
Abducing Workflow Traces: General Framework
to Manage Incompleteness in Business Processes
Federico Chesani1 and Riccardo De Masellis2 and Chiara Di Francescomarino2 and

Chiara Ghidini2 and Paola Mello1 and Marco Montali3 and Sergio Tessaris3
1 University of Bologna, Viale Risorgimento 2, 40136 – Bologna, Italy

2FBK-IRST, Via Sommarive 18, 38050 Trento, Italy
3Free University of Bozen–Bolzano, piazza Università, 1, 39100 Bozen-Bolzano, Italy

Abstract. The capability to store data about Business Process ex-
ecutions in so-called Event Logs has brought to the identification of
a range of key reasoning services (consistency, compliance, runtime
monitoring, prediction) for the analysis of process executions and pro-
cess models. Tools for the provision of these services typically focus
on one form of reasoning alone. Moreover, they are often very rigid
in dealing with forms of incomplete information about the process
execution. While this enables the development of ad hoc solutions, it
also poses an obstacle for the adoption of reasoning-based solutions.
In this paper we exploit the power of abduction to provide a flexible,
and yet computationally effective framework able to reinterpret key
reasoning services in terms of incompleteness and observability in a
uniform and effective way.

1 Introduction
The proliferation of IT systems able to store process executions in so-
called event logs has originated, in the Business Process (BP) commu-
nity, a quest towards tools for discovering, checking the conformance
and enhancing process models based on actual behaviours. Focusing
on conformance, that is, to assess how a prescriptive (or “de jure”)
process model relates to the execution traces, this general notion can
be declined in specific “use cases”, such as model consistency, trace
compliance, runtime monitoring and prediction/recommendation.
A number of different tools offer ad hoc solutions that cover only

few of the “use cases” and do not easily adapt to different workflow
languages. This poses a problem, given the current trend of enriching
BP languages with new constructs complementing the control flow
knowledge. A second rigidity is in dealing with incomplete informa-
tion about the process execution: the presence of not monitorable
activities or errors in the logging procedure makes handling incom-
plete event data one of the main challenges of the BP community
In this work we exploit the paradigm of Abductive Constrained

Logic Programming (ACLP, [4]), and the SCIFF abductive frame-
work [1] to provide a general purpose environment able to support
conformance in its different “use cases” in the presence of incom-
plete event data. Indeed, abduction fits in a natural manner: facts are
observed in the execution traces, and need to be explained/diagnosed
with respect to what is envisaged by the process model.

2 Process Models, Reasoning, and Incompleteness
We focus on structured process models in the spirit of [5], enriched
with temporal constraints. We illustrate our investigation with an

example of temporal workflow taken from [6], and reproduced in
the left hand side of Figure 1. This workflow contains: 14 activities
(A1, . . .A14), 2 pairs of exclusive gateways (〈X1,X4〉, 〈X2,X3〉),
and 1 pair of parallel gateways (〈P1,P2〉). In addition, activities are
labelled with expressions of the form [dmin, dmax] (duration range
of the activity), while dashed arrows between activities expresses
inter-task constraints involving the start or end of the activities. A
sample trace that logs the execution of the aforementioned process is:

{(A1, [2, 7]),(A2, [10, 15]), (A3, [16, 46]), (A4, [50, 200]),
(A13, [300, 317]), (A14, [320, 330])} (1)

To incorporate incompleteness into the picture, the process models
we consider are also equipped with observability information. Ac-
tivities can be: (i) observable, if they are always explicitly logged,
even if some information (e.g., the activity name or the starting time)
may be missing; (ii) non-observable, if they are never logged, even if
executed; (iii) partially observable, if they may or may not have been
logged. We introduce the notion of structured process with observ-
ability and time (SPOT) as the tuple 〈A, obs, P, dur , tcon〉, where
A is a finite set of activity (names); obs : A → {o, n, p} provides ob-
servability about each activity; P is the top process block, inductively
defined as either a a ∈ A, or a combination of {seq, xor, and, or}
blocks; dur and tcon captures the activity duration and the inter-task
constraints.
A trace is a set of triples 〈a, s, e〉 denoting the happened event a,

and the start/end timestamps s, e. Missing information units will be
denoted with the special symbol “_”. A trace is partially specified
if some of its event triples contain the symbol _, fully specified oth-
erwise. Moreover, we distinguish between total and partial traces,
where in the latter additional event triples may be implicitly present
even if not explicitly listed in the trace.
The notion of Strong Compliance applies to total traces, and

requires a trace to be compliant to the blocks structure, and also
the duration and inter-task temporal constraints. It reflects the usual
notion of compliance for business processes, where it is assumed that
the trace represents a complete end-to-end execution, such as in (1).
Other resoning services supported in our framework are theModel

Consistency, that checks if a SPOT enables acceptable executions
from start to end.; and, more related to incompleteness, the Con-
ditional Compliance, that handles the case where the trace under
analaysis is indeed partial and/or partially specified: if such incom-
pleteness hinders the possibility of replaying it on the process model,
strong compliance might be regained by assuming that the trace in-
cluded additional information on the missing or partially specified

A

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1734

1734



Proximal femur
female event

A1: patient
admission

[5,10]

A2: Anamnesis
& Exam

[5,10]

A3: Symptom
& Diagnosis

[30,40]

A4: Therapy A

[150,200]

A5: CT 
scan

[20,40]

A6: Eval 
report

[5,10]

Suspicion of
proximal 
femoral

fracture?

No

Yes

X1

A7: Therapy B

[200,225]

No

Indication of
proximal 

femoral fracture
and operation?

A8: schedule 
surgery

[10,20]

Yes A9: Surgical
planning

[30,40]

A10: Pain
medication

[80,80]
A11: 

Surgery

[100,120]
A12: 

Recovery

[200,400]
X2 X3

X4

P1 P2

A13: 
Documentation

[15,20]

A14: Discharge

[5,10]

End

[100,140]

≤ 30

≤ 250
≥ 20

Trace Reasoning service

? Model 
Consistency

Strong 
compliance

Conditional 
compliance

Runtime 
monitoring

Prediction / 
Recommendation

Start End

Start End? ?

Start ?

Model

Start ?

Figure 1. A process for femoral fracture treatment, reasoning services and incomplete execution traces.

events. The trace:
{(A1, [2, 7]), (A2, _)(A4, [50, 200]), (A13, [300, 317]), (A14, [320, 330])} (2)

is conditionally compliant, i.e. it might be considered strong compli-
ant under the hypotheses that A2 was executed (satisfying the tempo-
ral constraints) and A3 (missing in the trace) was executed as well.
Note that the set of assumptions needed to reconstruct strong com-
pliance is not necessarily unique. This because alternative strongly
compliant real process executions might have led to the recorded
partial trace.
Finally, when dealingwith ongoing executions,Runtime Monitor-

ing aims to detect early violations of compliance / ensure the existence
of a positive outcome, while Prediction/Recommendation provides
(if possible) a completion that satisfies the model.

3 Abduction and Incomplete Processes
Abductive Logic Program (ALP) [4] is a non-monotonic reasoning
process where hypotheses are made to explain observed facts. Given
a set Γ of logical assertions known to hold, and a formula φ (cor-
responding to observed facts), abduction looks for a further set Δ
of hypothesis, taken from a given set of abducibleA, which comple-
ments Γ in such a way that φ can be inferred (in symbols Γ∪Δ |= φ).
The setΔ is called abductive explanation (of φ).
In this paper we leverage on ACLP and on the SCIFF abductive

logic programming framework [1], efficiently implemented using the
CHR framework [2]. Beside the general notion of abducible, the
SCIFF framework has been enriched with the notions of happened
event, expectation, and compliance of an observed execution with a
set of expectations. In our context, happened events account for events
that have been logged in the trace, while abducibles are used to make
hypothesis on events that are not recorded in the examined trace.
Our solution consists on translating a SPOT model into an ACLP

program encoded using the SCIFF notation: observable activities are
always expected to be observed, while partially obsefvable activities
can be abduced (hypothesized) if not presente in the trace. Then, the
SCIFF proof procedure is queried for possible abductive answersΔi

that explain the observations (the given trace), under the conditions
imposed by the process model. Temporal constraints are mapped by
means of CLP predicates, that are fully supported within the SCIFF
framework, thus allowing also the required temporal reasoning.
The different reasoning services are all supported within the SCIFF

framework:Model consistency is directly supported by assuming that
all the activities are partially observable, and the trace to be veri-
fied is empty. Runtime monitoring is alike, with the difference that
the trace captures the events already happened. Strong compliance
corresponds to the original reasoning task of the SCIFF, and it is

still supported in our context: indeed, it corresponds to looking for
at least an empty abductive answer Δi. Conditional compliance is
supported as well, by looking at non-empty abductive answers. Sim-
ilarly, prediction/recommendation is supported by simply applying
out approach at run-time, and by interpreting the Δi as suggestions.
A prototype implementation of the framework is currently available
for download at http://ai.unibo.it/AlpBPM.

4 Conclusions
We have presented an abductive framework to support business pro-
cess compliance, in its different forms, by attacking the different forms
of incompleteness that may be present in an execution trace. Empir-
ical evaluation using the model in Figure 1 shows that the different
reasoning services can be computated with times spanning from few
millisec. (when looking for a solution) up to several minutes (when
looking for all the solutions). Such difference is directly related to the
degree of incompleteness in the model and in the trace.
Concerning future development, the SCIFF framework is based on

first-order logic, thus paving the way towards the incorporation of
data [3] and the management of more sophisticated forms of incom-
pleteness. A further reasoning service on temporal workflows is the
one of controllability. Moreover, an extension of our work to deal
with dynamic controllability, by integrating constraint propagation
and filtering, would be an interesting and feasible future work.

Acknowledgements. This research has been partially carried out
within the Euregio IPN12 KAOS, funded by the “European Region
Tyrol-South Tyrol-Trentino” (EGTC) under the first call for basic
research projects.

REFERENCES
[1] M. Alberti, F. Chesani, M. Gavanelli, E. Lamma, P.Mello, and P. Torroni,

‘Verifiable agent interaction in abductive logic programming: The SCIFF
framework’, ACM Trans. Comput. Log., 9(4), (2008).

[2] M. Alberti, M. Gavanelli, and E. Lamma, ‘The chr-based implementation
of the SCIFF abductive system’, Fundamenta Informaticae, 124(4), 365–
381, (2013).

[3] R. De Masellis, F. M. Maggi, and M. Montali, ‘Monitoring data-aware
business constraints with finite state automata’, in Proc. of ICSSP. ACM
Press, (2014).

[4] A. C.Kakas, R.A.Kowalski, and F. Toni, ‘Abductive logic programming’,
J. Log. Comput., 2(6), (1992).

[5] Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede, and Christoph J.
Bussler, ‘On structured workflow modelling’, in Seminal Contributions
to Information Systems Engineering, Springer, (2013).

[6] A. Kumar, S. R. Sabbella, and R. R. Barton, Business Process Man-
agement: 13th Intl. Conf., BPM 2015, Innsbruck, Austria, August 31 –
September 3, 2015, Procs., chapter Managing Controlled Violation of
Temporal Process Constraints, 280–296, Springer International Publish-
ing, Cham, 2015.

F. Chesani et al. / Abducing Workflow Traces: A General Framework to Manage Incompleteness in Business Processes 1735

http://ai.unibo.it/AlpBPM

	Introduction
	Process Models, Reasoning, and Incompleteness
	Abduction and Incomplete Processes
	Conclusions

