied. For example, the action togglep (flip-
ping the value of the variable p) corresponds to the program
str(p, c1); str(¬p, c2); if c1 then −p; if c2 then +p. This highlights
the importance of storing values of conditions: the program
if p then −p; if ¬p then +p would actually always make p true.

We first show how to perform one conditional effect ce whose
condition’s value was stored in c:

exeCE(ce, c) = if c then +α1; . . . ; +αm;−β1; . . . ;−β�

where ceff +(ce) = {α1, . . . , αm} and ceff −(ce) = {β1, . . . , β�}.
Note that the ordering of atoms is not important since ceff +(ce) ∩
ceff −(ce) = ∅. Then we can associate to action a the DEL-PAOS

program exeAct(a):

exeAct(a) = pre(a)?;

str(cnd(ce1), c1); . . . ; str(cnd(cem), cm);

exeCE(ce1, c1); . . . ; exeCE(cem, cm);

rst({c1, . . . , cm}),
with eff (a) = {ce1, . . . , cem}. The ordering of effects is not impor-
tant since we test values of storage variables.

Proposition 10. For every s, t ∈ 2ATM such that s does not contain
any storage variable, and every action a in normal form, the program
exeAct(a) behaves like a:

s Ra t if and only if s RexeAct(a) t.

Intuitively, our program exeAct(a) is divided in four parts which
are executed in sequence:

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning196

1. pre(a)?: we test the precondition of the action. Semantically, if
s |= pre(a) then we stay in the same state s and continue to
execute the program, and if s �|= pre(a) then the program fails
(no world is related to s by exeAct(a)). This corresponds to the
requirement that s |= pre(a) in Ra.

2. str(cnd(ce1), c1); . . . ; str(cnd(cem), cm): we store every con-
dition. Recall that ϕ ↔ [str(ϕ, c)]c is valid, ensuring that testing
each ci after str(cnd(cei), ci) is equivalent to testing cnd(cei)
before effects are executed. Observe that after the execution of this
part, each atom has kept the same value it had in s; only storage
variables have been modified.

3. exeCE(ce1, c1); . . . ; exeCE(cem, cm): we apply effects based
on the truth values of storage variables. For each program
exeCE(cei, ci), if s |= ci, then every positive effect from
ceff +(cei) is added to s , while every negative effect from
ceff −(cei) is removed from s , as specified in Ra. The action be-
ing in normal form ensures that exeCE(cei, ci) will not remove
an introspectively valid atom, preventing any failure.

4. rst({c1, . . . , cm}): all storage variables are put to false, like they
were in s , so that the execution of exeAct(a) is exactly equivalent
to the execution of a (where storage variables do not appear).

Example 3 (Example 1, ctd.). The action callij , for any i, j ∈ Agt ,
is associated to the program:

exeAct(callij) = �?;

str(Sis1 ∨ Sjs1, c1); . . . ; str(Sisn ∨ Sjsn, cn);

if c1 then +Sis1; +Sjs1;

. . . ;

if cn then +Sisn; +Sjsn;

rst({c1, . . . , cn})
Note that in this case, pre(callij)? can clearly be dropped.

4.4 Solvability of a planning task

Now that we have defined the encoding of actions, we can capture
the solvability of a planning task in DEL-PAOS.

Proposition 11. A planning task 〈Act , s0,Goal〉 in normal form
such that s0 does not contain any storage variable is solvable if and
only if:

s0 |= 〈(⊔
a∈Act

exeAct(a)
)∗〉

Goal .

Intuitively, our formula reads “there exists an execution of(⊔
a∈Act exeAct(a)

)∗ after which Goal is true.” The program(⊔
a∈Act exeAct(a)

)∗ non-deterministically chooses an action a
from Act and executes the corresponding program exeAct(a), then
repeats this a finite number of times. This produces a sequence of
actions, i.e., a plan.

We do not impose that s0 is introspective as it would make it in-
finite; this is not necessary by Proposition 8 since the planning task
is in normal form: if there is an execution of

(⊔
a∈Act exeAct(a)

)∗
starting from the introspective state s0 ∪ ATMINTR and leading
to a state satisfying Goal , then there is one starting from the non-
introspective state s0 and leading to a state satisfying Goal .

Proposition 12. Deciding the solvability of a planning task with
DEL-PAOS is PSPACE-complete.

The lower bound comes from classical planning [6]; the upper
bound is given by Proposition 11, where the problem is reduced to

a model checking problem of DEL-PAOS, a fragment of DEL-PAO
whose model checking problem is in PSPACE.3

This result compares favorably to DEL-based epistemic planning,
which is undecidable even for simple fragments [1, 8]. The difference
is due to the simplicity of our underlying epistemic logic (cf. Propo-
sition 5) as well as to the limited expressivity of our actions: we can
basically model private announcements, while DEL has more general
event models.

5 Encoding into PDDL

In this section we present a method for encoding planning problems
defined in DEL-PAOS into PDDL. As already observed, in PDDL
we do not need to store conditions as we were obliged to do in DEL-
PAOS. Consider a planning task 〈Act , s0,Goal〉. We show how to
encode boolean formulas and actions in PDDL.

5.1 Translation of formulas

Some PDDL requirement flags should be set depending on the form
of conditions cnd(ce) of conditional effects ce of actions and of the
formula Goal :

• the default flag :strips for conjunctions;
• the flag :negative-preconditions for negations;
• the flag :disjunctive-preconditions for negations of

conjunctions, and disjunctions, if used to simplify writing.

Given a boolean formula ϕ ∈ Fmlbool , we define a recursive func-
tion trPDDL(ϕ) which returns the encoding of ϕ into PDDL:

trPDDL(Si1 . . .Simp) ::=

{
(p) if m = 0

(S-m i1 ... im p) otherwise

trPDDL(¬ϕ) ::= (not trPDDL(ϕ))

trPDDL(ϕ1 ∧ ϕ2) ::= (and trPDDL(ϕ1) trPDDL(ϕ2))

with p ∈ Prop, m ≥ 0, and i1, . . . , im ∈ Agt .
In words, a visibility atom α = Si1 . . .Simp is encoded by a

special fluent with m+1 parameters. If m = 0, then the propo-
sitional variable p is encoded as a fluent without parameters. We
note trPDDL(α) the translation of an atom α in the general case (p
or Si1 . . .Simp). Other boolean operators are encoded as expected.

The initial state s0 is trivially encoded as a set of fluents thanks
to trPDDL(α). Goal and the preconditions of every action can be en-
coded using trPDDL(ϕ) since they are all boolean formulas.

5.2 Encoding of actions

The requirement flag :conditional-effects must be set.
Consider an action a. For every ce ∈ eff (a) with ceff +(ce) =

{α1, . . . , αm} and ceff −(ce) = {β1, . . . , β�}, we add the condi-
tional effect:

(when trPDDL(cnd(ce))

(and trPDDL(α1) . . . trPDDL(αm)

(not trPDDL(β1)) . . . (not trPDDL(β�))))

Note that, again, the ordering is not important.

3 The version of DEL-PAO presented in [13] does not include the iteration
(represented by the star ‘∗’) in the language of programs. However, a more
general result, including the star and with a PSPACE model checking, can
be found in [9].

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning 197

Example 4 (Example 1, ctd.). The action call12 is coded in PDDL as
follows:
(:action call-1-2
:effect (and
(when (or (S-1 1 s1) (S-1 2 s1))
(and (S-1 1 s1) (S-1 2 s1)))

...
(when (or (S-1 1 sn) (S-1 2 sn))
(and (S-1 1 sn) (S-1 2 sn)))))

This is the direct encoding of a call into PDDL. Remark that we
could generalize it to any i and j by adding the line ‘:parameters
(?i ?j)’ and replacing every ‘(S-1 1 .)” by “(S-1 ?i .)’
and every ‘(S-1 2 .)” by “(S-1 ?j .)’. We will use the latter
in experiments because of its succinctness.

Almost all planners from last International Planning Competition
(IPC 2014)4 handle conditional effects and negative preconditions,
and most of them handle disjunctive preconditions. For experiments,
we chose to use the planner FDSS-2014 [22] that was satisfying all
these preconditions.

6 Applications

In this section, we first study the ‘exam problem’ (a simple illus-
trative example concerning privacy of information), then general-
izations of the gossip problem.5 We sometimes write simply ‘a’ for
‘exeAct(a)’ when used within dynamic operators 〈.〉 and [.].

6.1 The exam problem

Suppose we have two agents: a teacher and a student. The teacher has
prepared the exam and keeps it in her office; the goal of the student
is to know the exam topic, but without the teacher seeing her doing
this. To achieve this goal, the student must enter the teacher’s office,
read the exam while the teacher is not inside, and exit the office.

Let the corresponding planning task be Exam =
〈ActExam , sExam

0 ,GoalExam〉. Let Agt = {t , s} and
Prop = {exam, open, int , ins}. Agent t is the teacher and
agent s is the student. The variable exam represents the topic of the
exam. Like secrets in the gossip problem, its value is not relevant
and we only reason about the knowledge of it (we will assume it is
true). The variable open reads “the teacher’s office is open”, and
ini, for i an agent, “agent i is in the teacher’s office”.

Initially, we assume the office is empty and the door is closed:

sExam
0 = {exam}.

As we said, the goal for the student is to know the exam’s
topic without being caught by the teacher. The goal is Ssexam ∧
¬KtSsexam ∧ ¬ins . In terms of visibility atoms, this becomes:

GoalExam = Ssexam ∧ ¬StSsexam ∧ ¬ins .

We study two variants of this problem with different actions.

Vigilant teacher. In this first version, we suppose the teacher always
closes her office door when leaving. The set of actions is:

ActExam = {openAndGoInt , goOutAndCloset ,

goIns , goOuts , readExams},
where

openAndGoInt = 〈¬int , {〈�, {open, int ,StSsexam}, ∅〉}〉
4 http://helios.hud.ac.uk/scommv/IPC-14/planners.html
5 All resources and PDDL files we used for experiments are available at

http://www.irit.fr/%7EAndreas.Herzig/P/Ecai16.html.

goOutAndCloset = 〈int ∧ ¬Ssexam,

{〈�, ∅, {StSsexam, int , open}〉}〉
goIns = 〈open ∧ ¬ins , {〈�, {ins}, ∅〉}〉

goOuts = 〈open ∧ ins , {〈�, ∅, {ins}〉}〉
readExams = 〈ins , {〈�, {Ssexam}, ∅〉}〉

Action openAndGoInt makes the teacher open and enter the room,
and thus watch the exam. Action goOutAndCloset makes her leave
and close the room; she cannot watch the exam anymore. We add the
precondition ¬Ssexam to ensure that the teacher cannot leave if she
has witnessed the student see the exam, so that she cannot forget this
fact. For the student, goIns and goOuts makes her enter and leave
the office, with the precondition that it is open; readExams makes
her see the exam topic, acquiring the knowledge on its value.

In this case, no plan exists reaching the goal. Indeed, the student
can only enter the room if the door is open, which can only happen
when the teacher is inside the room. Therefore the student cannot
read the exam’s topic without the teacher knowing it: Ssexam →
KtSsexam . This was confirmed by experiments: FDSS-2014 cannot
find a plan.

Inattentive teacher. Now we assume that the teacher can leave the
room without closing the door. This is done by dividing actions
openAndGoInt and goOutAndCloset each in two parts:

• we replace openAndGoInt by:

opent = 〈¬open, {〈�, {open}, ∅〉}〉
goInt = 〈open ∧ ¬int , {〈�, {int ,StSsexam}, ∅〉}〉,

• we replace goOutAndCloset by:

goOutt = 〈open ∧ int ∧ ¬Ssexam,

{〈�, ∅, {StSsexam, int}〉}〉
closet = 〈open, {〈�, ∅, {open}〉}〉.

Thus the set of actions becomes:

ActExam = {opent , closet , goInt , goOutt ,

goIns , goOuts , readExams}.
In this setting, the problem becomes solvable: for example,

the plan opent ; goInt ; goIns ; goOutt ; readExams ; goOuts is a so-
lution plan. More mundanely, the planner finds the shortest plan:
opent ; goIns ; readExams ; goOuts .

In these two examples, we are more interested in the existence of
a plan than in the plan itself: the first variant is safe for the teacher,
while the second is not.

6.2 The generalized gossip problem

In this section, we present a formalisation of a generalisation of the
gossip problem in our framework. A study of this problem and its
variants can be found in [10].

The generalized gossip problem. We model the generalized gos-
sip problem, introduced in [15], as a planning task GD =
〈ActGD , sGD

0 ,GoalGD 〉. In this generalization, the goal is not only
for every agent to know every secret, but also every agent must know
this fact, and every agent must know that, and so on until a given
depth D ≥ 1. Let Agt = {1, . . . , n} and Prop = {si : i ∈ Agt}. In
terms of knowledge, the goal of the generalized gossip problem is:

ϕGD =
∧

i1∈Agt

Ki1 . . .
∧

iD∈Agt

KiD︸ ︷︷ ︸
D times

∧
�∈Agt

s�.

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning198

We have seen in Section 2.4 how to express this with a boolean for-
mula, thanks to our epistemic atoms:

GoalGD =
∧

EATM (ϕGD).

Recall that introspectively valid atoms are not included in
EATM (ϕ), thus the goal is in normal form.

The initial state and the set of actions stay the same:

sGD
0 = {Sisi : i ∈ Agt} ∪ {si : i ∈ Agt},

ActGD = {callij : i, j ∈ Agt , i �= j}.
The preconditions of calls also remain unchanged: pre(callij) = �.
However, their effects are different. Agents will not only transmit
secrets but also knowledge of secrets. They will also learn the higher-
order knowledge we need in the gossip problem when exchanging
secrets. For example, if i knows the secret of � and i calls j, j will
learn the secret of �, but also that i knows it; i will learn that j knows
that she knows it; and so on until depth D . Moreover, if i knows that
i1 knows the secret of �, then j learns that i1 knows the secret of �,
but also that i knows that, an so on until depth D . As an example,
suppose D = 4 and we have KiKi1s�. Then after the call between
i and j, we will have, e.g., KjKi1s�, KiKjKi1s�, KjKiKi1s�,
KjKiKjKi1s�, KiKjKiKi1s�, and so on, that is, any combination
of Ki and Kj followed by Ki1s�, for a maximum depth of D .

For a given integer m and two agents i and j, we note {Si,Sj}≤m

the set all non-empty non-introspective sequences of visibility op-
erators Si and Sj of length at most m. For instance, {Si,Sj}≤2 =
{Si,Sj,SiSj,SjSi}.

Thus we have that, during a call between i and j, if i or j knows
that Ki1 . . .Kims�, i.e., if KiKi1 . . .Kims� ∨ KjKi1 . . .Kims� is
true, then σSi1 . . .Sims� for every σ ∈ {Si,Sj}≤D−m becomes
true. Formally:

eff (callij) = {〈
∧

EATM (KiKi1 . . .Kims�) ∨∧
EATM (KjKi1 . . .Kims�),

{σSi1 . . .Sims� : σ ∈ {Si,Sj}≤D−m}, ∅〉 :
0≤m<D and i1, . . . , im, � ∈ Agt such that
for every 1≤k<m, ik �=ik+1, and i �=i1 and j �=i1}

Consecutive agents in Si1 . . .Sims� are required to be different so
that we do not involve any introspectively valid atom and we obtain
an action in normal form. If we take D = 1, we retrieve our definition
of callij from Example 1 (with tests of secrets that could be omitted).

We require knowledge instead of visibility, i.e.,∧
EATM (KiKi1 . . .Kims�) instead of just SiSi1 . . .Sims�,

so that agents only exchange what they know. For example, we do
not want 1 to see whether 2 knows the secret of 3 without 2 knowing
the secret of 3: it would imply that 1 watches 2, and that if 2 learns
the secret of 3 during a call, 1 will know this even if she did not
participate in this call.

Proposition 13. The equivalence [callij]¬ϕ ↔ ¬[callij]ϕ is valid.

This is due to calls being deterministic: executing a call always
leads to exactly one state.

Lemma 2. The following formulas are valid.

Si1 . . .Sims� ↔ [callij]Si1 . . .Sims� if i �= i1 and j �= i1 (1)

Si1 . . .Sims� → [callij]Si1 . . .Sims� for any i, j (2)

(1) means that when i1 is not involved in a call, her knowledge
does not evolve. Indeed, along with Proposition 13, it implies:

Si1 . . .Sims� → [callij]Si1 . . .Sims�

¬Si1 . . .Sims� → [callij]¬Si1 . . .Sims�

if i �=i1 and j �=i1. (2) means that knowledge of agents cannot de-
crease with a call. Both lines are deduced from the definition of calls.

While the original gossip problem with n ≥ 4 agents can
be solved in 2n − 4 calls [2, 23, 12], the generalized gos-
sip problem can be solved in at most (D+1)(n−2) calls [15].
For instance, suppose D = 2 and n = 5, then the se-
quence call13; call

1
4; call

2
5; call

1
5; call

1
3; call

2
4; call

1
4; call

1
5; call

2
3 is a so-

lution with 3×3 = 9 calls. Our experiments have confirmed that the
protocol given in [15] is optimal for D = 2 and n ≤ 5.

Negative goals. We now introduce an extension of the generalized
gossip problem where goals can be ‘negative’. We write it G-negD =
〈ActG-negD , sG-negD

0 ,GoalG-negD 〉. In this variant, we change the
goal and impose that some agents do not know some secrets, or some
knowledge of secrets, at the end of the sequence of calls. For exam-
ple, we want 1 not to know the secret of 2, or 1 not to know that 2
knows the secret of 3. The action set, the calls, and the initial state
remain the same: ActG-negD = ActGD and sG-negD

0 = sGD
0 .

We note GoalG-negD
A the goal of the generalized gossip problem

where only atoms from A, such that A ∩ ATMINTR = ∅, are false.
Formally:

GoalG-negD
A =

(∧
α∈EATM (ϕGD

)\A
α
)
∧
(∧

α∈A

¬α
)
.

We present several properties of the gossip problem that will be
useful in deciding solvability of G-negD .

Lemma 3. Let m ≥ 2 be an integer. Let D ≥ m. Take m+1 agents
i1, i2, i3, . . . , im, � ∈ Agt such that i1, i2 and i3 are distinct. We
have:

(¬Si1Si2Si3 . . .Sims� ∧ [calli1j]Si1Si2Si3 . . .Sims�) →⎧⎪⎨
⎪⎩
∧

EATM (Ki1Ki3 . . .Kims�) ∨
∧

EATM (Ki2Ki3 . . .Kims�)
if j = i2∧

EATM (KjKi2Ki3 . . .Kims�) otherwise

Proof. In words, we are looking for conditions that make the atom
Si1Si2Si3 . . .Sims� true after a call. We are only interested in cases
where Si1Si2Si3 . . .Sims� is not introspective; when it is, it will
never be added by an action and thus the implication is trivially true.
We examine the two cases.

First case: j = i2. Remember that by the definition of calls,
calli1i2 only produces atoms beginning with a sequence σ of Si1 and
Si2. Since i3 is distinct from i1 and i2 and we avoid introspec-
tive atoms, calli1i2 can only add our atom by adding σSi3 . . .Sims�
with σ = Si1Si2. Then either

∧
EATM (Ki1Ki3 . . .Kims�) or∧

EATM (Ki2Ki3 . . .Kims�) must be true (before the call), which
corresponds to the right side of the implication.

Second case: j �= i2. Following the same reasoning, calli1j can
only add our atom by setting to true σSi2Si3 . . .Sims� with σ =
Si1; then either

∧
EATM (Ki1Ki2Ki3 . . .Kims�) must be true or∧

EATM (KjKi2Ki3 . . .Kims�) must be true. We cannot have the
former since Si1Si2Si3 . . .Sims� is false. The latter corresponds to
the right side of the implication.

Proposition 14. Let m ≥ 2 be an integer. Let D ≥ m. Take m+1
agents i1, i2, i3, . . . , im, � ∈ Agt such that i1, i2 and i3 are dis-
tinct. Then after a sequence of calls C = call

ir1
jr1

; . . . ; call
irp
jrp

, if
Si1Si2Si3 . . .Sims� is true then Si1Si3 . . .Sims� is true. Formally:

sG-negD
0 |= [C](Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims�).

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning 199

Proof. We prove it by induction on the sequence of calls. We are only
interested in cases where Si1Si2Si3 . . .Sims� is not introspective.

Base case: initial situation. We prove:

sG-negD
0 |= Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims�.

This is trivially true because only atoms of the form Sisi are true
initially.

Inductive case. Suppose:

sG-negD
0 |= [C](Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims�).

We prove that for an arbitrary s:

s |= (Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims�) →
[callij](Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims�). (3)

First suppose i1 is not involved in the new call, that is, i1 �= i and
i1 �= j. We know by (1) of Lemma 2 that her knowledge (every atom
beginning with Si1) does not evolve. Thus the implication stays true.

Now suppose i1 is involved in the new call; without loss of gener-
ality, suppose i = i1. By (2) of Lemma 2, we know that a true atom
stays true after a call. Then (3) is equivalent to:

s |= (¬Si1Si2Si3 . . .Sims� ∧ [calli1j]Si1Si2Si3 . . .Sims�) →
(Si1Si3 . . .Sims� ∨ [calli1j]Si1Si3 . . .Sims�). (4)

In words, if calli1j makes Si1Si2Si3 . . .Sims� true, then either
Si1Si3 . . .Sims� was true or it becomes true.

By Lemma 3, we know that the premise of (4) implies either∧
EATM (Ki1Ki3 . . .Kims�) or

∧
EATM (Ki2Ki3 . . .Kims�) if

j = i2, or
∧

EATM (KjKi2Ki3 . . .Kims�) otherwise. It is
possible prove that each of these three statements implies either
Si1Si3 . . .Sims� or [calli1j]Si1Si3 . . .Sims�, using the definition of
calls and Lemma 1.

Therefore Si1Si2Si3 . . .Sims� → Si1Si3 . . .Sims� is preserved
by callij , hence the result.

With this in mind, we look at some specific examples of goals.
The goal GoalG-negD

{S1s2} , where only 1 does not know the secret of 2,
will always be reachable for D = 1 and n ≥ 3. For example, FDSS-
2014 returns the plan call13; call

1
4; call

1
5; call

2
5; call

3
5; call

4
5 for n = 5.

More generally, the following protocol gives a solution:

1. call1i for every i ∈ Agt \ {2};
2. solve GD for D = 1 and Agt = {2, . . . , n}.

However, it will never be reachable for D ≥ 2 and n ≥ 3: by con-
traposition of Proposition 14, if S1s2 is false then S1S3s2 is false,
thus we cannot reach the goal where only S1s2 is false. FDSS-2014
indeed cannot find any plan for D = 2 and n ≤ 4. (It is obviously
unsolvable for any depth when n = 2 since the only available action,
call12, establishes S1s2.)

Now suppose we have D ≥ 2 and we want 1 not to know whether
2 knows the secret of 3 (but we do want 2 to know the secret of 3): our
goal is GoalG-negD

{S1S2s3}. The following protocol produces a solution for
D = 2 and n ≥ 3:

1. call2i for every i ∈ Agt \ {3};
2. solve GD for D = 2 and Agt = {1, 3, 4, . . . , n};
3. call2i for every i ∈ Agt \ {1}.

One of the plans FDSS-2014 finds is call12; call
2
4; call

2
5; call

3
5; call

1
3;

call14; call
2
4; call

2
5; call

2
3 for n = 5. Again by Proposition 14, we know

that if S1S2s3 is false then S1S4S2s3 is also false. Therefore this
goal is always unreachable for D ≥ 3 and n ≥ 4. We can general-
ize this result: we have that GoalG-negD

{Si1
...Sim s�} is never reachable for

D ≥ m+1 and n ≥ m+2.

Now consider the goal GoalG-negD
{S1s2,S2s3}, where 1 must not know

the secret of 2 and 2 must not know the secret of 3. For D = 1 and
n ≥ 4, the protocol for GoalG-negD

S1s2
generalizes as follows:

1. call1i for every i ∈ Agt \ {2, 3} ending with i = n;
2. call2n; call13;
3. solve GD for D = 1 and Agt = {3, . . . , n}.

For n = 5, FDSS-2014 returns call14; call
1
5; call

1
3; call

2
5; call

3
5; call

4
5.

However, and again by Proposition 14, we know that
GoalG-negD

{S1s2,S2s3} will never be reachable for D ≥ 2 and n ≥ 3
(since, e.g., S1S3s2 will also be false if S1s2 is false).

7 Conclusion

In this article we have made a first step towards a realistic and
provably-correct method for multi-agent epistemic planning. Our use
of a logic of action and knowledge together with an state of the art
automatic planner (which is assumed to be correct in the case of clas-
sical planning with conditional effects) provides a method for pro-
ducing plans which are guaranteed to be correct.

Our approach contrasts with the undecidability of DEL-based
epistemic planning which occurs even for simple fragments. For ex-
ample, if actions make factual changes to the world, then the problem
is undecidable whenever epistemic operators are allowed in precon-
ditions; if actions are purely epistemic, then it is undecidable when-
ever two agents are involved or the epistemic depth exceeds 2 [1, 8].
Of course, the low complexity of DEL-PAOS comes at the price of
expressivity. We have seen that our epistemic logic EL-OS has more
validities than standard epistemic logic. We have also seen in the
exam problem that considering knowledge instead of belief is a re-
striction leading to counter-intuitive design of actions (the teacher
must not exit the room if she has seen the student see the exam).
While relaxing knowledge in DEL is simple, this is not easy in DEL-
PAO. However, our framework at least allows us to update knowl-
edge along with facts of the world and to specify epistemic precon-
ditions of any form. Since any epistemic formula can be reduced to
a boolean formula, the translation to PDDL is immediate.

We intend to continue this line of research by incorporating other
important aspects of multi-agent planning, namely control (i.e. which
agents are allowed to change the value of which variables) and mu-
tual exclusion (to guarantee that at most one agent has control of
a variable at any instant). In the long term, we also aim to gener-
alize this approach to temporal planning where actions are durative
and may overlap; flexible planning, where actions may happen be-
tween intervals of time; and contingent planning, with uncertainty
on the initial state or the effects of actions (and the presence of sens-
ing actions). Another perspective is to encode DEL-PAOS or even
full DEL-PAO into PDDL. This would allow us to perform model
checking with optimized PDDL planners.

We can note that, although we have mentioned only PDDL here,
alternative approaches exist. For example, it is possible to code a
planning problem containing actions with conditional effects directly
into SAT and then use an efficient SAT solver to find a plan [21].

Acknowledgements

We would like to thank the anonymous reviewers for their thoughtful
reading and comments.

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning200

REFERENCES

[1] Guillaume Aucher and Thomas Bolander, ‘Undecidability in epistemic
planning’, in Proceedings of the 23rd International Joint Conference on
Artificial Intelligence (IJCAI), ed., Francesca Rossi, pp. 27–33. AAAI
Press, (2013).

[2] Brenda Baker and Robert Shostak, ‘Gossips and telephones’, Discrete
Mathematics, 2(3), 191–193, (1972).

[3] Philippe Balbiani, Andreas Herzig, François Schwarzentruber, and
Nicolas Troquard, ‘DL-PA and DCL-PC: model checking and satisfi-
ability problem are indeed in PSPACE’, CoRR, abs/1411.7, (2014).

[4] Philippe Balbiani, Andreas Herzig, and Nicolas Troquard, ‘Dynamic
logic of propositional assignments: a well-behaved variant of PDL’, in
Proceedings of the 28th Annual IEEE/ACM Symposium on Logic in
Computer Science (LICS), ed., Orna Kupferman, pp. 143–152, (2013).

[5] Thomas Bolander and Mikkel Birkegaard Andersen, ‘Epistemic plan-
ning for single and multi-agent systems’, Journal of Applied Non-
Classical Logics, 21(1), 9–34, (2011).

[6] Tom Bylander, ‘The computational complexity of propositional
STRIPS planning’, Artificial Intelligence, 69, 165–204, (1994).

[7] Tristan Charrier, Emiliano Lorini, Andreas Herzig, Faustine Maffre,
and François Schwarzentruber, ‘Building epistemic logic from obser-
vations and public announcements’, in Proceedings of the 15th Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (KR 2016), (2016).

[8] Tristan Charrier, Bastien Maubert, and Francois Schwarzentruber, ‘On
the impact of modal depth in epistemic planning’, in Proc. IJCAI 2016.
AAAI Press, (2016).

[9] Tristan Charrier, Sophie Pinchinat, and François Schwarzentruber,
‘Mental programs and arbitrary public announcement logic: relevance
and complexity’. Unpublished manuscript, 2016.

[10] Martin C. Cooper, Andreas Herzig, Faustine Maffre, Frédéric Maris,
and Pierre Régnier, ‘Simple epistemic planning: generalised gossiping’,
ArXiv e-prints, abs/1606.0, (2016).

[11] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi,
Reasoning about Knowledge, MIT Press, 1995.

[12] Andras Hajnal, Eric C. B. Milner, and Endre Szemerédi, ‘A cure for the
telephone disease’, Canadian Mathematical Bulletin, 15(3), 447–450,
(1972).

[13] Andreas Herzig, Emiliano Lorini, and Faustine Maffre, ‘A poor man’s
epistemic logic based on propositional assignment and higher-order ob-
servation’, in Proceedings of the 5th International Conference on Logic,
Rationality and Interaction (LORI), eds., Wiebe van der Hoek, Wes-
ley H. Holliday, and Wen-fang Wang, pp. 156–168. Springer Verlag,
(2015).

[14] Andreas Herzig, Emiliano Lorini, Nicolas Troquard, and Frédéric
Moisan, ‘A dynamic logic of normative systems’, in Proceedings of the
22nd International Joint Conference on Artificial Intelligence (IJCAI),
pp. 228–233, (2011).

[15] Andreas Herzig and Faustine Maffre, ‘How to share knowledge by gos-
siping’, in Proceedings of the 3rd International Conference on Agree-
ment Technologies (AT). Springer-Verlag, (2016).

[16] Filippos Kominis and Hector Geffner, ‘Beliefs in multiagent planning:
from one agent to many’, in Proceedings of the 25th International Con-
ference on Automated Planning and Scheduling (ICAPS), eds., Ronen I.
Brafman, Carmel Domshlak, Patrik Haslum, and Shlomo Zilberstein,
pp. 147–155. AAAI Press, (2015).

[17] Benedikt Löwe, Eric Pacuit, and Andreas Witzel, ‘DEL planning and
some tractable cases’, in Proceedings of the 3rd International Interna-
tional Workshop on Logic, Rationality and Interaction, pp. 179–192.
Springer Berlin Heidelberg, (2011).

[18] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ash-
win Ram, Manuela Veloso, Daniel Weld, and David Wilkins, ‘PDDL
– The Planning Domain Definition Language’, Technical report, Yale
Center for Computational Vision and Control, (1998).

[19] Christian Muise, Vaishak Belle, Paolo Felli, Sheila A. McIlraith, Tim
Miller, Adrian R. Pearce, and Liz Sonenberg, ‘Planning over multi-
agent epistemic states: A classical planning approach’, in Proceedings
of the 29th AAAI Conference on Artificial Intelligence (AAAI 2015), pp.
3327–3334. AAAI Press, (2015).

[20] Ronald P. A. Petrick and Fahiem Bacchus, ‘Extending the Knowledge-
Based Approach to Planning with Incomplete Information and Sens-
ing’, in Proceedings of the Fourteenth International Conference on Au-
tomated Planning and Scheduling (ICAPS 2004), pp. 2–11, (2004).

[21] Jussi Rintanen, Keijo Heljanko, and Ilkka Niemelä, ‘Planning as sat-
isfiability: parallel plans and algorithms for plan search’, Artif. Intell.,
170(12-13), 1031–1080, (2006).

[22] Gabriele Röger, Florian Pommerening, and Jendrik Seipp, ‘Fast down-
ward stone soup 2014’, in The 2014 International Planning Competi-
tion, (2014).

[23] Robert Tijdeman, ‘On a telephone problem’, Nieuw Archief voor
Wiskunde, 19(3), 188–192, (1971).

[24] Hans van Ditmarsch, Wiebe van der Hoek, and Barteld Kooi, Dynamic
Epistemic Logic, Springer Publishing Company, Incorporated, 1st edn.,
2007.

[25] Quan Yu, Yanjun Li, and Yanjing Wang, ‘A dynamic epistemic frame-
work for conformant planning’, Proceedings of TARK, 15, 249–259,
(2015).

M.C. Cooper et al. / A Simple Account of Multi-Agent Epistemic Planning 201

