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Abstract.

Many conference mobile apps today lack the intelligent feature to
automatically generates optimal schedules based on delegates’ pref-
erences. This entails two major challenges: (a) identifying prefer-
ences of users; and (b) given the preferences, generating a sched-
ule that optimizes his preferences. In this paper, we specifically fo-
cus on academic conferences, where users are prompted to input
their preferred keywords. Our key contribution is an integrated con-
ference scheduling agent that automatically recognizes user pref-
erences based on keywords, provides a list of recommended talks
and optimizes user schedule based on these preferences. To demon-
strate the utility of our integrated conference scheduling agent, we
first demonstrated the app in the International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2015) and
conducted a survey to collect some data, which are used to verify the
results presented in this paper. It is able to provide well calibrated re-
sults with respect to precision, accuracy and recall. We also tested the
app in the 2015 WI-IAT International Conference (Singapore). The
android and web-based apps have been demonstrated and deployed
in AAMAS 2016 (Singapore) with positive responses from the users.

1 Introduction

In a large conference setting where talks are presented in parallel ses-
sions across multiple days, it is challenging for a conference attendee
to generate a plan of talks to attend that optimize his/her preferences.
Furthermore, this adds to the cognitive challenge if the conference
venue is large, where one may need to consider time to travel be-
tween talks. To reduce this cognitive load, we aim to provide an inte-
grated conference scheduling agent that not only identifies user pref-
erences (based on keywords) but also generates a schedule of talks to
attend at different times of the conferences while considering the user
preferences. We are specifically interested in academic conferences
where data associated with users is easily available.

Both the individual problems (understanding user preferences and
optimizing schedule accounting for preferences) have received sig-
nificant interest in existing work. The first thread of related research
is with respect to learning user preferences given papers has been
studied extensively in the machine learning community. Statistical
topic modeling has become a popular method for analyzing large sets
of text collections by representing high dimensional data in a low di-
mensional subspace [21]. The topic model is built using MALLET,
which is introduced by Andrew McCallum and his team in 2002 [10].
MALLET is able to navigate large bodies of information by finding
clusters of keywords that frequently appear together, called topics.
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The second thread of related work is with respect to optimizing pref-
erences given constraints on scheduling talks. This problem is related
to a single resource scheduling problem with the objective of maxi-
mizing the profitability of the resulting schedule under fixed process-
ing times [20].

One of the best known systems in the area of academic conference
event recommendation is Conference Navigator 3.0 [13]. In Confer-
ence Navigator system, users directly select preferred talks. It also
collects the wisdom of the user community and makes it available
through community-based recommendation interface to help users
in making scheduling decisions.

Our key contribution is in providing an integrated solution for both
these problems and demonstrate utility on a real conference schedul-
ing problem. Specifically, we first employ MALLET to identify the
topics of interest for a given conference, by considering papers from
that conference. We then identify preferences of a given user for the
topics of interest at the conference by getting the user’s preferred
keywords. PRESS also considers community-based recommendation
in terms of the correlation among talks. These correlation values are
calculated automatically based on their similarity in terms of key-
words provided by the users. Based on preferred keywords, PRESS
provides a list of recommended talks and optimizes user schedule
based on these preferences.

For easy interaction with the users, our agent is built as an appli-
cation for mobiles, namely PRESS. So, we are able to take change
requests on the generated schedule and immediately provide an up-
dated schedule. To demonstrate utility for conference attendees, we
first demonstrated PRESS in the International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS 2015) and
conducted a survey to collect some data, which are used to verify
the results presented in this paper. We show that the papers gener-
ated in the schedules for the users have high values of precision, ac-
curacy and recall. We then tested PRESS in the 2015 WI-IAT Inter-
national Conference (Singapore). Some feedbacks especially related
to the client-facing android mobile app were collected. Finally, both
android and web-based versions of PRESS have been deployed in
AAMAS 2016 [7].

2 Related Work

Resnick and Varians [15] describe a recommender systems as fol-
lows: In a typical recommender system people provide recommen-
dations as inputs, which the system then aggregates and directs to
appropriate recipients. In some cases the primary transformation is
in the aggregation; in others the system’s value lies in its ability to
make good matches between the recommenders and those seeking
recommendations.

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1797

1797



Adomavicius and Tuzhilin [1] provide a survey of the-state-of-
the art and possible extensions of the recommender system. Burke
et al. [4] describe two basic principles of a recommender system: a)
it is personalized to optimize the experience of one user, and b) it
is intended to help the user choose among discrete options. Recom-
mender systems have been developed in various domains of applica-
tions, such as LIBRA [11] (book recommender) and INTIMATE [9]
(movie recommender).

Lops et al. [8] describe two main paradigms of recommender sys-
tems. Content-based recommender systems generate recommended
items based on items that have been liked by a user in the past,
whereas Collaborative recommendation systems try to recommend
items from other users whose preferences are similar to those of the
user and recommend items they have liked. In this paper, we concen-
trate purely on content-based recommendation since our collected
data is from a small community of users.

One method that have been used in content-based recommenda-
tion is Latent Dirichlet Allocation (LDA). LDA is a fully generative
probabilistic topic model. Probabilistic topic models play an impor-
tant rule in order to capture latent topical information from a large
collection of data [12]. The basic underlying idea of probabilistic
topic models is documents are mixtures of topics, where a topic is a
cluster of words that frequently occur together [17]. By using con-
textual clues, topic models connect words with similar meanings and
distinguish between uses of words with multiple meanings.

MALLET provides an option to use a previously generated infer-
ence file as an inference tool [10]. It uses LDA. Each document is
produced by selecting a distribution over topics, and then generating
each keyword at random from a topic chosen by using the selected
distribution. [21] implement different methods for topic inference,
such as Gibbs sampling and SparseLDA in the MALLET toolkit on
streaming two different sets of documents, 13 years of full papers
published in the NIPS conference and a set of journal article abstracts
from Pubmed. Other applications of MALLET are in analyzing a set
of personal emails [19] and a set of ratings collected on Amazon
Mechanical Turk [6].

Sampson [16] introduces ”preference-based” conference schedul-
ing (PBCS) problem. Instead of looking at the conference scheduling
problem as a classical scheduling problem, the problem is treated
from the customer point of view with the main objective is related
to a customer-satisfaction. Other works related to the conference
scheduling problem can be referred to [14, 18].

Bhardwaj et al. [3] introduce COBI as the most recent web-based,
visual scheduling interface in planning a large-scale conference.
COBI engages the community to play an active role in the planning
process. A process that collects input from attendees and considers
them as preferences and constraints in the planning process. To the
best of our knowledge, no existing work incorporates the optimiza-
tion mathematical model in the process of providing the recommen-
dation papers.

3 The Proposed Approach

The overall architecture of PRESS is depicted in Figure 1. PRESS
consists of four main components: Native android application (Front-
End), Back-end Engine, Optimization Engine and Text Analyzer.

In the following, we provide the formal definition and formulation
of the problem in the context of a large academic conference. We
further explain the MALLET implementation in Text Analyzer com-
ponent and two different proposed algorithms in the Optimization
Engine component.

3.1 Problem Formulation

A conference consists of a set of main sessions where each main
session is scheduled on one particular time period (e.g. from 09.00 -
10.00 am). In most large conferences, each main session is divided
into a set of parallel sessions. We assume that each parallel session
is scheduled in a particular room. Figure 2 shows an example of a
conference setting on a particular day.

Let P be a set of papers that will be presented during a conference.
Each parallel session consists of a number of talks. In order to gener-
ate a schedule that possibly contains talks across sessions, we divide
each time period into multiple number of time slots (e.g. every 15
minutes). Each time slot will have one talk and only one paper i ∈ P
would be presented in that time slot for that session. We also assume
that each paper will only be presented once throughout the confer-
ence. We implement MALLET to generate a set of topics T from
P . Each topic j ∈ T contains a set of keywords W 1

j that is likely
to appear together in topic j [17]. We assume that |W 1

j | = |W 1|
(∀j ∈ T ). See Figure 3 for an illustration.

Some methodological issues faced when using MALLET, such
as how to determine the values of |T | and |W 1|, affect the quality of
the outputs. At the moment, the best way to determine the values of
|T | and |W 1| is to run multiple analyses with different values of both
and comparing the results that seem to fit ”best” [2].

In summary, MALLET generates two different outputs (Figures
4 and 5) that would be kept in the database and used as inputs for the
optimization engine:

• M|T | × |W1| = [w1
jk], where wjk represents keyword k of topic j

(∀j ∈ T, k ∈ W 1
j ).

• U|P | × |T | = [uij ] where uij represents the utility score of paper i
related to topic j (∀i ∈ P, j ∈ T ).

Let W 2
i be the set of keywords stated on paper i ∈ P . As men-

tioned in Section 1, we consider both keywords generated by MAL-
LET and from papers directly and both would be kept in the database.

3.2 MALLET Implementation

The Text Analyzer component consists of two sub-components: the
PDFMINER tool and the MALLET topic model package. Take note
that both sub-components: PDFMiner and MALLET, are run off-
line and generated results would be kept in the database. PDFMiner
(https://pypi.python.org/pypi/pdfminer/) is a tool
for extracting information from PDF documents. This sub-
component is responsible for converting a collection of documents
(eg. pdf files) into text files and then tagging the part of speech of
words in these text files.

In most cases, information has no structure, some pre-
processing steps are required to convert unstructured informa-
tion and extract structured relevant information. The Illinois
Chunker (https://cogcomp.cs.illinois.edu/page/
software_view/Chunker) is used to identify the semantically
related words by assigning different tags. For example, in the
noun words ”reinforcement learning”, the word ”reinforcement”
is identified as the beginning word of a noun phrase and therefore
tagged with B-NP (begins a noun phrase), however, the following
word ”learning” is identified inside the same noun phrase as ”rein-
forcement” and therefore tagged with I-NP (inside a noun phrase).
Likewise, other types of phrases such as a verb phrase will be tagged
with B-VP (begins a verb phrase) and I-VP (inside a noun phrase),
respectively.
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Figure 1: System Architecture of PRESS

Figure 2: Example of conference setting

Figure 3: Example of talks in a particular time period

The second sub-component, the MALLET topic model package
[10], is used to extract a set of topics and the highest frequent words
for each topic from the text documents and output the statistics of
each extracted topic for each text document. MALLET allows us to
filter a standard list of English stop-words from documents before
processing. Unfortunately, we cannot edit the contents of this list
without modifying code and recompiling. In order to rule out some
trivial words, we create an extra-word file containing those trivial
words.

Figure 4 shows the screenshot of the MALLET output. There are
11 topics generated with 5 keywords for each topic. The topics that
compose each document including the statistics of each topic can be
seen in Figure 5. For example, PAPER 1 has topic 10 as its principal
topic, at about 82.1%; topic 15 at 25.8 % and so on. The topic model
also suggests a connection among documents that might not at first
have suspected. PAPERS 1, 2, 3 and 4 have topic 10 as their principal
topic.

3.3 Proposed Algorithms

Given a set of keywords K that the user is interested in and the results
of MALLET tools, we calculate the personalized utility score for
each talk and generate a list of recommended talks.

Figure 4: Screenshot of MALLET output

Figure 5: Screenshot of topic composition

Personalization Algorithm
We present the personalization algorithm for providing a list of

recommended talks, as shown in Algorithm 1. The objective is to
calculate ũij ,the modified utility score of paper i ∈ P related to
topic j ∈ T , with respect to the set of keywords K given by the
user. We compare the number of keywords |K| which are matched
with a set of keywords W 1

j of topic j, represented as Totj (∀j ∈ T ).
For each paper i, the utility score uij is multiplied by Totj in order
to get the value of ũij . Finally, we calculate the total personalized
utility score of paper i, TotUi =

∑
j∈T ũij (∀i ∈ P ) (LINES 1 -

18).
The next step is to compare K with the keywords from paper i,

W 2
i (∀i ∈ P ). If a match exists, the value of TotUi will added by

one for each matched keyword (LINES 19 - 27). For each user, all
papers would be sorted in descending order with respect to the values
of TotUi (LINES 28 - 29). The recommendation is given from the
top x% of papers. This is a naive way in order to provide a list of
recommended talks without considering possible conflicts.

The user will then select or remove some talks from the list. Those
selected talks would be in the ”must-go” and ”must-skipped” lists,
respectively. PRESS continues to call the recommendation algorithm
in order to provide the final schedule that maximizes the total person-
alized utility score and ensures there is no conflicts among talks.
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Algorithm 1 Personalization Algorithm

1: for h = 1 to |K| do
2: for j = 1 to |T | do
3: Totj = 0
4: for k = 1 to |W 1| do

5: if (hth keyword from the user is matched with kth

keyword of topic j) then
6: Totj+ = 1
7: end if
8: end for
9: end for

10: end for
11: for i = 1 to |P | do
12: for j = 1 to |T | do
13: ũij = Totj × uij

14: end for
15: end for
16: for i = 1 to |P | do
17: TotUi =

∑
j∈T ũij

18: end for
19: for h = 1 to |K| do
20: for i = 1 to |P | do

21: for k = 1 to |W 2| do

22: if (hth keyword from the user is matched with kth

keyword of paper i) then
23: TotUi+ = 1
24: end if
25: end for
26: end for
27: end for
28: Rank all papers based on TotU values in the descending order
29: return the top x% of papers

Recommendation Algorithm
In the recommendation algorithm, we introduce a mathematical

model to formulate the scheduling problem. The time slots of talks
are taken into consideration in this model. The mathematical pro-
gramming model is solved by the commercial solver CPLEX Opti-
mization Studio 12.6.1.

The scheduling problem is defined as follows. We define MUST
and SKIP as ”must-go” and ”must-skip” lists, respectively. Let as-
sume the conference is held within a set of days D. Each day d ∈ D
is divided into a set of time slots Sd. Each time slot s ∈ Sd on day
d ∈ D consists of a set of parallel sessions Nds. A talk would be
held in one parallel session at each time slot.

The decision variable Xdsn is a binary variable. Its value equals
to 1 if a talk in parallel session n on day d at time slot s is selected.

Maximize
∑

d∈D

∑

s∈Sd

∑

n∈Nds

ûdsn ×Xdsn (1)

The objective function (1) is to maximize the total personalized util-
ity score of selected talks. Let ûdsn is the utility score of the talk in
parallel session n ∈ Nds on day d ∈ D at time slot s ∈ Sd. The
utility scores are collected from TotUp (p ∈ P ) values with respect
to the time slot. For example, if paper p1 is presented on Day 1, time
slot 1 and parallel session 1, the value the talk û111 = TotUp1 .

∑

k∈Nds

Xdsn ≤ 1 ∀d ∈ D, s ∈ Sd (2)

Equation (2) ensures that at each time slot, only one talk is attended.

Xdsn = 1 ∀(d, s, n) ∈ MUST (3)

Equation (3) ensures that talks in the ”must-go” list, MUST , are
attended.

Xdsn = 0 ∀(d, s, n) ∈ SKIP (4)

Equation (4) enforces that talks are in the ”must-skip” list, SKIP ,
would not be attended since they are out of the user interest.

Xdsn ≤ M × ûdsn ∀d ∈ D, s ∈ Sd, n ∈ Nds (5)

Equation (5) guarantees that only talks with non-zero personalized
utility scores would be selected. Let M be a very large number.

4 Architecture and System Design

Figure 1 illustrates the various individual components and their in-
teractions. All communications among main components are imple-
mented by using RESTful web service published on one of Singapore
University Management servers, called ZETA server.

Android Application (Front-end Engine)
This is a client-facing android mobile app that allows a user to enter
preferred keywords, view recommended talks, select preferred talks
(indicated as ”must-go”), remove non-preferred talks (indicated as
”must-skip”) and view the final schedule. This component serves as
an interface for the user to construct the user profile. All information
provided by the user will be sent to the back-end engine.

Back-end Engine
This component is responsible for coordinating and delegating tasks
between the front-end and the optimization engines. The back-end
engine is also responsible for storing and retrieving all information
related to the conference in the database, including keywords from
papers and text analyzer outputs.

First, it collects the user-profile from the front-end engine and pass
it to the optimization engine. The optimization engine will call the
personalization algorithm in order to generate a list of recommended
talks. This list would be passed back to the front-end engine so the
user can indicate and select his preferred talks (”must-go”) and re-
move some non-preferred talks (must-skip”).

The back-end then consolidates ”must-go” and ”must-skip” lists
together with other information from database, such as conference
schedule, and passed to the optimization engine. The recommenda-
tion algorithm will be called in order to generate the final schedule.
At the end, the back-end engine pass back the final schedule to the
front-end engine an display it to the user.

Optimization Engine
The optimization engine consists of two algorithms: personaliza-
tion and recommendation algorithms. As described in Section 3, this
component interacts with the back-end engine in order to generate
the list of recommended papers and the final schedule.

5 Experimental Results

5.1 User Study Details

PRESS was first demonstrated during the International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS-15)
which was held from 4 - 8 May 2015 in Istanbul, Turkey. The
conference consists of 6 main sessions. Each main sessions is la-
beled by an alphabet which represents a particular time period, e.g.
main session B is held on Wednesday (6 May 2015) from 11.00 -
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12.30. Each main session is further divided into 5 different paral-
lel sessions, numbered from 1 - 5. Each talk is given a predeter-
mined time slot (e.g. 15 minutes). In total, there are 166 talks. Each
parallel session is related to one of particular research area/topic,
such as Game Theory, Applications and others. The detailed sched-
ule, including the information about the papers, can be found in
http://www.aamas2015.com/en/program.asp.

In order to verify the effectiveness of PRESS, a user survey
was conducted at AAMAS-15. We collected 45 respondents from
the AAMAS-15 participants. Each respondent was asked to spec-
ify his/her preference keywords together with the list of talks he/she
would be interested to attend. This collection of surveys serve as the
ground truth and would be used for analysis purpose.

5.2 System Components

We also tested the app in the 2015 WI-IAT International Conference.
Some feedbacks especially related to the client-facing android mo-
bile app (e.g. the design of a sign-up page, the layout and so on)
have been collected. We include some final screenshots for the An-
droid app. The opening screen requests the user either to sign in or to
register (Figure 6(a)). The registration is required for the first times
(Figure 6(b)). The user also needs to agree with the terms and condi-
tions of the app (Figure 6(c)). Figure 6(d) summarizes the profile of
the registered user.

Figure 7(a) shows the screen for the user to input the preferred key-
words. Once the arrow button on the right top corner is clicked, the
list of recommended talks which are generated by the personalization
algorithm (Algorithm 1) would be displayed. The user then select and
remove some talks. Those would be treated as ”must-go”and ”must-
skip” lists, as shown in Figure 7(b). The details of one particular talk
can also be displayed (Figure 7(c)). All those information would be
sent back to the back-end engine and the recommendation algorithm
would be called. Finally, the final schedule for each day would be
displayed, as seen in Figure 7(d).

5.3 Insights

After demonstrating PRESS and conducting a survey at the
AAMAS-15, we analyze the goodness of PRESS in recommending
the list of talks. Out of 14 research areas, the top three most selected
areas are Application, Game Theory and Learning which cover up
to 42%. Due to a short time taken for each survey, we assume that a
user will not be able to exhaustively select all preferred talks. Hence,
based on a set of selected talks, we include an additional set of se-
lected talks which have high correlation values with those talks. All
those talks are considered as the talks selected by a user as well. The
higher the correlation value is, the more similar two papers are in
terms of topics including keywords generated. The correlation be-
tween two talks is calculated using the Cosine Coefficient formula:

cos(i, i′) =
∑

j∈T uijui′j√∑
j∈T u2

ij

√∑
j∈T u2

i′j

∀(i, i′) ∈ P (6)

We evaluate the performance of PRESS by comparing three sta-
tistical measures: accuracy, precision and recall rates. The accuracy
is the proportion of true results (true positives and true negatives)
among the total number of cases examined. Precision (positive pre-
dictive value) is the fraction of retrieved cases that are relevant, while
recall (sensitivity) is the fraction of relevant cases that are retrieved.
Precision can be seen as a measure of quality, whereas recall is a
measure of quantity.

By setting the numbers of user-selected papers from the ground
truth and recommended papers generated by PRESS to a cut-off of
top 10% × 166 talks which equals to 16 talks with the highest total
personalized utility scores and a cut-off correlation value (e.g. 0.75),
our experimental results show that the accuracy, precision and recall
rates of PRESS are 92.02%, 58.61% and 58.61%, respectively. Other
results with different cut-off correlation values can also be seen in
Table 1.

We conclude that the higher the cut-off correlation value, the lower
the values of measures are. It is intuitive correct since the selected
talks by the user during the survey would be fewer. If we do not in-
clude talks with high correlation values, the three measures are much
lower since the users are not aware with similar talks.

Table 1: Statistical measures

Correlation value Measure
Accuracy Precision Recall

0.75 92.02% 58.61% 58.61%
0.80 91.73% 57.08% 57.08%
0.85 91.62% 56.53% 56.53%
0.90 91.57% 56.25% 56.25%
0.95 90.87% 52.64% 52.64%

6 Conclusion

We introduce a personalized event scheduling recommender system,
PRESS. PRESS is an android mobile app that gathers personalized
information from a user and recommends talks. Although there is a
bunch of recommender systems in different domains, so far as we
are concerned that PRESS is the first android app that incorporates
an optimization model for generating a feasible schedule.

We demonstrated PRESS at AAMAS-15 in Istanbul, Turkey. The
generated predictions by PRESS is compared against the ground
truth. We observe that PRESS achieves reasonable accuracy, preci-
sion and recall rates. Some feedbacks have also been collected dur-
ing the 2015 WI-IAT conference. We have also deployed the android
and web-based versions of PRESS during AAMAS-16 (Singapore).
Positive responses have been given by around 140 users.

The current version of PRESS uses the direct keyword matching
among keywords generated by MALLET and provided by the user.
We will consider more advanced techniques which allow going be-
yond the direct keyword matching. We also consider other possible
scenarios. Some talks may be scheduled in more than one timeslot so
the attendee has to decide which timeslot should be attended. This is
related to the capacity constraint of rooms which is currently negligi-
ble. Other combinations of precision/recall (e.g. product of criteria or
using a varying linear coefficient) will also be included for our future
work.
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