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Abstract. In the past, research on learning language models mainly
used syntactic information during the learning process but in recent
years, researchers began to also use semantic information. This pa-
per presents such an approach where the input of our learning al-
gorithm is a dataset of pairs made up of sentences and the contexts
in which they are produced. The system we present is based on in-
ductive logic programming techniques that aim to learn a mapping
between n-grams and a semantic representation of their associated
meaning. Experiments have shown that we can learn such a mapping
that made it possible later to generate relevant descriptions of images
or learn the meaning of words without any linguistic resource.

1 INTRODUCTION

Learning language models has been a research challenge for many
years now. Grammatical Inference [7] has focused on that topic for
more than 50 years. One of the main objectives of that research do-
main is to discover a grammar (or an associated automaton) that is
a model of a set of positive (and sometimes negative) examples of
sequences of words over an alphabet. Nevertheless, the learning pro-
cess mainly aims to learn a syntactic structure without the help of
any additional semantic information.

Since the early 2000s, methods for grounded language learning
and semantic parser construction have been proposed [3, 4, 10, 11,
12]. These learn from pairs (S,M), where S is a sentence and M a
meaning, a function that maps (parts of) S onto (parts of) M. In this
setting, the training set must explicitly contain in M the meaning of
(each part of) S; the learning cannot construct meanings by combin-
ing elements of M.

To overcome this problem some work has tried to directly learn
from pairs (S,C) where S is a sentence and C is a representation of
the context in which S is produced. [1] has been a first attempt to
implement such an approach. Then, more recently, we presented in
[2] a more efficient approach where a context is represented in first
order logic and Inductive Logic Programming techniques are used
to learn a mapping between n-grams (sequences of words) and their
associated meanings. The main improvement with respect to previ-
ous approaches in grounded language learning is that the meanings
are not provided in the training set, our learning algorithm is able to
discover it by itself.

The system we present in this paper aims to improve [2] that was
a proof of concept and we now want to study how such a model can
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deal with more realistic contexts, in noisy environments, and to ob-
serve various linguistic knowledge that can be discovered by such an
approach. To make our system more realistic we decided to provide
contexts in the form of images. That makes the construction of the
dataset easier as the users do not have to manually provide the con-
texts which would otherwise be a laborious task. Thus our system
learns from pairs (S,I) where S is a sentence that talks about a part of
an image I.

In that way our system can be related to some deep learning ap-
proaches to the image captioning task as presented for example in
[5, 6, 8, 9, 15] where their training sets are similar to ours as they are
made up of pairs (sentence,image). Nevertheless, these approaches
aims to learn a function that can map basic image features to ordered
sequences of words. At the moment these approaches do not learn
any meaning representation from the training set and it is not possible
to use the learned model to do any kind of inference or reasoning. In
our approach we use information about the objects of the image and
build a first order logic representation of the meaning of n-grams.
Thus we are able later to do some inference on that representation
and it would be even possible to add a reasoning component.

We may also notice the work from Mateos Ortiz et al. [13] that
uses some Machine Translation techniques to generate image de-
scription. In fact their model differs from ours in the sense that they
need to build a parallel corpus (sentence,image) where each sentence
has to be pre-processed by a Part-Of-Speech tagger. The main con-
cern with such an approach is that linguistic resources are needed
and we want to design an approach that does not need any linguistic
resource, we want the learner to discover by itself the resources it
needs.

2 OUR SYSTEM

As explained in section 1, the input of our system is a dataset made
up of pairs (S,I) where S is a sentence related to a particular image
I. As we use, in our experiments, the Abstract Scene Dataset pro-
vided by Zitnick et al. [16], we do not have to face computer vision
problems such as object detection, semantic labelling, etc. which are
known to be very hard problems. This dataset provides for each im-
age, the set of all of its objects with some associated features. Thus,
after a basic pre-preocessing step, each image I is transformed into
a scene Sc. For representing scenes, we use a first-order logic based
representation. Thus scenes are made up of a set of ground atoms.
These atoms describe properties of, and relationships between, the
objects of I. Thus, the input of the learner is a dataset made up of
pairs (S,Sc) where S is a sentence related to a particular scene Sc.

The core algorithm of our system mainly aims to compute the
meanings associated with all the n-grams of all the sentences of the
whole dataset. We consider the meaning of an n-gram is whatever is
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in common among all the situations in which it can be used. Thus, the
meaning of an n-gram is a context that may be present or absent in
a given scene. In our model, the learner constructs some generalized
context represented by a set of atoms that may contain variables.

To compute the most specific generalization of a set of contexts
{C1, . . . , Cn} associated with a particular n-gram, we use the well
known Plotkin’s “least general generalization” (lgg) operator [14]
usually used on first order clauses. Applied to contexts, the lgg has a
simple mathematical description: given two contexts (set of atoms), it
returns the least general context that subsumes both contexts. A con-
text C1 subsumes a context C2 if and only if there exists a variable
substitution that turns C1 into a subset of C2; C1 is then also said to
be more general than C2. In fact, the lgg of two contexts returns all
the properties that they have in common.

Nevertheless we can face a problem when, in a pair (S,Sc), there
is an object that is referred in S but whose corresponding atom is not
present in Sc. For example if the word “red” means red, then using
it in a sentence associated with a context without red objects will
cause the system to conclude that the color red is not common to all
the contexts where “red” occurs, and therefore “red” cannot mean the
color red. This leads to overgeneralization of meanings. To overcome
this important problem the first improvement with respect to [2] has
been the use of some heuristics. Instead of stating that the meaning of
an n-gram G has to be common to all the scenes where this n-gram
is used, without any exception, the algorithm repeatedly generalizes
the meaning of G by computing its lgg with another randomly chosen
scene until at least a certain percentage of the scenes are subsumed
by that meaning.

A second improvement with respect to [2] is the way our sys-
tem can learn the meaning of words without any linguistic resource.
Indeed, in [2], a word was chosen to refer to a constant if and only
if that constant was the only one remaining in the word’s meaning,
which was a basic strategy. Now, when the meaning of a word (a 1-
gram) is updated, our program looks at the constants that occur in
this meaning. Among these, it finds the constant whose occurrence
“correlates” best with that of the word. If the “correlation” is high
enough, this constant is then chosen to be the constant the word refers
to.

Finally, the third improvement with respect to [2] concerns the
way our system can generate all the relevant sentences associated
with a given scene. To avoid generating trivial sentences that are
true for most or all scenes and therefore not interesting, we defined a
scoring function for sentences that takes into account the specificity
of the n-grams that are chained together to form those sentences.

We made a series of experiments based on the Abstract Scenes
Dataset, proposed by Zitnick et al. [16] that contains images of chil-
dren playing outdoors and sentences that describe these images. The
objective was to study the ability of our model to: (i) generate rele-
vant sentences for a given scene and (ii) learn the meaning of words.
In these experiments, we used a model learned from a corpus of
10.000 examples (in English). We first asked the system to gener-
ate all the sentences that were relevant for a given set of scenes. The
sentences were obtained by chaining 5-grams. Choosing appropriate
parameters to tune the core algorithm, we observed that, on average,
80% of the sentences generated were syntactically and semantically
correct. Furthermore, as mention in the previous section, the sen-
tences generated by our system try to be as specific as possible, that
is, they do not state things that are true for almost all the scenes (and
consequently, not interesting, such as “the sky is blue” or “the grass
is green”).

Concerning the meaning of words, by fine-tuning the correlation
parameters of the system, we observed some improvements in terms
of precision from 40% to 85% and in terms of recall from 8% to 25%
with respect to [2].

3 CONCLUSION

In this paper we presented a grounded language learning system
based on ILP techniques that can learn from datasets made up of
pairs (S,C) where C is a set of ground atoms that represent the (par-
tial) state of the world that is (partially) described by the sentence S.
Our algorithm learns mappings between n-grams and most specific
generalizations of the contexts common to the given n-grams in the
dataset. We have shown that our system is able to learn the meaning
of words without any linguistic resource. Having learned a language
model from such a dataset, our system is able to use this model to
generate relevant sentences that can describe some new scenes.
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