
Mixed Strategy Extraction from UCT Tree in Security
Games

Jan Karwowski1 and Jacek Mańdziuk1 2

Abstract. In this paper a simulation-based approach to finding op-
timal defender strategy in multi-act Security Games (SG) played on
a graph is proposed. The method employs the Upper Confidence
Bounds applied to Trees (UCT) algorithm which relies on massive
simulations of possible game scenarios. Three different variants of
the algorithm are presented and compared with each other as well
as against the Mixed Integer Linear Program (MILP) exact solution
in terms of computational efficiency and memory requirements. Ex-
perimental evaluation shows that the method has a few times lower
memory demands and is faster than MILP approach in majority of
test cases while preserving quality of the resulting mixed strategies.

1 INTRODUCTION

This paper describes simulation based approach to SG which can
be used to find reasonably good strategies in SG with many rounds.
Contrary to currently used methods which require a game to be rep-
resented in normal form or extensive form used in game theory, our
method uses games represented by a set of game rules defining states,
moves and results. This way we avoid memory demanding explicit
payoff representations (typically used in SG) which assign a partic-
ular payoff for each possible move sequence and quickly become
intractable as the number of possible move sequences grows expo-
nentially with the number of rounds.

1.1 Security Games

SG is a field of science which applies mathematical models to pa-
trolling schemes and other security operations in order to find opti-
mal strategies for security forces against adversaries [3, 10, 7]. Pos-
sible applications include homeland security, fighting crime, or se-
curing industrial objects. Usually SG are played by two sides: the
defender (representing security forces) and the attacker (representing
terrorists, criminals, etc.). The game is of imperfect information and
players make their moves simultaneously. Instead of searching for
the best move in a single game, the goal is to find a strategy (proba-
bility distribution of moves to play) for the defender that will maxi-
mize the expected reward. Almost all SG use Stackelberg Game [6]
to model the game and are often referred as Stackelberg Security
Games (SSG). Players in Stackelberg Game are asymmetric. One of
them is called a Leader (the defender in SG) and the other one is a
Follower (the attacker in SG). Asymmetry is introduced by the fact
that the Follower knows the Leader’s strategy before committing to

1 Faculty of Mathematics and Information Science, Warsaw Uni-
versity of Technology, Warsaw, Poland, email {jan.karwowski,
j.mandziuk}@mini.pw.edu.pl

2 School of Computer Science and Engineering, Nanyang Technological Uni-
versity, Singapore

their strategy. Such asymmetry models real-life cases in which the at-
tacking side can observe the defending side sufficiently long to learn
their strategy (probability distribution of actions).

Strong Stackelberg Equilibrium [6], which is the optimal solution
for a defender can be expressed as a solution to bi-level optimization
problem. The state-of-the-art solutions for SG transform this problem
to a form suitable for popular Mathematical Programming solvers
and use them to compute the strategy.

1.2 Upper Confidence Bounds applied to Trees

UCT method [5] is a variant of Monte Carlo Tree Search (MCTS)
method used for searching for a single best move in perfect-
information game tree [9, 8]. UCT uses large number of game simu-
lations to estimate reward value for each move. Internally UCT keeps
a tree consisting of game states (nodes) and actions or moves (edges).
Each edge is labeled with two values: Q(s, a) – current estimate of
action a played in state s, and N(s, a) – number of times the ac-
tion was hitherto simulated. During simulations the method chooses
actions based on the following formula:

a∗ = argmax
a∈A

{
Q(s, a) + C

√
(lnN(s))/N(s, a)

}
, (1)

where N(s) =
∑

a N(s, a) and C is the method’s parameter. For-
mula (1), often called UCB1 [2], maintains a balance between ex-
ploitation of currently good estimated moves and exploration of
rarely visited ones. After the simulation phase a move with the best
Q estimation is chosen to be played.

2 Mixed-UCT METHOD

While UCT can be used for finding the best single move in perfect
information game, the Mixed-UCT method, proposed in this paper,

Initialize attacker
and empty UCT tree

Perform I2-
UCT training

Stop conditions?

Return best strategy across
all iterations

Gather information
from current UCT tree

Build de-
fender strategy

Provide new UCT tree

(1)

(2)

(3)

Update at-
tacker strategy

Yes No

Figure 1. Outline of proposed Mixed-UCT method. Dotted line
encompasses a generic procedure for the defender’s strategy definition,

which is the heart of the method.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1746

1746



is a UCT-based approach to finding the best mixed strategy for the
defender in SSG. It relies on a UCT modification, referred to as I2-
UCT, applicable to the task of finding the best move in imperfect-
information games [4]. Basically I2-UCT extends vanilla UCT by
adding a method of sampling (estimating) the current node (position)
in imperfect information games before the actual UCT simulations
take place (see [4] for details).

The proposed Mixed-UCT method iteratively applies I2-UCT pro-
cedure in order to find the best mixed strategy in SSG. The outline
of the method is presented in Figure 1. For the sake of space limits
we will solely concentrate on the most interesting part of the method,
i.e. transformation of the data gathered by I2-UCT (intended to find
a single best move) into coherent mixed strategy. Three variants of
such a transformation are proposed. Each of them consists of three
procedures denoted by (1), (2) and (3) in the figure.

Single tree variant uses UCT statistics gathered in a single (com-
mon) tree during training against many attacker strategies. (1) simply
stores the UCT tree obtained from the recently completed training.
(2) works as follows: in the stored UCT tree each path from the ini-
tial state (tree root node) to a terminal state (a leaf node) is assigned a
weight being a product of visit counters of all edges (moves) on this
path. Each such path represents a sequence of moves in the game –
i.e. a pure strategy. The resulting mixed strategy is a probability dis-
tribution of these pure strategies, where probability of each sequence
(pure strategy) is proportional to its weight – the weights are normal-
ized to sum up to 1. (3) provides the tree stored by (1).

Best path variant collects best move sequences, one per each at-
tacker it played against. (1) finds the best path from the root to a leaf
in the trained tree according to Q estimates and stores a move se-
quence (pure strategy) extracted from this path. (2) returns probabil-
ity distribution of these collected move sequences with probabilities
proportional to number of their occurrences in these stored paths. (3)

provides an empty tree for each I2-UCT training.
In Tree slice variant (1) prunes a tree by removing all paths from

a given node that have Q estimate lower than 50% of the best Q
value assigned to this node. Such pruned tree is stored and called a
tree slice. (2) is a two-step procedure. First all stored tree slices are
joined into one tree by summing visit counters in respective vertices,
then a procedure from Single tree variant is applied to this joint tree.
(3) provides an empty tree for each subsequent training.

Single tree Tree slice Best seq. Uniform Optimal
game t [s] sc t [s] sc t [s] sc R R t [s]
1 2382 1 1559 0.96 1344 0.99 -10.46 0.54 28327
2 2614 1 2117 0.99 1587 1 -7.21 0.08 110
3 3188 1 7643 0.99 2486 0.97 -13.97 -4.27 17394
4 2115 1 3191 1 1379 1 -13.97 -4.5 18734
5 2325 1 3359 1 2484 1 -0.87 2.58 283
6 2058 1 3183 1 2151 1 -9.29 -1.06 18579
7 2241 1 4062 1 2897 1 -4.61 0.9 4695
8 1973 1 2364 1 1579 1 -13.91 -4.87 5823
9 2058 1 2007 1 1261 1 -13.84 -6 5915
10 1393 1 1448 0.99 1585 0.99 -0.81 0.79 5519
11 2579 1 2416 1 2093 1 -9.23 -2.85 5928
12 1713 1 2686 1 1775 1 -4.55 0.17 5149

Table 1. Defender’s scores and computation times (t) of presented variants
of Mixed-UCT in 12 test games (each averaged over 10 trials) compared

with optimal solver-based strategy and the result of uniformly playing
defender. Score (sc) represents the relative payoff assessment, which is

placed on a scale from 0 (Uniform player) to 1 (Optimal player).

3 EXPERIMENTAL RESULTS

Each of the three variants of the method was tested against a bench-
mark set of 12 patrolling games defined on a graph. In each round
both players were moving their units to adjacent vertices or let them
remain in the current node. The goal of the attacker was to reach par-
ticular target node, while the defender’s task was to catch the attacker
(on the way or in the target) by being in the same vertex as them.
Each game was played on a different graph with various reward and
penalty distributions in the vertices.

Table 1 presents the average results of 10 game repetitions in each
of the 12 test games, compared to the state-of-the-art method (MILP
solutions calculated with SCIP [1]) and to a simple attacker that uses
uniform strategy. Memory usage was comparable across all test cases
and equal to about 5GB in MILP and about 1.2 in Mixed-UCT.

The results show that quality of Mixed-UCT solutions is close
to optimal in all variants. Computational times of Mixed-UCT are
shorter than those of the solver and vary between variants. Tree slice

tends to be the slowest and Best path the fastest, in most of the cases.

4 CONCLUSIONS

This work introduces Mixed-UCT method and presents its initial ex-
perimental evaluation in SG domain. The results indicate general
suitability of UCT-based methods to finding optimal strategies in SG.
The proposed method, due to more compact (rule-based) game rep-
resentation requires significantly less memory than MILP, which is
currently the state-of-the-art approach. The proposed method is also
faster than MILP solver. The results show that Tree slice version is
inferior to the two other variants both in time and results quality,
but at the same time, are inconclusive about superiority among the
two other variants. Promising initial results lay foundations for fur-
ther development of the method, in particular its evaluation on larger
game graphs and games with multiple units on each playing side.

REFERENCES

[1] Tobias Achterberg, ‘SCIP: Solving constraint integer programs’, Math-
ematical Programming Computation, 1(1), 1–41, (July 2009).

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer, ‘Finite-time analy-
sis of the multiarmed bandit problem’, Machine learning, 47(2-3), 235–
256, (2002).

[3] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld, Shyam-
sunder Rathi, Milind Tambe, and Fernando Ordóñez, ‘Software assis-
tants for randomized patrol planning for the lax airport police and the
federal air marshal service’, Interfaces, 40(4), 267–290, (2010).

[4] Jan Karwowski and Jacek Mańdziuk, ‘A new approach to security
games’, in International Conference on Artificial Intelligence and Soft
Computing, volume 9120 of LNAI, 402–411, Springer-Verlag, (2015).

[5] Levente Kocsis and Csaba Szepesvári, ‘Bandit based monte-carlo plan-
ning’, in Machine Learning: ECML 2006, 282–293, Springer, (2006).

[6] George Leitmann, ‘On generalized stackelberg strategies’, Journal of
Optimization Theory and Applications, 26(4), 637–643, (1978).

[7] Eric Shieh, Bo An, Rong Yang, Milind Tambe, Craig Baldwin, Joseph
DiRenzo, Ben Maule, and Garrett Meyer, ‘PROTECT: A deployed
game theoretic system to protect the ports of the United States’, in Pro-
ceedings of the 11th International Conference on Autonomous Agents
and Multiagent Systems-Volume 1, pp. 13–20, (2012).

[8] Maciej Świechowski and Jacek Mańdziuk, ‘Self-adaptation of playing
strategies in General Game Playing’, Computational Intelligence and
AI in Games, IEEE Transactions on, 6(4), 367–381, (2014).

[9] Karol Waledzik and Jacek Mańdziuk, ‘An automatically-generated
evaluation function in General Game Playing’, Computational Intelli-
gence and AI in Games, IEEE Transactions on, 6(3), 258–270, (2014).

[10] Yue Yin, Bo An, and Manish Jain, ‘Game-theoretic resource allocation
for protecting large public events’, in Proceedings of the 28th AAAI
Conference on Artificial Intelligence (AAAI14), pp. 826–834, (2014).

J. Karwowski and J. Mańdziuk / Mixed Strategy Extraction from UCT Tree in Security Games 1747


