
Delete- ree Reachability Analysis
for Temporal and Hierarchical Planning

Arthur Bit-Monnot1 and David E. Smith2 and Minh Do2

Abstract. Reachability analysis is a crucial part of the heuristic
computation for many state of the art classical and temporal plan-
ners. In this paper, we study the difficulty that arises in assessing the
reachability of actions in planning problems containing sets of inter-
dependent actions, notably including problems with required concur-
rency as well as hierarchical planning problems. We show the limita-
tion of state-of-the-art techniques and propose a new method suitable
for both temporal and hierarchical planning problems. Our proposal
is evaluated on FAPE, a constraint-based temporal planner.3

1 Introduction

Reachability analysis is crucial in computing heuristics guiding
many classical and temporal planners. This is typically done by re-
laxing the action delete lists and constructing the reachability graph.
This graph is then used as a basis to extract a relaxed plan, which
serves as a non-admissible heuristic estimate of the actual plan reach-
ing the goals from the current state.

Temporal planning poses some additional challenges for reacha-
bility analysis as heuristics should not only estimate the total cost
but also the earliest time at which goals can be achieved. This can
be accomplished on the reachability graph by labeling: (1) proposi-
tions with the minimum time of the effects that can achieve them;
and (2) actions with the maximum time of the propositions they re-
quire as conditions. Since the reachability graph construction process
progresses as time increases, when all start conditions are reachable,
a given action a is eligible to be added to the graph. However, there
is the additional problem that a’s end conditions must also be reach-
able, although they do not need to be reachable until the end time of
a. To see why this is a problem for the conventional way of building
the reachability graph, consider the two actions in Figure 1: action
B achieves the end condition for action A, but requires a start effect
of A before it can start. Thus, B cannot start before A, but A cannot
end until after B has ended. This means that A is not fully reachable
until B is reachable, but B is not reachable unless A is reachable.
Whether this turns out to be possible depends on whether B fits in-
side of A. In this example, the reasoning is simple enough, but more
generally, B might be a complex chain of actions.

Planners such as POPF [2] address this problem by splitting du-
rative actions into instantaneous start and end events, and forcing a
time delay between the start and end events. In our example, the start
of A would be reachable, leading to the start of B being reachable,
which leads to the end of B being reachable, and finally the end
of A being reachable. This approach therefore concludes that A is
reachable. Unfortunately, the same conclusion is reached even when

1 LAAS-CNRS, Université de Toulouse, email: arthur.bit-monnot@laas.fr
2 NASA Ames Research Center, email: {david.smith, minh.do}@nasa.gov
3 A long version of this paper was presented at the HSDIP workshop [1].

A (duration: 10)

y

x

B (duration: 7)
x

y

Figure 1: Two interdependent actions: A with a start effect x and an
end condition y, and B with a start condition x and an end effect y.

B does not fit inside of A, because this “action-splitting” approach
allows A to “stretch” beyond its actual duration.

In this paper, we present an approach to reachability analysis that
addresses the above limitation and show how it can be beneficial for
both generative and hierarchical temporal planners.

2 Planning Model & Relaxation

Temporal Model. We consider temporal planning problems sim-
ilar to those of PDDL 2.1. For ease of presentation, we consider a
discrete time model and restrict ourselves to actions with fixed du-
ration and positive conditions.4 An action has a set of conditions Ca

and a set of effects Ea, all at arbitrary instants in the action envelope.
A condition c ∈ Ca has the form 〈[tc] fc〉, where fc is a fluent and
tc is a positive delay from the start of the action to the moment fc
is required to be true. An effect e ∈ Ea has the form 〈[te] fe〉 (resp.
〈[te]¬fe〉 for negative effects), where te is the positive delay from
the start of the action to the moment the fluent fe becomes true (resp.
false).
Relaxed Model. To estimate when each fact can be achieved, our

reachability analysis utilizes elementary actions, which are artificial
actions created from the original temporal actions defined in the do-
main description. Elementary actions contain: (i) only a single ‘add’
effect and (ii) the minimal set of conditions required to achieve that
effect. More specifically for each positive effect e = 〈[te] fe〉 of an
action a, there will be an elementary action ae with:
• a single effect 〈[1] fe〉
• for each condition 〈[tc] fc〉 of a, a condition 〈[tc − te + 1] fc〉
Our relaxed model is composed of those delete-free elementary ac-

tions, each giving one possible way of achieving a given fluent. For
any given elementary action, we say that a condition c = 〈[tc] fc〉 is
a before-condition (resp. an after-condition) if tc ≤ 0 (resp. tc > 0).
An after-condition represents a condition that is required when or af-
ter the effect of the elementary action becomes active (e.g. y is an
after-condition of the action A of Figure 1). In a reachability graph,
such conditions would be represented by a negative edge. Those
after-conditions are necessary for the presence of interdependencies
such as the one shown in Figure 1 [3].
4 Extensions to more general models are discussed in the long version of this

paper [1].

F

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1698

1698



3 Reachability Analysis with After-conditions

In POPF, the splitting mechanism used for reachability analysis re-
sults in ignoring all after-conditions of durative actions. In order to
avoid this additional relaxation, our method for reachability analy-
sis is based on repeatedly alternating two steps: (i) we optimistically
propagate achievements times while ignoring after-conditions; then
(ii) we enforce all after-conditions. More specifically:

1. As a preliminary, we select a set of symbols that are assumed
reachable at time 0. All fluents of the initial state are obviously
part of this set. They are optimistically complemented with all el-
ementary actions that have no before-conditions.

2. We then iteratively extend the set of assumed reachable nodes
with: (i) all fluents that have an assumed reachable achiever and
(ii) all actions whose every before-condition is assumed reachable.
Each reachable symbol is associated with an earliest appearance
time satisfying: (i) the minimal delays between an action and its
before-conditions and (ii) the minimal delay between a fluent and
its first achiever. This is done by a Dijkstra-like procedure that
processes the nodes by increasing their earliest appearance times.

3. Our optimistic assumptions are then revised recursively by in-
corporating the ignored after-conditions. Specifically: (i) any el-
ementary action with an after-condition on an unreachable fluent
is removed from the model, (ii) if a removed action a is the only
achiever of a fluent f , f is removed together with any action de-
pending on it, (iii) the minimal delays between an action and its
after-conditions are enforced by increasing the action’s earliest ap-
pearance time as much as necessary.

4. If any action was updated in the previous step, we go back to step
(2) and restart the propagation of earliest appearances from the
updated nodes. Otherwise, analysis finishes with a set of reachable
actions and fluents, each associated with an earliest appearance
time.

Because earliest appearances could be endlessly increased towards
infinity, we complement the last step with a detection of unreachable
nodes. A group of nodes N is unreachable if for any node n ∈ N ,
there is a delay of at least dmax between the earliest appearance of
any node n′ �∈ N and n, dmax being the highest delay between any
condition and its action or any action and its effect. The intuition is
that nodes of this group are delaying each other due to unachievable
interdependencies [1].

4 Extension to Hiearchical Planning

While automated reachability analysis is widespread in generative
planners, hierarchical planners still rely on manual annotation of
methods for this purpose. Here we propose a translation of hierarchi-
cal actions that exposes hierarchical features as additional conditions
and effects for the purpose of reachability analysis.

We associate each hierarchical action a to a task symbol τa and a
set of subtasks Sa. The intuition is that a achieves the task τa and
requires all its subtasks to be achieved by other actions. For a plan π
to be a solution it is required that:
• all initial tasks and all subtasks have been achieved. A task τ

spanning a duration [stτ , etτ ] is said to be achieved if there is
an action aτ in the plan that: (i) achieves the task τ ; (ii) starts at
stτ ; and (iii) ends at etτ .

• all actions in π achieve some task. This simulates HTN planners,
in which all actions are inserted to achieve a pending task.

To allow reasoning on those additional requirements, we transform
a hierarchical action a, with task τa, into a ‘flat’ action aflat with:
• all conditions and effects of a,

• one start condition 〈[0] required(τa)〉,
• one start effect 〈[0] started(τa)〉 and one end effect
〈[da] ended(τa)〉, where da is the duration of a,

• for each subtask 〈[d1, d2] τ〉 of a:
– two conditions 〈[d1] started(τ)〉 and 〈[d2] ended(τ)〉,
– one effect 〈[d1] required(τ)〉.

Actions resulting from this compilation step encompass both
causal and hierarchical features of the domain and can be split into el-
ementary actions for reachability analysis techniques described ear-
lier. This transformation usually exposes many interdependencies as
each action both enables and requires the presence of its subactions.

5 Experiments & Conclusion

Our technique has been implemented in FAPE [4], a constraint-based
temporal planner for the ANML language supporting both hierarchi-
cal and generative planning. Reachability analysis is used to (i) prune
the search space by detecting dead-ends; and (ii) disregard resolvers
involving unreachable actions.

Our method is tested with different configurations, R∞ being the
original method and R5 and R1 are variants in which the number of
iterations are limited to 5 and 1 respectively. R+ is the configuration
where all after-conditions are ignored, thus producing the same result
as the reachability analysis of POPF. ∅ denotes the configuration in
which no reachability analysis is performed. Evaluation was done on
various temporal domain with and without hierarchies.

R∞ R5 R1 R+
∅

(IPC-8) satellite (20) 14 14 14 14 15
(IPC-5) rovers (40) 25 25 25 25 25
(IPC-2) logistics (28) 8 8 8 8 8

(IPC-8) satellite-hier (20) 17 17 17 17 16
(IPC-5) rovers-hier (40) 22 22 22 22 22
(IPC-8) tms-hier (20) 7 7 7 7 7

(IPC-2) logistics-hier (28) 28 28 28 6 9
(LAAS) handover-hier (20) 16 16 16 7 7
(IPC-8) hiking-hier (20) 20 17 16 15 17
(LAAS) docks-hier (18) 17 13 12 7 7
Total (254) 174 167 165 128 133

Table 1: Number of solved tasks for various domains with a 30 min-
utes timeout. The best result is shown in bold. The number of prob-
lem instances is given in parenthesis.

As shown in Table 1, our method results in significant perfor-
mance gain on hierarchical problems. This is because those prob-
lems feature many examples of interdependent actions for which our
method is especially usefull. On temporally simple problems (here
non-hierarchical ones), our method is equivalent to the reachability
analysis of POPF and does not result in any runtime penalty. Note that
the use of reachability analysis is here limited to dead-end detection.
While this proves extremely useful on a wide variety of problems,
one could also contemplate using it as a base for heuristic extraction.

REFERENCES

[1] Arthur Bit-Monnot, David E. Smith, and Minh Do, ‘Delete-free Reach-
ability Analysis for Temporal and Hierarchical Planning’, in Heuristics
and Search for Domain-independent Planning, pp. 93–102, (2016).

[2] Amanda Coles, Andrew Coles, Maria Fox, and Derek Long, ‘Forward-
Chaining Partial-Order Planning’, in ICAPS, pp. 42–49, (2010).

[3] Martin C. Cooper, Frederic Maris, and Pierre Régnier, ‘Managing Tem-
poral Cycles in Planning Problems Requiring Concurrency’, Computa-
tional Intelligence, 29, 111–128, (2013).

[4] Filip Dvorak, Roman Bartak, Arthur Bit-Monnot, Felix Ingrand, and Ma-
lik Ghallab, ‘Planning and Acting with Temporal and Hierarchical De-
composition Models’, in ICTAI, pp. 115–121, (2014).

A. Bit-Monnot et al. / Delete-Free Reachability Analysis for Temporal and Hierarchical Planning 1699


	Introduction
	Planning Model & Relaxation
	Reachability Analysis with After-conditions
	Extension to Hiearchical Planning
	Experiments & Conclusion

