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1 Introduction
Argument dialogues provide a principled way of structuring rational
interactions between participants (be they human or machine), each
arguing over the validity of certain claims, with each agent aiming
for an outcome that achieves their dialogue goal (e.g., to persuade
the other participant to accept their point of view [8], or to reach
agreement on an action to perform [2]). Achievement of an agent’s
dialogue goal typically depends on both the arguments that the agent
chooses to make during the dialogue, determined by its strategy, and
the arguments asserted by its interlocutor. The strategising agent—
the proponent—thus has the difficult problem of having to consider
not only which arguments to assert but also the possible responses of
its opponent. This problem is compounded since the opponent may
exploit knowledge inferred from those arguments asserted by the pro-
ponent to construct new arguments. Hence, the proponent must take
care not to divulge information that is advantageous to its opponent.

The important challenge of how to generate strategies for such
a proponent has not been widely explored [10]. Notable exceptions
are the work of Hadoux et al. [7], which employs mixed observabil-
ity Markov decision processes to generate optimal policies for the
proponent to follow; the work of Rienstra et al. [9], which applies a
variant of the minimax algorithm to determine an effective proponent
strategy; and the work of Black et al. [3], which employs heuristic
planning techniques to determine an optimal proponent strategy for
a simple asymmetric persuasion setting.

We highlight two types of uncertainty in the strategic argumen-
tation problem: uncertainty over the arguments initially know to the
opponent, captured by the opponent model, and uncertainty over how
the opponent chooses to argue, given their initial knowledge base.
Both [9] and [3] deal with uncertain models of the opponents initial
knowledge base, where the opponent’s strategy is known (i.e., opti-
mal [9] or deterministic [3]); while [7] considers the case in which
we are certain of the arguments known to the opponent but have only
a stochastic model of how they will behave.

The key novelties in our approach are that we deal with both of
these types of uncertainty simultaneously the former through use of
an uncertain opponent model and the latter by generating conformant
strategies, that is strategies that are effective regardless of the oppo-
nent strategy. Further, our work is the first to generate strategies in a
setting where the opponent may exploit information obtained during
the dialogue to construct arguments unknown to it at the start of the
dialogue, necessitating more cautious strategies.

2 Strategic Argumentation Problem
We consider a strategic argumentation setting in which both agents
exchange arguments, with the proponent aiming to convince its oppo-
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nent of some topic argument. Our problem comprises the following:

• An argumentation framework (A,→), comprising a set of argu-
ments A and a binary attack relation → ⊆ (A×A),

• The function Acc : 2A → 2A describes the set of acceptable ar-
guments Acc(B), for each subset B ⊆ A, subject to some agreed
semantics (see [5], for details).

• A proponent model KP ⊆ A, comprising a set of arguments avail-
able to the proponent.

• An uncertain opponent model (E ,KO, p), comprising a finite set
of labels E = {O1, . . . ,Om}, a function KO : E → 2A as-
sociating each label Oi ∈ E with a possible opponent model
Ki
O ⊆ A, and a probability distribution p : E → Q, assigning to

each Oi ∈ E the likelihood that the opponent initially knows Ki
O .

• A closure operator μ : 2A → 2A provides a description of how
each agent may derive new arguments from knowledge acquired
during the dialogue. i.e.. μ(B) ⊆ A is the set of all arguments that
can be derived by B ⊆ A.

A dialogue is a sequence of moves D = [M0,M1 . . . ,Mn] in
which each move Mk ⊆ A is a finite set of arguments. A dialogue
terminates when Mk−1 ∪ Mk = ∅, and is successful for the propo-
nent w.r.t. a given topic t ∈ A, if t ∈ Acc(M0 ∪ · · · ∪Mn).

A (general) strategy for Ag ∈ {P,O} is a function σAg : 2A →
2A such that σ(B) ⊆ μ(KAg ∪ B), for all B ⊆ A, that determines
which move Ag should make, given the arguments asserted thus far.
A simple strategy is a special case of strategy specified by a sequence
of moves S = [S0, . . . , Sn], with Sk ⊆ KP , representing sets of
arguments to be asserted in turn by the proponent, unless the oppo-
nent accepts the topic, or the sequence is exhausted, in which case
we assert ∅. A pair of strategies (σP , σO) generates the dialogue
D(σP ,σO) = [M0, . . . ,Mn] given by Mk = σAg(M0∪· · ·∪Mk−1),
where Ag = P whenever k is even and Ag = O whenever k is odd.

A strategy σP is effective against Oi ∈ E if D(σP ,σO) is success-
ful, for every possible opponent strategy σO for Oi.

3 Persuasion Dialogues as Planning Problems
We provide a translation of a strategic argumentation problem into a
propositional planning problem with (bounded) numerical variables,
such that a solution to the planning problem yields an effective strat-
egy for our proponent. Encoding the problem in the standard plan-
ning domain language PDDL2.1 [6] allows us to use an implementa-
tion of the planner POPF [4] to generate appropriate simple strategies.
A key challenge in using a propositional planner to solve these prob-
lems is capturing the uncertainty about the opponent’s initial beliefs.
We use techniques inspired by the current state-of-the-art approach
for solving conformant planning problems by compilation to classi-
cal planning [1]. The planning problem P is described as follows:
Variables We require the following numerical variables: (stage),
(probSuccess) and (prob(i)), for each Oi ∈ E . The variable (stage)
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Action: proponent(a) for all a ∈ KP
pre

(i) canAssertP(a)
(ii) (stage = 0) ∨ (stage = 1)

eff

(a) ¬canAssertP(a)
(b) (stage ← 2)
(c) if dialogueP(DP), addP(a,DP , D′P)

then dialogueP(D′P), ¬dialogueP(DP)
(d) if dialogueO(i,DO)

then temp(i,DO), ¬dialogueO(i,DO)
(e) effective(i)

Figure 1: Actions in our Planning Model

regulates the order in which actions may be added to the plan, while
the variables (probSuccess) and (prob(i)) are responsible for cal-
culating the probability that a given strategy will be successful. In
addition to these, we have the following propositional variables:
canAssertP(a) and canAssertO(M, i,D) govern the arguments that
P and O can assert, respectively, for a ∈ KP , Oi ∈ E and
D ⊆ KP ; dialogueP(D) and dialogueO(i,D) describe the set of
arguments that have been asserted by P and Oi ∈ E , respectively;
temp(i,D) a temporary ‘storage’ variable for dialogueO(i,D);
successful(DP , DO) if (DP ∪ DO) is an acceptable set of argu-
ments, where DAg are the arguments asserted by Ag ∈ {P,O};
effective(i) says that the strategy is effective against Oi ∈ E ;
addP(a,D,D′) says that D′ = D ∪ {a}, and addO(M,D,D′)
says that D′ = D ∪M .

Initial Conditions Our set of initial conditions comprises the fol-
lowing numerical conditions: (stage = 0), (probSuccess = 0), and
(prob(i) = p(Oi)), for all Oi ∈ E . We also require the follow-
ing propositional initial conditions: canAssertP(a), for all a ∈ KP ,
dialogueP(∅), and dialogueO(i, ∅), for all Oi ∈ E , together with the
following conditions that, once set, remain unaltered by the effects of
any of the actions: canAssertO(M, i,DP) iff M ⊆ μ(Ki

O ∪ DP);
successful(DP , DO) iff t ∈ Acc(DP ∪DO); addP(a,DP , D′P) iff
D′P = DP ∪ {a}; addO(M,DO, D′O) iff D′O = DO ∪M .

Goal Condition Our goal is a single condition (probSuccess > λ),
where λ ∈ [0, 1] is the required probability of success.

Actions Our set of actions comprises three types of action whose
preconditions and effects are described in Figures 1–2, where all free
parameters are universally quantified. For each argument a ∈ KP
known to the proponent, there is a (proponent(a)) action, which em-
ulates the act of the proponent asserting a. A single move is built up
by iterated application of these actions (simulating the assertion of
a set of arguments by the proponent). The opponent’s move is cap-
tured by a single (opponent) action. This action simulates all pos-
sible responses for each possible opponent model Oi ∈ E , adding
them to a ‘pool’ of possible dialogue states associated with that op-
ponent model. Finally the action (probCount) must be applied after
each (opponent) action and sums the total probability of guaranteed
success, against each of the possible opponent models Oi ∈ E .

A solution to the planning problem P , generated by a planner, is
a sequence of actions that transforms the initial state into a state that
satisfies the goal. Such a solution corresponds to a simple strategy
that will be successful with probability > λ ∈ [0, 1]. To find an
optimal simple strategy maximising λ, we first find a solution where
λ > 0 and then iteratively seek solutions with strictly larger λ values.

4 Results
Owing to the lack of existing approaches for proponent strategy gen-
eration that do not depend on knowledge of the opponent’s strat-
egy, we instead benchmarked our approach against a naı̈ve depth-first

Action: opponent
pre (i) (stage = 1)

eff

(a) (stage ← 2)
(b) if dialogueP(DP), temp(i,DO),

canAssertO(M, i,DP), addO(M,DO, D′O),
¬successful(DP , D′O)

then dialogueO(i,D′O), ¬effective(i)
(c) ¬temp(i,DO)

Action: probCount
pre (i) (stage = 2)

eff

(a) (stage ← 0)
(b) if effective(i)

then (probSuccess ← probSuccess+ prob(i)),
(prob(i) ← 0)

Figure 2: Actions in our Planning Model

search, that exhaustively searches all simple strategies and evaluates
their effectiveness with respect to the given opponent model. Our
analysis showed that that for smaller examples the performance two
approaches in comparable; however, for larger examples, compris-
ing more than nine arguments, the planning approach outperforms
the naı̈ve search by several orders of magnitude.

We performed further experiments to compare to the most closely
related approach by Hadoux et al. [7] on the problems described in
their paper. The two approaches are not directly comparable: we do
not rely on knowledge of the opponents strategy, whilst they do; they
generate policies, dependent on the opponent’s response, whereas we
generate simple strategies. We did however make two observations:
first our approach finds solutions an order of magnitude faster than
theirs; and second in all of the problems they propose a simple strat-
egy is sufficient to guarantee 100% success rate, without the need for
a policy, meaning that our approach is equally strong in these partic-
ular settings. Our problems, the planner we used, and the implemen-
tation of our translation and of our naı̈ve algorithm are all available
from: http://tinyurl.com/jfxotsg.
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