
Intention Selection with Deadlines

Yuan Yao1 and Brian Logan1 and John Thangarajah2

1 INTRODUCTION

In BDI agent programming, an intention is the combined plan steps
an agent commits to in order to achieve a goal. One of the key fea-
tures of the BDI approach is the ability of an agent to pursue mul-
tiple goals concurrently, by interleaving the steps of multiple inten-
tions. Choosing the next step to progress (execute) from these con-
current intentions is critical, as the wrong choice can result in failure
to achieve one or more goals. Conversely, appropriate scheduling of
the steps in intentions can maximise the number of goals achieved by
the agent. Deciding which intention to progress next becomes more
challenging in settings where goals must be achieved before a dead-
line. An interleaving of steps in the agent’s intentions that avoids
conflicts may still result in failure to achieve a goal by its deadline.

There has been relatively little work on intention selection
with deadlines. One recent exception is AgentSpeak(RT). AgentS-
peak(RT) [3, 2] is a real-time agent programming language based on
AgentSpeak(L) in which top-level goals may have deadlines and pri-
orities. Given the estimated execution time of plans, AgentSpeak(RT)
schedules intentions so as to achieve a priority-maximal set of inten-
tions by their deadlines with a specified level of confidence. However
AgentSpeak(RT) avoids conflicts by scheduling potentially conflict-
ing intentions in FIFO fashion, which can make it more difficult for
an agent to achieve its goals by their deadlines.

In this paper, we present SR, a novel approach to intention selec-
tion with deadlines. SR extends the stochastic scheduling approach
of Yao et al. [5, 6, 4] in two ways. First, goals may have both a pre-
ferred achievement time (the time by which the goal should ideally
be achieved) and a deadline (the time by which the goal must be
achieved). Second, SR supports the concurrent execution of dura-
tive actions in different intentions. SR schedules intentions so as to
maximise the number of goals achieved and minimise tardiness (i.e,
the difference between the time a goal is achieved and its preferred
achievement time). We evaluate the performance of SR and compare
it to that of AgentSpeak(RT) in a simple blocks world domain. Our
results suggest SR outperforms AgentSpeak(RT) in this scenario.

2 INTENTIONS WITH DEADLINES

We extend the notion of goal found in BDI-based languages by intro-
ducing two temporal constructs: a preferred achievement time (soft
deadline) p, and a deadline (hard deadline) d, where p ≤ d ≤ ∞.
The preferred achievement time specifies the time by which a goal
should ideally be achieved; however achieving the goal after the pre-
ferred achievement time still has value. The deadline specifies the
time by which a goal must be achieved; achieving the goal after the
deadline has no value. Goals which are not achieved by their (hard)

1 University of Nottingham, email: {yvy | bsl}@cs.nott.ac.uk
2 RMIT University, email: john.thangarajah@rmit.edu.au

deadline are dropped. If a top-level goal with preferred achievement
time p is achieved at time t ≤ d, we define the tardiness in achieving
the goal as max(0, t− p).

Each action a an agent may perform also has an estimated execu-
tion time, e(a,Φ), which is a function of the agent’s beliefs Φ. The
estimated execution time may be specified by the developer, e.g., the
expected execution time of a ‘move’ action may be based on the dis-
tance to be moved, or learnt from experience, e.g., the agent may
learn that traversing a hallway during a busy period takes longer than
in the middle of the night. In general, the actual time it takes an ac-
tion to execute, t, will differ from e(a,Φ). We define the estimation
error in the execution time of an action a by |e(a,Φ)−t|

e(a,Φ)
.

We assume that the agent executes its intentions in parallel. Pro-
gressing intentions in parallel allows the agent to achieve the max-
imum number of goals by their deadlines. (Executing intentions in
parallel is often desirable for other reasons, e.g., to ensure more pre-
dictable response times for users or other agents.) Since external ac-
tions will, in general, require more time than a single deliberation
cycle to execute, this means that multiple actions will typically be
executing concurrently.

3 INTENTION SELECTION

In this section, we present our approach to intention selection, SR.
SR attempts to find an interleaving of steps in the agent’s intentions
which (a) maximises the number of goals achieved (by their hard
deadline), and (b), where the number of goals achieved is the same,
minimises the total tardiness (i.e, the difference between the time
goals are achieved and their preferred achievement time).

We use goal-plan trees to represent the relations between goals,
plans and actions, and to reason about the interactions between in-
tentions. The root of a goal-plan tree is a top-level goal (goal-node),
and its children are the plans that can be used to achieve the goal
(plan-nodes). Plans may in turn contain subgoals (goal nodes), giv-
ing rise to a tree structure representing all possible ways an agent can
achieve the top-level goal. As in [6, 4] goal-plan trees may contain
actions in plans (action nodes). We assume that each top-level goal is
associated with a preferred achievement time and deadline, and each
action is associated with the expected execution time of the action.

The agent’s current intentions are represented by a set of pairs,
I = {(T1, c1), . . . , (Tn, cn)}, where each Ti is a goal-plan tree cor-
responding to a top-level goal of the agent, and ci is the current step
(primitive action or a subgoal) of Ti. The next step of a goal-plan tree
is the step after the current step. For example, if the current step is a
subgoal, advancing the current step involves choosing a plan for the
subgoal, and setting the next step to be the first action of the plan.
If the current step is a primitive action, the next step is the basic ac-
tion or subgoal following that action in the same plan. An intention
is progressable if its current step does not point to an action that is

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1700

1700

currently executing, and the next-step (step after the current step) of
the intention is either an action whose precondition holds and its pre-
and postcondition does not conflict with the pre- or postcondition of
any currently executing action, or a sub-goal for which there is at
least one applicable plan in the current state.

If there is at least one progressable intention at the current deliber-
ation cycle, the SR algorithm is invoked to determine which intention
to progress (which current-step pointer to advance). SR is based on
Single-Player Monte-Carlo Tree Search (SP-MCTS) [1], a best-first
search in which pseudorandom simulations are used to guide expan-
sion of the search tree. Each node in the search tree represents a pos-
sible interleaving of steps from the goal-plan trees in I , and records
the state of the agent’s environment resulting from the execution of
this interleaving, the estimated time at which that state is achieved,
the current-step of each intention and the completion time for the
goals achieved on the path to this node. Edges represent the selection
of a plan for a subgoal or the execution of primitive action in a plan.

Starting from the current step in each intention and the current en-
vironment, SR iteratively builds a search tree. Each iteration consists
of four phases. In the selection phase, a leaf node, ne, representing a
non-terminal state s(ne) is selected for expansion using a modified
version of Upper Confidence bounds applied to Trees (UCT) [1]. In
the expansion phase, ne is expanded by adding child nodes represent-
ing the environment state (and the new current step of each intention)
resulting from executing each next step of a goal-plan tree that is ex-
ecutable in state s(ne). Each child node therefore corresponds to a
different choice of which intention to progress at this cycle. In the
simulation phase, a developer-specified number of simulations are
performed from a randomly selected child node, ns, to determine the
maximum number of goals that can be achieved from ns, vg , and
the total tardiness of the interleaving, vt. Starting in the environment
represented by ns, a next step of a goal-plan tree that is executable
in s(ns) is randomly selected, and the environment and the current
step pointer updated. This process is repeated until a terminal state is
reached in which no next steps can be executed or all top-level goals
are achieved. The value of the simulation is taken to be the values
of vg and vt in the terminal state. Finally, in the back-propagation
phase, vg and vt are back-propagated from ns to all nodes on the
path to the root node n0 to inform selection at the next iteration.

After a developer-specified number of iterations, the step that leads
to the best child of the root node is returned for execution at this
deliberation cycle. SR selects the best step using <g,t, i.e., first on
the number of top-level goals achieved, and, where two or more steps
result in the achievement of the same number of goals, it prefers steps
that also minimise total tardiness.

4 EVALUATING SR

To evaluate the ability of our approach to schedule intentions
with deadlines, we compared the performance of SR with AgentS-
peak(RT) in a simple Blocks World scenario in which an agent must
pick blocks and stack them to build towers. Each top-level goal in-
volves picking up two blocks from different locations and building
a tower at a specified location. Each top-level goal has a preferred
achievement time and deadline, specifying the times by which the
task should and must be completed. In the experiments reported be-
low, we used an environment with 30 cells. Initially, 20 randomly
selected cells contain a block (numbered from 1 to 20), and the re-
maining 10 cells (the locations of the towers) are empty. The actions
of picking up a block and stacking a block require 100 time units.
The time required by a move action is determined by the distance

the agent has to move (moving from one cell to another requires 100
time units). For simplicity, we assume the blocks and tower positions
are located on a straight line, and the number of blocks the agent
can carry is unlimited. The Blocks World scenario is very simple,
but representative of a large class of real-world problems in which an
agent must collect and use resources in order to achieve goals.

In our experiment, we used 50 sets of 10 goals. Each goal in-
volves collecting two specified blocks and stacking them in a spec-
ified empty cell (the block ids and tower positions are different for
each goal). Three goals are given initially, and the remaining top-
level goals are posted every 1650 time units. As the average time for
achieving a top-level goals is 3300 time units, posting a new goal
every 1650 time units means that, typically, the agent must achieve
more than one goal in parallel. We varied the deadline d for each top-
level goal from 7500 to 30000, and the preferred achievement time p
was 2500 time units less than the deadline.

Table 1: Goals achieved and tardiness with decreasing deadline

SR AS(RT)
d p #Goals Tardiness #Goals Tardiness

30000 27500 10 0 10 0
15000 12500 10 0 6.96 2386
10000 7500 10 2340 5.38 3195
7500 5000 9.34 3874 5.04 3220

The results are shown in Table 1. As can be seen, as the deadline
decreases, the performance of AgentSpeak(RT) declines rapidly. In
contrast, SR was able to achieve at least 9.34 goals on average,
though with tighter deadlines, tardiness increases significantly.

5 FUTURE WORK

SR takes deadline and preferred achievement time of goals into ac-
count when choosing which intention to progress. However, while
the choice of action at each deliberation cycle is based on the current
state of the agent’s environment at that cycle, the simulation of the
possible outcomes of actions assumes a static environment. In future
work we plan to investigate the incorporation of simple environment
models to allow the prediction of likely environment changes during
simulation, and evaluate SR in dynamic environments.

REFERENCES

[1] Maarten P. D. Schadd, Mark H. M. Winands, Mandy J. W. Tak, and
Jos W. H. M. Uiterwijk, ‘Single-player Monte-Carlo tree search for
SameGame’, Knowledge-Based Systems., 34, 3–11, (2012).

[2] Konstantin Vikhorev, Natasha Alechina, Rafael Bordini, and Brian Lo-
gan, ‘An operational semantics for AgentSpeak(RT) (preliminary re-
port)’, in Proceedings of the Ninth International Workshop on Declar-
ative Agent Languages and Technologies (DALT 2011), pp. 79–94, (May
2011).

[3] Konstantin Vikhorev, Natasha Alechina, and Brian Logan, ‘Agent pro-
gramming with priorities and deadlines’, in Proceedings of the Tenth In-
ternational Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2011), pp. 397–404, (May 2011).

[4] Yuan Yao and Brian Logan, ‘Action-level intention selection for BDI
agents’, in Proceedings of the 15th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2016), pp. 1227–
1235, (May 2016).

[5] Yuan Yao, Brian Logan, and John Thangarajah, ‘SP-MCTS-based inten-
tion scheduling for BDI agents’, in Proceedings of the 21st European
Conference on Artificial Intelligence, (August 2014).

[6] Yuan Yao, Brian Logan, and John Thangarajah, ‘Robust execution of
BDI agent programs by exploiting synergies between intentions’, in
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence
(AAAI-16), pp. 2558–2564, (February 2016).

Y. Yao et al. / Intention Selection with Deadlines 1701

