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Abstract.

Artificial intelligence has achieved superhuman performance in
a variety of tasks. Unfortunately, this is often done without inter-
pretable methods. In medicine, it is not sufficient to have an algo-
rithm with maximum accuracy. The methods must be evaluated by
experts. Our motivating task is to detect features of the eye using un-
labeled data. We detect features using a Bayesian changepoint model.
Changepoint detection can perform object recognition when applied
to two dimensional feature spaces such as images. We present a for-
mula for detecting any shape with the changepoint model. We then
extend it to multiple features in order to capture the color of an object.
The work presented here has the ability to incorporate prior informa-
tion, the ability to handle images of varying granularity, can provide
confidence estimates on object features in an image. It will serve as
the foundation for a classification method with interpretable results.

1 INTRODUCTION, BACKGROUND, &
RELATED WORK

The task of predicting the severity of diabetic retinopathy using im-
ages of the retina was a recent Kaggle competition. A significant
majority of the top 100 performers used Deep Learning approaches.
This approach has several drawbacks. When applying Convolutional
Neural Networks, the pixel sizes of the images must be the same.
This requires that many of the images are downgraded, which results
in information loss. Our approach can learn on varying granularities
which potentially enables us to transfer knowledge learned on more
detailed images to the less detailed ones.

Another drawback with Deep Learning Models, is a lack of in-
terpretability. Our model provides the location, color, and size of an
object with probability estimates for any combination. Detecting ob-
jects such as the basal ganglion helps with the prediction task of la-
beling veins because vascular growth stems out from the basal gan-
glion. Similarly detecting the macula helps during diagnosis because
stage 2 retinopathy is most often diagnosed by determining whether a
hemorrhage is blocking light from entering the macula. Importantly,
the accuracy of the detection of a macula and hemorrhage can be
easily verified by physicians.

The Gamma-Poisson conjugate prior has a closed form Bayesian
posterior for the changepoint problem. The Poisson distribution is
an obvious choice for image pixel value prediction since a Poisson
distribution outputs a natural number and images are coded with in-
tegers from 0 to 255 on three color channels.

Bayesian models also give us a unique opportunity to incorporate
prior information. Then evaluate/update that prior information. The
images in this data set have a great variety some are dark, some have
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Figure 1. Retina (whole), Optic Nerve (light), Macula (dark)

glare, some have artifacts. A well designed model will not require
preprocessing to handle these.

Bayesian methods can often seem too specific for adaptation to
multiple purposes. [1] derived an exact solution for multiple fea-
tures for changepoints along a single dimension. [2] used heuristics
to model a single feature, with the potential to model stacked signals.
Bayesian models also have a much better ability to learn confidence.
Heuristics can work but often fail miserably in outlier cases. So, we
developed a fully Bayesian extension of both of the discussed mod-
els.

2 METHOD

Given the following Gamma priors on our average values and Pois-
son priors on our observations we will develop a Gibbs sampling
algorithm for multiple features on arbitrary shapes. We allow dif-
ferent objects within the image (segments) and the different color
channels to have different priors (a,b). The notation is: S, shape; f,
feature (RGB layer); ij, position in image. The generative model is
as follows:
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The problem of inferring the posterior over the latent variables S,
λ1, λ2 can be solved via Bayes theorem. The full joint distribution
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The probability of the shape depends on the number of features
required for the shape. We define a square by its start and end points.
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We define a circle by is center, (x,y), and radius, r.

p(S) = p(x)p(y)p(r)

We see that each neighboring xij is independent of its neighbors
given that it is drawn from a known underlying gamma process. This
enables us to plug known prior distributions into the above formula.

Obtain the posterior conditionals for each latent variable by col-
lecting the terms in the full joint distribution that include the latent
variable of interest. Derive the posterior conditionals for each of the
variables S, λ1, λ2 by selecting relevant components from the full
joint distribution. When calculating the conditional probability we
can marginalize constants out of p(λ1|·).
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We can see that each λ(f) is independent of one another. Calculat-
ing the Multinomial Distribution of p(S| �λ1, �λ2,X) is a bit more
complex, and must be done separately for each component of S. We
defined the properties of a circle as two center points and a radius.
They all have the similar formulations. We present the multinomial
formula for the probability of the radius below.

log(p(r| �λ1, �λ2,X)) =+
M∑
f=1

(log(λ
(f)
1 )

∑
ij∈S

x
(f)
ij )+

−M ·
∑
ij∈S

(1) ·
M∑
f=1

λ
(f)
1 +

+

M∑
f=1

(log(λ
(f)
2 )

∑
ij �∈S

x
(f)
ij )−M ·

∑
ij �∈S

(1) ·
M∑
f=1

λ
(f)
2 .

After calculating each possible solution, we take the exponent and
then normalize.

3 EXPERIMENTS & RESULTS

A set of synthetic experiments were devised in increasing complex-
ity to examine this approaches ability to handle the data. First, we
display a change point algorithm run for one and two change points
on 1-D data. Then, the models for those are extended to the two di-
mensional case - the square. Then, we change the shape to a circle.
Last, three features are incorporated endowing objects in the image
with a color. For all of the synthetic experiments, the latent values of
the objects were learned without mistakes in 100% of trials.

Figure 2. Single Change Point (left) & Segment Shift (right)

Figure 3. Two Dimensional Change Point

Figure 4. Two Dimensional Segment Shift (a.k.a. Square Detection)

Figure 5. Two Dimensional Circle Detection

Figure 6. Color Circle Detection

Figure 7. Color Circle Detection

4 CONCLUSION

[1] and [2] are both one dimensional solutions. [2] attempts to handle
overlapped signals using heuristics while [1] develops an exact solu-
tion for a similar problem but does not handle stacked signals. The
next step in this work is to handle stacked signals. Once we can iden-
tify the key circular features of the eye, we can attempt an approach
for the vasculature and detecting hemorrhages.
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