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Abstract. The capability of determining the right sequence of phys-
ical actions to achieve a given task is essential for AI that interacts
with the physical world. The great difficulty in developing this capa-
bility has two main causes: (1) the world is continuous and therefore
the action space is infinite, (2) due to noisy perception, we do not
know the exact physical properties of our environment and therefore
cannot precisely simulate the consequences of a physical action.

In this paper we define a realistic physical action selection prob-
lem that has many features common to these kind of problems, the
minigolf hole-in-one problem: given a two-dimensional minigolf-
like obstacle course, a ball and a hole, determine a single shot that
hits the ball into the hole. We assume gravity as well as noisy per-
ception of the environment. We present a method that solves this
problem similar to how humans are approaching these problems, by
using qualitative reasoning and mental simulation, combined with
sampling of actions in the real environment and adjusting the inter-
nal knowledge based on observing the actual outcome of sampled
actions. We evaluate our method using difficult minigolf levels that
require the ball to bounce at several objects in order to hit the hole
and compare with existing methods.

1 INTRODUCTION

One of the grand visions of Artificial Intelligence is to build robots
with similar everyday capabilities as humans, who can live among us
and assist us with many of our daily tasks. To progress towards more
capable and more human-like robots, we need to develop methods
and technology that allow robots to successfully interact with their
environment. When we humans are faced with a “physical action
selection problem”, i.e., a problem that requires selecting a physical
action that achieves the desired goal, we are very good at coming
up with a qualitative solution and with a qualitative prediction of the
consequences of an action. We have selected one particular physical
action selection problem that is an actual real-world problem and that
covers many common aspects of physical action selection problems.
We call our problem the “Hole-in-One” problem in reference to the
problem in mini golf of identifying and executing a shot that sinks the
ball with this single shot. Variants of the hole-in-one problem occur
frequently, not just in mini golf, in Pachinko, in pool billiard, curling
or in a multitude of physics-based video games such as Angry Birds,
but also in many everyday situations.

What these problems have in common is that the selected action
can be one of infinitely many possible force vectors. Once a force
vector is given and the physical properties of all objects and the en-
vironment are exactly known, it is possible to compute the exact tra-
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jectory of the ball and to see if that force vector solves the problem.
However, we have to identify a force vector out of infinitely many
possibilities that solves the problem. While a geometrical or analyt-
ical solution of these problems is typically not possible if the obsta-
cle course is non-trivial, humans are very successful in solving these
kind of problems. These problems become even harder to solve when
we do not know the exact physical setting. We often only know what
we can see and our perception is thus the limiting factor in what we
know about the physical setting. Because of the uncertainty about the
physical environment, potential solutions to the problem need to be
executed in the actual environment before we can be sure that it is a
solution. If it is no solution, we need to find ways of adjusting it so
that it will eventually lead to a solution.

There are two key research streams in reasoning about physical
systems, namely qualitative physical reasoning [2] and simulation-
based reasoning [1]. The main advantage of qualitative reasoning is
that it can rapidly draw useful conclusions from incomplete informa-
tion [3]. [5] proposed a framework for reasoning about the motion
of a 2D ball by qualitative simulation. While most of the previous
work focuses on representing physical systems and describing (or
predicting) consequences of actions, our method is solving a consid-
erably harder problem as it has to find applicable actions from the
infinite action space. In robotics, there has been extensive research
on motion planning [8] or manipulation planning [4]. [9] developed
a framework aiming at combining learning and planing and employ-
ing qualitative reasoning and linear temporal logic. There has been
some work [7] on teaching robots to play mini golf.

In this paper we propose a solution to this problem: by a combina-
tion of qualitative reasoning and mental simulation as well as through
a repeated process of limited sampling in the actual environment, ob-
servation of the consequences and adjusting our mental simulation.
Using our proposed method, we are able to solve even very compli-
cated instances of the hole-in-one problem. An extended version of
this paper is available [6].

2 MODELING AND SOLVING HOLE-IN-ONE

We choose the following idealisation of the physical environment,
which is often used in physics puzzle games: 1. The environment is a
restricted 2D plane. 2. Objects are 2D rigid bodies with polygonal or
circular shape. 3. There is a uniform downward gravitational force.
4. Object movements and interactions obey Newtonian physics. 5.
Physics parameters of objects and the environment remain constant.
We call this environment PHYS2D. An instance of PHYS2D is a
tuple 〈E,O,P,T〉, where E is the restricted plane where the objects
are located, O a finite set of static rigid objects O, each of which
has a shape, a location, an angle and a type, P is a set of physics
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Figure 1: (a) Illustration of the problem domain in this paper. The
green region is the target location H and the solid red circle is the ball
B. An identified solution is shown. (b) Triangulation of the scenario

parameters that hold in the environment, such as gravity, and T is
a set of object types and their respective physics properties such as
mass and friction, or whether the object can move after being hit
or remains static. We assume that all objects are initially static and
stable under gravity. A physical action can be applied to an object O
by exerting an impulse at a certain position p of the exterior boundary
of O. An impulse is defined as a pair (θ, μ) where θ ∈ [0, 2π) is the
direction and μ ∈ [0, μmax] the magnitude of the impact. μmax is the
maximal magnitude allowed in the environment, both θ and μ are
continuous. In this paper we assume there is only one start object
and one goal region. We call this physical action selection problem
the Hole-in-One problem.

Definition 1. (Hole-in-One) Instance: An instance of Hole-in-
One (see Fig. 1a for an example) is a tuple 〈E,O,P,T, B,H〉,
where we use a scenario of PHYS2D and determine a ball B ∈ O
as the start object and H as the target hole, a polygon in E with a
given location. Solution: A solution is a physical action applied to
an object B such that B is delivered to the hole H as a consequence
of the putt. To simplify the problem, we fix p to be the centroid of B.

The Hole-in-One problem distinguishes itself from common AI
planning problems in that its search space is infinite and in particular
the action space is continuous: Infinitely many different actions can
allow an object to take infinitely many different paths. We propose
the following method to solve this problem:

• As input scenario, we take the information about the physical en-
vironment that we obtained through potentially noisy perception.

• We first partition the free space of the given scenario into finitely
many triangular zones (Fig. 1b).

• We defined qualitative rules that describe the physics that gov-
ern the transition of moving objects between the triangular zones.
We use these rules to generate sequences of qualitative transitions
between zones that coincide with potential real paths a moving
object can take to achieve the goal. We call such a sequence a
qualitative path.

• Once all qualitative paths are determined, we rank them by their
likelihood of being realized, before we try to realize them.

• We now use a physics simulator that approximates the environ-
ment based on our input scenario to search for physical actions
that realize the qualitative paths in their ranked order, i.e., actions
that allow objects to follow the qualitative paths.

• The solutions we obtain here are not necessarily solutions in the
real environment. Therefore, whenever we obtain a solution in our
simulator, we immediately apply the solution to the real environ-

ment and see if it works. If it does not lead to a real solution, we
adjust the object information in our simulator before we continue
with the previous step. we will not adjust the triangulation or the
qualitative paths when we adjust objects in our simulator.

3 EVALUATION

We evaluated our method in a virtual environment simulated by
the Box2D (www.box2d.org) physics engine. The method also uses
Box2D for its internal simulation with an incomplete knowledge of
the environment. We perturb the visual input to the internal simula-
tion by rotating each object at an angle sampled from a zero mean
Gaussian. We created 72 mini-golf scenarios. The scenario designs
are inspired by the game levels of a popular video game of mini-golf
3. We compare our method with a solver (SG) which uses a goal-
oriented sampling strategy. The sampling strategy of SG is similar
to the one used in [9] that adjusts actions according to the distance
between the final position of the ball and the target destination. Our
method outperforms SG in all the scenarios. SG is less efficient be-
cause there could be many local optima in a problem. By contrast,
our method can detect more different types of solutions (if there are
any), which helps to avoid these local optima. Qualitative reasoning
and triangulation can be achieved efficiently; it takes on average 4
seconds to generate qualitative paths based on a triangulation with
around 60 zones. As the noise level increases, our method can still
detect and realize qualitative paths that lead to the goal. Such quali-
tative paths have similar bounce sequences as their counterparts de-
rived from perfect triangulation. Further details can be found in [6].

4 CONCLUSION

We studied a realistic problem that contains some of the essential
components AI needs to successfully interact with the real world: be-
ing able to predict the consequences of physical actions and to select
a physical action out of an infinite number of actions that achieves a
specified goal. The proposed method involves a combination of qual-
itative reasoning and internal simulation together with testing pro-
posed actions in the real environment and, if necessary, adjusting our
internal knowledge based on the new observations.
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