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for Planning with Procedural Control Knowledge
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1 Motivation and Background

Formalisms for automated planning (to represent and solve planning
problems) broadly fall into either domain-independent planning or
domain-configurable planning. Domain-independent planning for-
malisms, such as classical planning requires that the users only pro-
vide models of the base actions executable in the domain. In con-
trast, domain-configurable planning formalisms (e.g., Hierarchical
Task Network (HTN) planning [1]) allow users to supplement action
models with additional domain-specific knowledge structures that in-
creases the expressivity and scalability of planning systems.

An impressive body of work exploring search heuristics has been
developed for classical planning that has helped speed up generation
of high-quality solutions. More specifically, search heuristics such as
the relaxed planning graph heuristic [2], landmark generation algo-
rithms [3, 5], and landmark-based heuristics [5, 4] dramatically im-
proved optimal and anytime planning algorithms by guiding search
towards (near-) optimal solutions to planning problems.

Yet relatively little effort has been devoted to develop analo-
gous techniques to guide search towards high-quality solutions in
domain-configurable planning systems. In lieu of such search heuris-
tics, domain-configurable planners often require additional domain-
specific knowledge to provide the necessary search guidance. This
requirement not only imposes a significant burden on the user, but
also sometimes leads to brittle or error-prone domain models.

In this paper, we address this gap by developing the
Hierarchically-Optimal Goal Decomposition Planner (HOpGDP),
a hierarchical planning algorithm that uses admissible heuristic es-
timates to generate hierarchically-optimal plans (i.e., plans that are
valid and optimal with respect to the given hierarchical knowledge).
HOpGDP leverages recent work on a new hierarchical planning for-
malism called Hierarchical Goal Network (HGN) Planning [8, 6],
which combines the hierarchical structure of HTN planning with the
goal-based nature of classical planning.

In particular, our contributions are as follows:

o Admissible Heuristic: We present i g, (HGN Landmark heuris-
tic), a planning heuristic that extends landmark-based admissible
classical planning heuristics to derive admissible cost estimates
for HGN planning problems. To the best of our knowledge, hxr,
is the first non-trivial admissible hierarchical planning heuristic.

e Optimal Planning Algorithm: We introduce HOpGDP, an A*
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search algorithm that uses h 1, to generate hierarchically-optimal
plans.

o Experimental Evaluation: We describe an empirical study on
three benchmark planning domains in which HOpGDP outper-
forms optimal classical planners due to its ability to exploit hi-
erarchical knowledge. We also found that hg provides useful
search guidance; despite substantial computational overhead, it
compares favorably in terms of runtime and nodes explored to
HOpGDP,,4. using the trivial heuristic A = 0.

For the full paper, the readers are referred to the online e-Print [7].

2 Preliminaries

An HGN planning problem is a triple P = (D, so, gno), where D is
an HGN domain, sy is the initial state, and gno = (7, <) is the initial
goal network. An HGN domain is a pair D = (D., M) where D,
is a classical planning domain and M is a set of HGN methods. D.
describes the models of the base actions, while the HGN methods M
specifies hierarchical control knowledge the planner needs to respect
when generating plans. Finally, a goal network is a partially ordered
multiset of goals; this is analogous to the central data structure in
HTN planning, the task network [1].

HGN Methods. An HGN method encodes knowledge on how to
decompose goals. Each method m consists of a goal goal(m) that m
decomposes, the conditions precond(m) under which it is applicable,
and the goal network network(m)) that m decomposes into.

Solutions to HGN Planning Problems. The set of solutions for
P = (D, so0,gno) is inductively defined as follows: (1) if gng is
empty, the empty plan is a solution. If not, assuming g € gno is a
goal without predecessors, (2) if g is true in sp, we can remove g
from gno, or (3) if there is an action/method applicable in sg and rel-
evant to g, we can apply it; actions progress the state while methods
progress the goal network.

Let us denote S(P) as the set of solutions to an HGN planning
problem P as allowed by the previous definition. Then we can de-
fine what it means for a solution 7 to be hierarchically optimal with
respect to P as follows:

Definition 1 (Hierarchically Optimal Solutions). A solution
7% is hierarchically optimal with respect to P if ©* =
argmin . ¢ s pycost(m).

3 The HOpGDP Algorithm and the /;;, Heuristic

HOpGDP takes as input an HGN planning problem P =
(D, so, gno). It does a standard A* search using the admissible HGN

Full paper: https://arxiv.org/abs/1607.01729
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heuristic h g1, (described later in this section) to compute a hierarchi-
cally optimal solution to the problem; it either returns a plan if it finds
one, or failure if the problem is unsolvable. In particular, starting
from the search node (s, gno), HOpGDP (1) generates successors
according to the solution definition in Section 2, and (2) evaluates
them using using h g ; it repeats this cycle until it either (a) finds a
search node with an empty goal network, at which point it can termi-
nate and return the corresponding plan, or (b) it exhausts the entire
search space, in which case it returns failure. HOpGDP thus explores
an identical search space as previous HGN planners like GDP [8], but
unlike them, it explores the space in a best-first manner, allowing it
to explicitly optimize for total plan cost.

The hp Heuristic. As mentioned previously, HOpGDP uses
hmr to compute the h-values (and thus, the f-values) of search
nodes. The main insight behind the construction of hgrr, is as fol-
lows: given a problem P = (D, s, gn), every goal in gn must be
achieved, and in the order specified in gn. In other words, the ele-
ments of gn can be thought of as landmarks enforced by the hier-
archical knowledge, with the partial order serving as landmark or-
derings. So, one way to develop admissible HGN heuristics is to use
goals in gn as starting points for generating an expanded set of land-
marks, and then invoke off-the-shelf landmark-based classical plan-
ning heuristics on these landmarks to compute admissible estimates.

Concretely, we construct hgrr, as follows (details in [7]):

1. We define a relaxation of HGN planning that ignores the provided
methods and allows unrestricted action chaining as in classical
planning, which expands the set of allowed solutions,

2. We extend landmark generation algorithms for classical planning
problems to compute sound landmark graphs for the relaxed HGN
planning problems, which in turn are sound with respect to the
original HGN planning problems as well, and finally

3. We use admissible classical planning heuristics like Az, [4] on
these landmark graphs to compute admissible cost estimates for
HGN planning problems.

Based on the admissibility of 7, we can prove that h g1, generates
admissible cost estimates for HGN planning problems:

Theorem 2 (Admissibility of hxr). Given an HGN planning do-
main D, a search node (s,gn, ) and its cost-optimal solution

* HGN * HGN
7rs,gn > hHL(Sagn7 7T) S Trs,gn .

4 Experimental Study

We implemented HOpGDP within the Fast-Downward codebase,
and extended LAMA’s landmark generation code to develop hxr,
our HGN planning heuristic. We tested two hypotheses in our study:

H1. HOpGDP’s ability to exploit hierarchical planning knowledge
enables it to outperform state-of-the-art optimal classical plan-
ners. To test this, we compared the performances of HOpGDP
with A*-hp, [4], the optimal classical planner whose heuristic we
extended to develop hyr..

H2. The heuristic used by HOpGDP, hyr, provides useful search
guidance. To test this, we compared the performances of
HOpGDP with HOpGDP, .4, which is identical to HOpGDP ex-
cept that it uses the trivial heuristic estimate of A = 0.

We evaluated HOpGDP, HOpGDP,; 4, and A*-h, on three well-
known planning benchmarks, Logistics, Blocks World and Depots.
Due to space constraints, we show results only for Blocks-World;
the reader can find the full experimental study in [7].
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Figure 1: Node expansions and running times in Blocks-World. Each
data point is the average over 25 randomly generated problems. Data
points where all the problems are not solved were discarded.
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Figure 1, which shows the results for Blocks-World, shows that
A*-hz, could only solve problems up to size 10, while HOpGDP;,
and HOpGDP could solve problems up to sizes 16 and 18 respec-
tively within the 30 minute timelimit, thus supporting Hypothesis
H1. In terms of node expansions, Figure 1a indicates that the guid-
ance provided by hrr helped substantially; HOpGDP on average
expanded 76% fewer nodes than HOpGDP,;; 4. This savings far out-
weighed the heuristic computation overhead (on average about 48%
of the total running time), resulting in smaller overall planning times
for HOpGDP as shown in Figure 1b, supporting Hypothesis H2.

To conclude, our experimental results demonstrate that HOpGDP
outperforms optimal classical planners (due to its ability to exploit
domain-specific planning knowledge) as well as optimal blind search
HGN planners (due to the search guidance provided by hxr).

In the future, we plan to explore extensions of HOpGDP to sup-
port anytime-optimal planning as well as temporal planning.
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