
GPU-Accelerated Value Iteration for the Computation of
Reachability Probabilities in MDPs

Zhimin Wu1 and Ernst Moritz Hahn2 and Akın Günay1 and Lijun Zhang2 and Yang Liu1

1 INTRODUCTION

Computation of reachability probabilities is an important subroutine
for determining approximately optimal policies of MDPs [3]. Value
iteration (VI) [2] is a well-known method to compute these values.
However, sequential implementation of VI is computationally ex-
pensive both in terms of time and memory. Hence, we propose a
highly parallel version of VI to solve general MDPs utilizing the
GPU, which is widely used in the recent years to accelerate exe-
cution performance of various computational methods in many ar-
eas [1, 7, 6]. Our approach explores algebraic features (e.g., matrix
structure) of MDPs, and uses action-based matrices to achieve mas-
sive parallelism for efficiency. We empirically evaluate our approach
on several case studies. Our results show that we can achieve up to
10X∼ speedup compared to sequential VI, and outperform topolog-
ical value iteration (TVI) [4] in most of the cases. Particularly, for
MDPs which do not contain strongly connected components (SCCs)
with more than one state, or which contain a small number of large
SCCs, our approach achieves up to 17X speedup compared to TVI.

Our main contributions are: (1) We take advantage of the algebraic
structure of MDPs to define action-based matrices and correspond-
ing data structures for efficient parallel computation of reachability
probabilities on GPUs. (2) We develop an efficient parallel VI algo-
rithm for computing reachability probabilities that utilizes features
of modern GPUs, e.g., dynamic parallelism and memory hierarchy.

2 BACKGROUND AND RELATED WORK

An MDP is a tuple M = (S, sinit ,Act , P,R), where S is a fi-
nite set of states, sinit ∈ S is the initial state, and Act is a
finite set of actions. The (partial) transition probability function
P : S × Act �→ Dist(S), where Dist(S) is the set of discrete
probability distributions over the set S, assigns probability distri-
butions to combinations of states and actions. The reward function
R : S × Act �→ Dist(R) assigns a numeric reward to each state/ac-
tion pair. By Act(s) = Dom(P (s, ·)) we denote the actions that are
activated in state s. We require |Act(s)| ≥ 1 for every s ∈ S.

Given an MDP M , we are interested in computing the minimal
(maximal) probability to reach a set of target states T ⊆ S in an in-
finite horizon, formally: Pmin(s, T ) = infα∈Adv Prob

α(s, T ). Adv
is the set of all schedulers, which choose the action to be performed
in a state depending on the sequence of states and actions seen so
far. Probα(s, T ) is the probability of reaching T when starting from
state s and following the scheduler α. The computation process is
defined by the following equation:

1 Nanyang Technological University, Singapore
2 Institute of Software, Chinese Academy of Sciences, China

xn
s = min

α∈Act(s)

∑

s′∈S

P (s′ | s, a) · x(n−1)

s′ for s /∈ T, n > 0 (1)

Value iteration [2] is a general dynamic programming method to
solve MDPs. It is an iterative computation process to update the value
function of every state, which follows Equation 1 and terminates
when it satisfies a convergence criterion.

There are some existing approaches which optimize VI using
graphical features of MDPs. From these approaches, TVI [4] is the
most relevant one to our approach. TVI utilizes the SCC structure of
an MDP to construct an acyclic MDP for performing VI backups in
the best order, and to only perform them when necessary. While TVI
is based on the structure of SCCs in MDPs, our approach utilizes
the algebraic features of MDPs that are related to the representation
matrix of MDPs and the matrix-vector multiplication during the Bell-
man backup process. In addition, our approach is independent from
the structure of SCCs, which may affect TVI’s efficiency.

GPUs have several advantages over CPUs such as high memory
bandwidth, computation capability, and massive parallelism. To the
best of our knowledge, our approach is novel both in terms of fully
utilizing the algebraic features of MDPs and parallel computing tech-
niques in GPU to improve efficiency of VI for the computation of
reachability probabilities.

3 GPU ACCELERATED VALUE ITERATION

We build a GPU accelerated parallel VI that can significantly im-
prove the efficiency compared to the sequential VI by taking advan-
tage of the algebraic structure (matrix) of MDPs and the matrix op-
eration involved in the Bellman backup process.

In sequential VI, the complete state space should be backed up in
each iteration, which requires the exploration of all states sequen-
tially. More specifically, the term

∑
s′∈S P (s′ | s, a) · x(n−1)

s′ in
Equation 1 requires the sequential VI to compute the reachability
probabilities for each state by exploring each enabled action and
reachable states. This exploration process creates a bottleneck for se-
quential VI, since the time required for the exploration process grows
exponentially with respect to the state space of an MDP. Hence, if we
can accelerate the exploration process, we can significantly improve
VI’s efficiency.

As we show in Figure 1, an MDP can be represented using a matrix
structure M. Each row involves a set of sub-vectors, where each sub-
vector represents the immediate reacability probabilities of the states
with respect to actions. In VI, the calculation of Equation 1 updates
xi by selecting the action a that maximize/minimize the vector to
vector multiplication Succai ×X . This computation is independent
in each state. Furthermore, we collect the vector to vector multiplica-
tion of the complete state space together, and then divide by the ac-

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1726

1726



Index_a(0)

Index_a(n)

State 0/Row 0 ...

Succ_a(0)

Succ_a(n)

State 1/Row 1....

State n/Row n

Vec

TmpResult 0

TmpResult n

...

Sequential
Max/Min

Part A Sequential

Part B Parallel

1st level Parallel 1st level Parallel 1st level Parallel

State 0/Row 0 State 1/Row 1 State n/Row n

2nd level

Succ_a(0)

2nd level

Succ_a(n)

TmpResult 0 TmpResult 0

Vec

Parallel
Max/Min

Figure 1. Parallelization

tions. We can find in global perspective that computation is indeed a
substantial amount of synchronized sub-matrices to vector multipli-
cations. The sub-matrices are the matrices representation of MDPs
by actions. Thus, we define the Action-based Matrices for MDP.

Definition 1 Action-based Matrices Given a MDP M =
(S, sinit ,Act , P,R) and the representation matrix M, for each
action a ∈ Act , an action-based matrix is a tuple (Ma =
{Sa, S

′
a, P (S′ | S, a)), where Sa is the set of states in which ac-

tion a is activated, S′
a is the set of states reached via action a from

states in Sa, and P (S′ | S, a) → (0, 1] is the probability array.

Each Ma is a ma by ma matrix, where ma = |Sa|. Intuitively,
an Ma represents the transition relationship of the states in Sa with
respect to action a. Using the action-based matrices, the value it-
eration process can be transformed into several interleaving action-
based matrix to vector multiplications and subsequent minimisation,
where each action-based matrix to vector multiplication is an inde-
pendent computation. Hence, the action-based matrices and the de-
scribed partitioning of matrix operations allow us to develop an effi-
cient parallel VI that works well on GPUs. We also design compact
data structures and parallel convergence detection for our approach.

4 IMPLEMENTATION AND EXPERIMENTS

We evaluate the performance of our approach by comparing it with
VI and TVI implementations of Dai et al. [4]. We implemented our
approach in CUDA C. We conducted our experiments on a computer
with two Intel(R) Xeon(R) CPU E5-2670, 2.60GHz, 16GB RAM and
a Geforce Titan Black GPU. We set the parallelism to 512 threads
in one block, which can reach 100% occupancy per multiprocessor
according to the CUDA Occupancy Calculator [5].

The results are shown in Figure 2. Our approach achieves around
10X∼ speed up comparing to VI in MDPs with different structure.
It can be observed from Figure 2 that TVI performs slightly worse
with MDPs that have large number of small SCCs, since under this
condition, TVI cannot reduce the backup times significantly, and
the SCC detection brings additional cost. This situation is also ad-
dressed by Dai et al. [4]. We can see our approach can achieve up
to 17X speedup compared to TVI under this condition. For the lay-
ered MDPs, we consider two strong layered MDPs. Layered1 only
has one transition between any two SCCs. The initial state is a state
in the first layer and the goal state is an end state in the last layer.
Layered2 has the same size with Layered1. But the number of layers
is considerably less than Layered1. The experiment results show that
for Layered1, TVI outperforms our GPU accelerated VI slightly due
to the large number of layers. But with Layered2, our approach out-
performs TVI with around 1.5X speedup since the number of layers

csma3 coin6 rabin4 layer1 layer2
GPU-VI 0.58 3.45 0.1 20.1 9.79
VI 3.9 52.29 1.29 143.8 83.8
TVI 4.5 59.6 1.79 8.8 13.4

0
20
40
60
80

100
120
140
160

C
os

t T
im

e(
se

c)

note: coin6 * 102

Figure 2. Performance Evaluation

decreases considerably. Both our approach and TVI outperforms the
VI for these two MDPs. In conclusion, our approach’s performance
is substantially better compared to VI for MDPs with all types of
structures. We also achieves considerable speedup compared to TVI
in MDPs which has small number of large SCCs or only SCCs with
just one state. Although our approach performs slightly worse than
TVI in MDPs with a deep layer, we can still conclude from the results
that our approach can be more general to a wide range of MDPs.

5 CONCLUSION

We presented a novel GPU accelerated parallel value iteration ap-
proach for the efficient computation of reachability probabilities of
MDPs. The main idea of our approach is to utilize the algebraic
features of MDPs to divide the computation process of reachability
probabilities into partitions, which can be computed in a massively
parallel manner with an efficient parallelization granularity on GPUs.
Our evaluation shows that we achieve 10X∼ speedup compared to
sequential, and up to 17X speedup compared to TVI.

References

[1] Ron Bekkerman, Mikhail Bilenko, and John Langford, Scaling up ma-
chine learning: Parallel and distributed approaches, Cambridge Univer-
sity Press, 2011.

[2] Richard Bellman, ‘Dynamic programming and lagrange multipliers’,
PNAS, 42(10), 767, (1956).

[3] Craig Boutilier, Thomas Dean, and Steve Hanks, ‘Decision-theoretic
planning: Structural assumptions and computational leverage’, JAIR, 11,
1–94, (1999).

[4] Peng Dai, Daniel S Weld, Judy Goldsmith, et al., ‘Topological value it-
eration algorithms’, JAIR, 181–209, (2011).

[5] CUDA NVIDIA, ‘Gpu occupancy calculator’, CUDA SDK, (2015).
[6] Anton Wijs, ‘Gpu accelerated strong and branching bisimilarity check-

ing’, in TACAS, 368–383, Springer, (2015).
[7] Zhimin Wu, Yang Liu, Jun Sun, Jianqi Shi, and Shengchao Qin, ‘Gpu

accelerated on-the-fly reachability checking’, in ICECCS, pp. 100–109,
(2015).

Z. Wu et al. / GPU-Accelerated Value Iteration for the Computation of Reachability Probabilities in MDPs 1727


