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Abstract. Link prediction suffers from the data sparsity problem.
This paper presents and validates our hypothesis that, for sparse net-
works, incidence matrix factorization (IMF) could perform better than
adjacency matrix factorization (AMF), which has been used in many
previous studies. A key observation supporting the hypothesis is that
IMF models a partially-observed graph more accurately than AMF.
A technical challenge for validating our hypothesis is that, unlike
AMF approach, there does not exist an obvious method to make pre-
dictions using a factorized incidence matrix. To this end, we newly
develop an optimization-based link prediction method adopting IMF.
We have conducted thorough experiments using synthetic and real-
world datasets to investigate the relationship between the sparsity of
a network and the performance of the aforementioned two methods.
The experimental results show that IMF performs better than AMF as
networks become sparser, which strongly validates our hypothesis.

1 Introduction

Link prediction attempts to predict missing links based on other ob-
served links and attributes of nodes [6, 2, 10, 13]. We focus on link
prediction based on a graph structure, which is formulated as follows:
given a partially-observed graph G=(V,EP) with the set of nodes V
and the set of positive links (observed links) EP⊂V×V , its goal is
to learn a scoring function s :V×V→R to predict a new link on an
unlabeled pair of nodes in a set EU :=(V×V)\EP.

As pointed out by many researchers, one of the central issues in
link prediction is the sparsity of positive links [5, 12, 9]. Our idea to
counter the problem is to employ incidence matrix factorization (IMF)
as a building block of a link prediction method, instead of adjacency
matrix factorization (AMF), which has been used in various previous
studies [8, 1, 7, 11, 4]. A key observation supporting the idea is that
IMF can model a partially-observed graph more accurately than AMF.

First of all, We briefly introduce the previous AMF-based ap-
proach (Fig. 1 [TOP]). Given a partially-observed graph G=
(V,EP), AMF learns latent feature vectors {xk}vk∈V of nodes us-
ing both positive links and unlabeled node pairs such that 〈xi,xj〉≈
1 if (vi,vj)∈EP,0 otherwise holds in its simplest instantiation. This
modeling has a little flaw. Let us consider a pair of nodes (vi,vj) that
is not linked in a partially-observed graph but is actually positive in its
fully-observed graph. In the ideal case, latent vectors xi and xj ob-
tained from the fully-observed graph satisfy 〈xi,xj〉≈1, while those
obtained from the partially-observed graph satisfy 〈xi,xj〉≈0. As
the observed part of a graph becomes sparser, the number of such node
pairs will increase, and therefore, this inconsistency issue can lead to
the poor performance. On contrary, IMF can avoid the inconsistency
issue because it learns a model by utilizing only positive links. IMF
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Figure 1. [TOP] Link prediction using AMF. [BOTTOM] It is not trivial
to predict a link using IMF. We learn a latent vector y(i,j) for any observed
link e(i,j)∈EP in addition to a latent vector xk for any node. Predicting a
link between v1 and v3 requires a latent vector of the unlabeled pair of nodes
(v1,v3) �∈EP, which we cannot obtain through IMF.

learns latent feature vectors of nodes {xk}vk∈V and those of positive
links {yl}el∈EP

such that 〈xi,yj〉≈1 if vi∈ej ,0 otherwhise holds
in its simplest instantiation. Since this modeling does not utilize unla-
beled node pairs, the model obtained from a partially-observed graph
is consistent with that obtained from its fully-observed one; therefore,
the performance of IMF is expected to be robust to the sparsity of a
graph. In this light, we arrive at the hypothesis that IMF can counter
the sparsity problem better than AMF.

While the IMF approach is promising, it is not trivial to predict
a new link using a factorized incidence matrix (Fig. 1 [BOTTOM]).
The main purpose of this paper is (i) to develop a new link prediction
method based on IMF and (ii) to confirm the hypothesis by thorough
experiments with synthetic and real-world datasets.

2 IMF-based Link Prediction

In this section, we newly propose an optimization-based efficient link
prediction method adopting the IMF approach.

Algorithm. Figure 2 illustrates the overview of our method. Given
an incidence matrix B∈R

|V|×|EP| of the graph G=(V,EP), IMF
first factorizes B into two matrices X and Y using truncated SVD:

B≈UkΣkVk
�=XY �, (1)

where X :=UkΣk and Y :=Vk. It provides us latent vectors of nodes
X and those of positive links Y . Here, for any positive link (vi,vj),
b(i,j)≈Xy(i,j) holds, where b(i,j) :=(0,...,0,1

i
,0,...,0,1

j
,0,...,0)�

is a column vector of B. Our idea is to predict a link on an unlabeled
node pair (v′i,v

′
j) by how well we can recover its latent vector y(i′,j′)

that is consistent with the factorization, i.e., b(i′,j′)≈Xy(i′,j′). This
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Figure 2. Overview of our link prediction method based on IMF.

idea boils down to the following scoring function, and this optimiza-
tion problem can be solved in a closed form:

sIMF(vi,vj) :=− min
y∈Rk

∥
∥b(i,j)−Xy

∥
∥
2

2
=−‖wi+wj‖22 , (2)

(w1,...,w|V|) :=X(X�X)
−1

X�−I|V|∈R
|V|×|V|. (3)

Computational Efficiency. At first sight, the computational cost
of the IMF-based method seems more expensive than the AMF-based
method because the size of an incidence matrix is larger than that of an
adjacency matrix generally. However, with a simple contrivance, the
cost of the matrix factorization of our method can be as small as that of
the AMF-based method. Observing that we only need the matrices Uk

and Σk in the matrix factorization (Eq. (1)), it is sufficient to factorize
the positive semi-definite symmetric matrix BB� into QkΛkQk

� by
truncated SVD to obtain Uk=Qk and Σk=Λ

1/2
k . Since the size of

BB� is the same as the adjacency matrix A, the computation time of
matrix factorization of our method is the same as that of AMF.

Moreover, the construction of the matrix BB� requires almost the
same computation time as that of the adjacency matrix A because
BB�=A+D holds, where D denotes diag(d1,...,d|V|), and each
di corresponds to the degree of a node vi.

3 Experiments

To demonstrate that IMF actually counters the sparsity problem better
than AMF, we conducted comparative experiments with synthetic and
real-world datasets.

Datasets. In the first experiment, we generated 10 synthetic
graphs (|V| = 104,|EP| 	 104,...,106) by the Barabási–Albert
model [3], which possess scale-free and small-world properties. In the
second experiment, we extracted all the unweighted and undirected
real-world graphs from KONECT4 and chose the 24 smallest graphs
in terms of the size |V| (|V|	101,...,104,|EP|	101,...,106).
Performance Measure. We used ROC–AUC to evaluate the per-

formance of the scoring function, which is known to be a proper
performance measure in link prediction [9].
Experimental Procedure. We conducted five-fold cross valida-

tion to measure the performance of IMF and AMF by repeating the
following process, and then reported the mean of AUC. First, given
G=(V,EP), we randomly divide EP into E(train)

P , E(dev)
P , and E(test)

P

by a ratio of 3 :1 :1. Second, with E(train)
P , we learn a scoring func-

tion sk for each k∈{

20,21,...,min
{

214,2�log2(rankM)�}}, where k
is the rank of truncated SVD, and M is the incidence or adjacency
matrix. Then we select the best hyperparameter k in terms of AUC of
sk. Third, with E(test)

P , we calculate AUC of sbestk as results.

4 http://konect.uni-koblenz.de/
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Figure 3. Scatter plot illustrating the relation between the sparsity (x-axis,
|EP|/|V|2) and the performance improvement of IMF over AMF (y-axis,
AUCIMF−AUCAMF). Each point corresponds to each graph. [LEFT] Synthetic
datasets. [RIGHT] Real-world datasets.

Experimental Results. Figure 3 [LEFT] shows the experimen-
tal results on the synthetic datasets. The Spearman’s ρ between the
sparsity measure and the AUC improvement of IMF over AMF is
−1.0<0 (p=0.0<0.01); i.e., the performance gain of IMF over
AMF increases as the original graph becomes sparser, and the hypoth-
esis is strongly supported. Furthermore, the AUCs of IMF on all the
synthetic graphs are nearly constant (0.70), while that of AMF be-
comes worse as the graph becomes sparser (0.72,...,0.50). It implies
that the IMF approach is potentially capable of capturing scale-free
or small-world properties of networks.

Figure 3 [RIGHT] shows the experimental results on the real-world
datasets. Similar to the former experiments, Spearman’s ρ=−0.55<
0 (p=0.0054<0.01), which also supports our hypothesis.
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