
Non-Deterministic Planning with Numeric Uncertainty
Liana Marinescu and Andrew Coles 1

Abstract. Uncertainty arises in many compelling real-world appli-
cations of planning. There is a large body of work on propositional
uncertainty where actions have non-deterministic outcomes. How-
ever handling numeric uncertainty has been given less consideration.
In this paper, we present a novel offline policy-building approach
for problems with numeric uncertainty. In particular, inspired by the
planner PRP, we define a numeric constraint representation that cap-
tures only relevant numeric information, supporting a more compact
policy representation. We also show how numeric dead ends can be
generalised to avoid redundant search. Empirical results show we can
substantially reduce the time taken to build a policy.

1 Introduction and Background
Planning accounting for uncertainty is relevant to many interesting
real-world problems, for instance where the dynamics of the envi-
ronment make it difficult to plan on the basis of actions having a
single, predictable outcome. In this work we look at fully observable
non-deterministic (FOND) planning, i.e. applying an action has sev-
eral possible outcomes, but we can observe which occurs. The task
of planning here is to find a policy (a mapping from states to actions)
that dictates what to do in each state reachable from the initial state.

Additionally, within this setting, we allow numeric effects to have
continuous uncertainty; specifically, we allow Gaussian-distributed
(independent) effects on variables. Each effect is of the form
v opN (w·v+k, σ2), where v is some state variable; op ∈ {+=,=};
w · v is a weighted sum of state variables; k ∈ �; and σ2 ∈ � is the
variance of the effect. In each state we store the mean and variance of
each variable: v and σ2(v). For a numeric precondition (or goal) of
the form w ·v ≥ c, we first compute the variance affecting it (1). The
precondition is then true with confidence θ iff (2) is satisfied (where
Φ is the Gaussian cumulative distribution function).

σ2(w · v) = ∑
w·v∈w·v w2 · σ2(v) (1)

w · v ≥ c+ σ(w · v) · Φ−1(θ) (2)

Effectively, this computes an offset we need to add onto the precon-
dition so that, even accounting for uncertainty, it remains true e.g.
99% of the time for θ = 0.99. The task of planning is then to find a
policy such that at each point, the preconditions of the action to be
applied (or the goals) are true with a given confidence level θ.

Our work builds upon two recent strands of research: a heuristic
for planning with continuous numeric uncertainty [5]; and a planner
for propositional FOND domains, PRP [8, 7]. In PRP, policies are
found by making repeated calls to a deterministic planning kernel,
which finds weak plans that work assuming the action outcome can
be chosen. To then obtain a policy that covers the other outcomes,
this process is recursively applied for the other states that could be
reached. Key to the success of PRP are two ideas:
1 Department of Informatics, King’s College London, UK

email: firstname.lastname@kcl.ac.uk

First, the policy maps partial states (rather than fully-specified
states) to actions. These partial states are found by regression: ev-
ery time a weak plan is added to the policy, the goals are regressed
through it step-by-step, and at each point a partial-state–action pair
is added to the policy. The benefit of regression is that it collects
the weakest preconditions needed for the tail of the plan to succeed
– if a state in a weak plan contains literals that are irrelevant to the
remaining steps, these literals will not be included in the partial state.

Second, for states that cannot reach the goal, dead end generali-
sation is used. In the propositional case, this amounts to a sensitivity
analysis to check which literals in a state are causing it to be a dead
end. If a dead end state S contains f , and evaluating S ∪ {¬f} with
the Relaxed Planning Graph (RPG) heuristic [4] indicates S is still a
dead end, then the truth value of f is irrelevant and can be ignored.
Any state found during policy-building that matches a known dead
end can then be discarded, avoiding wasted search effort.

Adapting these ideas to the continuous numeric case requires a
planning kernel (we use our recent work [5]) and suitable definitions
of regression and dead end generalisation. These form the next two
sections of this paper, followed by an empirical evaluation.

2 Regression for Numeric Constraints

As mentioned above, in PRP, the policy maps partial states to actions;
these partial states are found by regressing through the weak plans
given by the planning kernel. Regression begins with the goal state
and steps through the actions in reverse order. From a partial state
ps ′, regressing through an action a with propositional preconditions
Pre(a) and add-effects Eff +(a) yields a new partial state:

ps = (ps ′ \ Eff +(a)) ∪ Pre(a) (3)

The policy would then record that a should be applied in any state
S where S � ps . In effect, ps constrains S in a way that ensures
action a and subsequent actions in the weak plan are applicable. To
apply this same reasoning for the numeric case, we now derive an
analogous constraint representation for numeric partial states.

Suppose in state S, a variable v has value S[v] and variance
S[σ2(v)]. Applying an action a with an uncertain numeric effect
v+=N (p, q) (where p, q ∈ �) reaches a state S′, where:

S′[v] = S[v] + p S′[σ2(v)] = S[σ2(v)] + q (4)

If we have a precondition (v ≥ c) that must be true in S′, then
(S′[v] ≥ c) must be true with confidence θ allowing for variance
S′[σ2(v)]. By replacing S′ with S according to (4), we can rewrite
this as (S[v]+p ≥ c) allowing for variance (S[σ2(v)]+ q). Writing
the precondition in this form allows us to derive numeric regression
for increase effects: for (v ≥ c) to hold in the state after a, then
(S[v] + p ≥ c) must hold allowing for variance (S[σ2(v)] + q) in
the state before a. Each partial state ps in the policy records numeric
constraints in this form. When checking if S � ps , these constraints

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1694

1694

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

B
a

s
e

lin
e

:
T

im
e

 (
s
)

Our Approach: Time (s)

Rovers
TPP
AUV

 0.1

 1

 10

 100

 1000

 0.1 1 10 100 1000

W
it
h

o
u

t
N

u
m

e
ri
c
 D

.E
.G

:
T

im
e

 (
s
)

With Numeric D.E.G: Time (s)

Rovers
AUV

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000

W
it
h

o
u

t
N

u
m

e
ri
c
 D

.E
.G

:
#

F
S

A
P

s

With Numeric D.E.G: #FSAPs

Rovers
AUV

(a) Time with/without both new techniques (b) Time with/without dead end generalisation (c) FSAPs with/without dead end generalisation

Figure 1. Tests comparing our approach (X axis) to a baseline (Y axis). For the baseline in all cases, only propositional dead end generalisation is used. For
the Time to Solve baseline (a), additionally, only propositional regression is used. Tests that timed out are plotted at t = 1000. All axes are log scaled.

are evaluated alongside the propositions recorded in (3).
Analogously, applying an assignment effect v =N (p, q) reaches:

S′[v] = p S′[σ2(v)] = q (5)

Regression in this case is trivial, as there is no reference to S at all.
If a precondition (v ≥ c) must be true in S′, then (p ≥ c) must be
true with confidence θ allowing for variance q.

The above can be generalised to cases where the precondition
refers to a weighted sum of variables, rather than a single variable
v; and where p is a weighted sum of variables rather than a constant.
Our approach is based on the following intuition (for full details,
see [6]). Suppose we have a condition w · v ≥ c with a non-zero
weight on the affected variable v. Regressing this condition does one
of three things depending on the type of effect:

• Increase/decrease on v: we update c and the weights in w · v ac-
cording to the variables and values p in the effect. We separately
record any extra variance q that now needs to be accounted for.

• Assignment to v: we update c and the weights in w·v according to
the variables and values p in the effect. We then set the weight on
v to zero, effectively removing it from the condition, as regressing
through further effects on v would not affect this condition.

• Assignment to σ2(v): for the purpose of evaluating this condition,
from this point on we fix σ2(v) to the value q. (NB regressing
through further effects on v would not change this variance.)

3 Numeric Dead End Generalisation
In PRP, when building a policy, forbidden state–action pairs (FSAPs)
are recorded each time a dead end is found. As noted earlier, the dead
end is generalised by using the propositional RPG heuristic, to better
allow it to prune fruitless search branches during policy-building.

For the numeric case (with uncertainty), in a dead end state S we
store the mean v and variance σ2(v) of each variable. We generalise
S by finding a range of values for each variable’s mean and variance
such that S is still a dead end. This ties in nicely with the structure
of the metric RPG heuristic [3], which underlies the heuristic we
use in this work [5]. Within the metric RPG, the values of numeric
variables are relaxed so they lie in a range rather than taking on fixed
values. The upper and lower bounds on each value are then used to
optimistically determine whether preconditions are true. Ordinarily,
at the start of heuristic computation, the upper and lower bounds on
each variable are set to the value the variable takes in the state being
evaluated (in our case, the original dead end S). For generalising
numeric dead ends as below, we exploit this mechanic to expand the
range of still-dead-end values for each variable.

Suppose S is a dead end, and S[v] = k; i.e. initially S[v] ∈ [k, k].
We perform interval halving on the upper bound of v in the range
[k,∞], using our heuristic [5], to find the largest v for which S is still
a dead end. Likewise, we reduce the lower bound on v using interval
halving in the range [−∞, k]. If the revised bounds on v after interval
halving are [−∞,∞], it means the value of v is irrelevant to whether
S is a dead end. Otherwise, for finite bounds, we have expanded
the range of still-dead-end values of S[v]. This process is repeated
greedily, updating S at each step, for each variable and variance.

4 Evaluation
To evaluate our techniques, we compare them to a configuration of
our planner where only propositional regression and dead end gener-
alisation are used (the values of numeric variables are assumed to be
exactly those from the states in the weak plan, or from the dead end,
respectively). We evaluate on three domains: Rovers and AUV2[1];
and a ‘flat tyre’ variant of TPP [2]. Summary results are in Figure 1a,
showing a dramatic reduction in the time taken to solve problems.
TPP does not have dead ends, so it serves to highlight the benefits
of numeric regression. In Figures 1b and 1c, we test the benefits of
numeric dead end generalisation (both X and Y use numeric regres-
sion), in the two domains with dead ends. There is again an improve-
ment in time taken (Figure 1b). This is correlated with a reduction in
the number of forbidden-state–action pairs (Figure 1c): the lower the
number, the more ‘general’ the dead ends, and the faster the planner.

REFERENCES
[1] A. J. Coles, ‘Opportunistic Branched Plans to Maximise Utility in the

Presence of Resource Uncertainty’, in Proc. ECAI, (2012).
[2] A. Gerevini, D. Long, P. Haslum, A. Saetti, and Y. Dimopoulos, ‘De-

terministic Planning in the Fifth International Planning Competition:
PDDL3 and Experimental Evaluation of the Planners’, AIJ, (2009).

[3] J. Hoffmann, ‘The Metric-FF Planning System: Translating Ignoring
Delete Lists to Numeric State Variables’, JAIR, (2003).

[4] J. Hoffmann and B. Nebel, ‘The FF planning system: Fast plan genera-
tion through heuristic search’, JAIR, (2001).

[5] L.E. Marinescu and A.I. Coles, ‘Heuristic guidance for forward-chaining
planning with numeric uncertainty’, in Proc. ICAPS, (2016).

[6] L.E. Marinescu and A.I. Coles, ‘Non-deterministic planning with nu-
meric uncertainty’, Technical report, King’s College London, (2016).

[7] C. Muise, V. Belle, and S.A. McIlraith, ‘Computing contingent plans via
fully observable non-deterministic planning’, in Proc. AAAI, (2014).

[8] C. Muise, S.A. McIlraith, and J.C. Beck, ‘Improved non-deterministic
planning by exploiting state relevance’, in Proc. ICAPS, (2012).

2 We use a variant in which the AUV (Boaty McBoatface) must satisfy a
prescribed number of goals, rather than considering oversubscription.

L. Marinescu and A. Coles / Non-Deterministic Planning with Numeric Uncertainty 1695

