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Abstract. When multiple independent agents use a limited shared
resource, they need to coordinate and thereby their planning prob-
lems become coupled. We present a resource assignment strategy
that decouples agents using marginal utility cost, allowing them to
plan individually. We show that agents converge to an expected cost
curve by keeping a history of plans, inspired by fictitious play. This
performs slightly better than a state-of-the-art best-response approach
and is significantly more scalable than a preallocation Mixed-Integer
Linear Programming formulation, providing a good trade-off between
performance and quality.

1 INTRODUCTION

When multiple agents must coordinate under a shared resource
constraint, individually tractable problems become tightly coupled
through the dependency on the resource consumption of all other
agents. In problems where agents have the ability to compute and
execute their own plans, these agents may be used to decouple the
problem into efficiently solvable sub-problems [4].

Resource-constrained agents can be decoupled by preallocating
resources a priori. Wu and Durfee [5] present a Mixed-Integer Linear
Programming (MILP) formulation to optimally preallocate resources.
Unfortunately, preallocating resources still has an exponential com-
plexity, which prevents application to real-world scale problems. To
overcome these restrictions, we proposed an on-line conflict resolu-
tion approach by planning a best-response policy to the likelihood
of successfully executing constrained actions [3]. While this results
in efficiently computable policies, the assignment of such a state-
independent success probability may be overly pessimistic.

In this paper we propose to look at the marginal utility gained
as a consequence of being assigned a resource. By comparing this
utility to that of other agents, they can make an informed decision on
the distribution of resources. We use this idea to decouple agents by
computing a marginal utility cost for the resource. The key insight is
that a cost allows agents to compute an expected resource assignment
also based on their state. Convergence of the cost function is obtained
by keeping a history of expected states, similar to fictitious play.

2 PROBLEM DESCRIPTION

We define Resource Constrained Multi-agent Markov Decision Pro-
cesses (RC-MMDPs) as an extension of finite horizon MMDPs [2].

Each individual agent i is modeled as a Markov Decision Process
specified by tuple Mi =

〈
Si,Ai,Pi,Ri

〉
. The current state of an agent

is an element si, j of set Si containing a finite number of possible
states. In any state the agent can choose one of the finite number of
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actions ai, j contained in set Ai. The transition function Pi(si,l | si, j,ai,k)
defines the probability that agent i ends up in state si,l from state si, j
by choosing action ai,k. Agents are rewarded for their choice through
reward function Ri(si, j,ai,k) which returns a real-valued utility.

The independent agent problems are coupled through a resource
constraint, turning it into an RC-MMDP problem. RC-MMDP prob-
lems are specified by tuple

〈M,c,L,h
〉
. Set M contains the n in-

dividual agent problems, M = 〈M1,M2, . . . ,Mn〉. The binary cost
function c(ai, j) is set to 1 if action ai, j uses the resource. We require
that all agents have an action with c(a /0) = 0 to ensure feasibility of
the model. The non-negative resource consumption limit Lt specifies
the maximum consumption at any time t in finite horizon h.

Because the agents are cooperative, the goal of the agents is to
maximize the sum of individual agent utilities over the entire horizon.
A policy π(s, t) specifies for joint state s = 〈s1,s2, . . . ,sn〉 at time t
which (feasible) joint action a = 〈a1,a2, . . . ,an〉 the agents should
take. Action a is feasible at time t if c(a)≤ Lt , c(a) = ∑n

i=1 c(ai).
The goal of RC-MMDP planning is to compute an optimal pol-

icy π∗, which returns the feasible joint action with the highest ex-
pected value for every possible joint state and time. We define the
expected value of state s by following policy π as Vπ [s, t], with
Vπ [s,h] = 0. Given this, we define the expected value of taking ac-
tion a in state s as

Qπ [s,a, t] =R(s,a)+∑
s′∈S

(P(s′ | s,a) ·Vπ [s
′, t +1]

)
. (1)

3 MARGINAL UTILITY COST PLANNING

To improve on the preallocation algorithm, we propose to have the
agents agree on the marginal utility cost u of the resource. The agents
include this cost in their action selection. When for two actions it
holds that (for decoupled policy πi of agent i)

Qπi [s,a1, t]> Qπi [s,a2, t], and

Qπi [s,a1, t]− c(a1) ·u < Qπi [s,a2, t]− c(a2) ·u,
(2)

the agent will choose action a2, even though it prefers a1 in the
unconstrained case. In general we are looking for the marginal utility
cost us,t which makes the sum of resource consumption induced over
the preferred actions for joint state s at time t fit in the resource limit:

max
us,t

n

∑
i=1

Qπi [si,ai, j, t]

s.t.
n

∑
i=1

c

(
argmax
ai, j ∈Ai

(
Qπi [si,ai, j, t]− c(ai, j) ·us,t

))
≤ Lt

us,t ≥ 0.

(3)
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Because we know there exists an action c(a /0) = 0, we are guaranteed
that a feasible cost exists. The cost us,t can be computed by sorting the
expected future marginal utility values of the agents, and assigning
the preferred action to each agent until the constraint is reached. The
marginal utility of the agent that consumes the last remaining resource
is equal to the cost us,t that prevents overconsumption in state s.

Of course, changing the executed actions of some agents can make
their state trajectories deviate substantially from their plans. There-
fore, our key idea is that agents coordinate on the expected resource
cost E[ut ] at plan time. Because the expected cost depends on the
expected joint states that the agents visit, which in turn depends on
their policy, we first let agents plan for the unconstrained case where
E[ut ] = 0, ∀t. The resulting policies are then evaluated to obtain an
informed prior over the reachable states. Let a prior over the starting
states pi,1 be given for each agent. Since the number of reachable
states is (typically) exponential in the number of agents, we propose
to perform Monte Carlo sampling to obtain an approximation of the
probability distribution pt(s). Given this prior, the expected resource
cost subject to the joint policy π = 〈π1,π2, . . . ,πn〉 is

Eπ [ut ] = ∑
s

pt(s) ·us,t , (4)

where us,t is determined by solving Equation 3. The agents can then re-
plan their policies taking into account this resource cost by applying
the modified Bellman equation

Vπi [si, t] = max
ai, j∈Ai

(
Qπi [si,ai, j, t]− c(ai, j) ·Eπ [ut ]

)
. (5)

The joint policy is derived by planning all agents individually
using Value Iteration with this modified Bellman equation. Since
each iteration modifies the expected value at time t, the expected cost
Eπ [ut ] also needs to be updated to reflect future values. Therefore,
cost Eπ [ut ] is computed on the basis of the newest Vπ [s, t +1], before
the Bellman equation is applied for time t.

This process changes where resource constraints restrict agents’
actions. Thus, these steps should be repeated until convergence of the
expected cost function. It is easy to imagine that the cost function
may oscillate between extremes if we only consider the previous prior.
Therefore, to ensure convergence, we keep the history of all past
samples, inspired by fictitious play [1]. Each prior can be seen as the
adversary ‘nature’ performing her actions as a consequence of our
choices. By remembering all past plays, eventually the full strategy
of nature is obtained. Thus, let pk be the probability distribution
over states in iteration (or play) k, then we maintain the set P =〈

p1, p2, . . . , pk〉, and compute the expected cost as

Eπ [ut ] =
k

∑
j=1

∑
s∈p j

t

p j
t (s)

k
·us,t . (6)

4 EMPIRICAL EVALUATION

To evaluate the performance of this algorithm we compare it against
an optimal preallocation MILP [5] and our Best-response planner [3]
on an energy-consumption planning problem. In this setting a pop-
ulation of electric heaters must be controlled to keep the aggregate
consumption below a power constraint, while satisfying consumers’
heat demands. The power constraint may arise due to fluctuating sup-
ply of renewable sources like wind or solar. In the experiments we
measure the time to compute a policy for 4 agents, and its quality.
The Fictitious Play and Best-response algorithms are set to perform
at most 10 iterations, computing 1000 priors each iteration.

Algorithm Thermostat Best−response Fictitious Play MILP
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Figure 1. Algorithm performance for increasing horizon: policy quality
normalized to the thermostat policy (left), and wall-clock computation time

(right). Both plots on a log scale, lower values are better.

Figure 1 presents the mean and standard error of both runtime and
policy quality. The policy quality metric penalizes the total amount of
deviation of the current temperature from the set-point temperature.
The quality is normalized to the myopic strategy of using thermostat
controllers with an on-line prioritized load-shedding system to keep
the resource demand below the limit.

Based on the MILP formulation, we expect that a linear increase
in the length of the horizon results in an exponential growth of the
runtime. We observe this exponential scaling in the right plot; several
instances of h = 22 could not be solved within 30 minutes. The other
algorithms have polynomial complexity, and are able to solve each
instance within at most 10 seconds. Nevertheless, the policies found
by Fictitious Play are almost as good as the MILP policies, and
significantly better than Best-response for short horizon instances.

5 CONCLUSIONS AND FUTURE WORK

This paper introduces a decoupling algorithm for multi-agent planning
problems under hard resource constraints based on fictitious play. The
algorithm computes a time-dependent cost for resources which is used
to decouple individual policies so that they can be computed in poly-
nomial time. We compared against two state-of-the-art approaches,
and found that the fictitious play algorithm produces policies which
are not significantly worse than an optimal preallocation decoupling
while requiring exponentially less runtime.

For future work we intend to adapt the fictitious play algorithm to
handle stochastic resource levels and multiple resources.
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