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Abstract. We consider a wide spectrum of regularized stochastic
minimization problems, where the regularization term is composite
with a linear function. Examples of this formulation include graph-
guided regularized minimization, generalized Lasso and a class of
�1 regularized problems. The computational challenge is that the
closed-form solution of the proximal mapping associated with the
regularization term is not available due to the imposed linear com-
position. Fortunately, the structure of the regularization term allows
us to reformulate it as a new convex-concave saddle point problem
which can be solved using the Primal-Dual Hybrid Gradient (PDHG)
approach. However, this approach may be inefficient in realistic ap-
plications as computing the full gradient of the expected objective
function could be very expensive when the number of input data
samples is considerably large. To address this issue, we propose a
Stochastic PDHG (SPDHG) algorithm with either uniformly or non-
uniformly averaged iterates. Through uniformly averaged iterates,
the SPDHG algorithm converges in expectation with O(1/

√
t) rate

for general convex objectives and O(log(t)/t) rate for strongly con-
vex objectives, respectively. While with non-uniformly averaged it-
erates, the SPDHG algorithm is expected to converge with O(1/t)
rate for strongly convex objectives. Numerical experiments on dif-
ferent genres of datasets demonstrate that our proposed algorithm
outperforms other competing algorithms.

1 Introduction

In this paper, we are interested in solving a class of compositely reg-
ularized convex optimization problems:

min
x∈X

E [l(x, ξ)] + r(Fx), (1)

where x ∈ Rd, X is a convex compact set with diameter Dx,
r : Rl → R is a convex regularization function, and F ∈ Rl×d

is a penalty matrix (not necessarily diagonal) specifying the desired
structured sparsity pattern in x. Furthermore, we denote l(·, ·) :
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Rd × Ω → R as a smooth convex function when applying a pre-
diction rule x on a sample dataset {ξi = (ai, bi)}, and the corre-
sponding expectation is denoted by l(x) = E [l(x, ξ)].

When F = I , the above formulation accommodates quite a few
classic classification and regression models including Lasso obtained
by setting l(x, ξi) = 1

2

∥∥a�
i x− bi

∥∥2
and r(x) = λ ‖x‖1, and lin-

ear SVM obtained by letting l(x, ξi) = max
(
0, 1− bi · a�

i x
)

and
r(x) = (λ/2) ‖x‖22, where λ > 0 is a parameter. Moreover, the
general structure of F enables problem (1) to cover more compli-
cated problems arising from machine learning, such as graph-guided
regularized minimization [6] and the generalized Lasso model [17].

However, this modeling power also comes with a challenge in
computation. In particular, when F is not diagonal, it is very likely
that the proximal mapping associated with r(F (x)) does not admit
a closed-form expression. To cope with this difficulty, we could re-
formulate problem (1) as a convex-concave saddle point problem by
exploiting some special structure of the regularization term, and then
resort to the Primal-Dual Hybrid Gradient (PDHG) approach [23].
This approach has exhibited attractive numerical performance in im-
age processing and image restoration applications [5, 3, 23, 19]. We
refer readers to [4, 8, 9] to visit convergence properties of PDHG and
its variants.

In practice, E [l(x, ξ)] is often replaced by its empirical average
on a set of training samples. In this case, the computational com-
plexity of calling the function value or the full gradient of l(x) is
proportional to the number of training samples, which is extremely
huge for modern data-intensive applications. This could make PDHG
and linearized PDHG suffer severely from the very poor scalability.
Therefore, it is promising to propose a Stochastic variant of PDHG
(SPDHG). Like many well-studied incremental or stochastic gradient
methods [11, 14, 10, 1, 20], we draw a sample ξk+1 in random and
compute a noisy gradient ∇l(xk, ξk+1) at the k-th iteration with the
current iterate xk. As a result, the proposed SPDHG method enjoys
the capability of dealing with very large-scale datasets.

Another way to handle the non-diagonal F and the expected
objective function E [l(x, ξ)] is stochastic ADMM-like methods
[12, 21, 7, 15, 18, 2, 22, 16] which aim for solving the following
problem after introducing an additional variable z:

min
x∈X ,z=Fx

l(x) + r(z), (2)

whose augmented Lagrangian function is given by l(x) + r(z) +
λ�(z − Fx) + γ

2
‖z − Fx‖22. Comparing this function with the

convex-concave problem (1) in Section 3, we can see that ADMM-
like methods need to update one more vector variable than PDHG-
type methods in every iteration. Thus, it can be expected that the
per-iteration computational cost of ADMM-like methods is higher
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than our proposed algorithm SPDHG, as confirmed by the numerical
experiments in Section 5.

Our contribution. To the best of our knowledge, we propose in
this paper a new convex-concave formulation of problem (1), as well
as the first stochastic variant of the PDHG algorithm for both uni-
formly and non-uniformly averaged iterates with achievable iteration
complexities. In particular, for uniformly averaged iterates, the pro-
posed algorithm converges in expectation with the rate of O(1/

√
t)

and O(log(t)/t) for convex objectives and strongly convex objec-
tives, respectively. It is worth mentioning that the O(1/

√
t) conver-

gence rate is known to be best possible for first-order stochastic algo-
rithms under general convex objective functions [1], which has also
been established for the well-known stochastic ADMM (SADMM)
[12]. Moreover, when optimizing strongly convex objectives, non-
uniformly averaged iterates generated by SPDHG converge with
O(1/t) expected rate, which is the same as that of Optimal SADMM
proposed in [2]. However, as mentioned before, the significant ad-
vantage gained by SPDHG beyond SADMM is the low per-iteration
complexity. The effectiveness and efficiency of the proposed SPDHG
algorithm are demonstrated by encouraging empirical evaluation in
graph-guided regularized minimization tasks on several real-world
datasets.

2 Related Work

Given the importance of problem (1), various stochastic optimiza-
tion algorithms have been proposed to solve problem (1) or the more
general form of problem (1), which can be written into

min
x∈X ,y∈Rd

E [l(x, ξ)] + r(y), (3)

s.t. Ax+By = b.

It is easy to verify that problem (1) is a special case of problem (3)
when A = F , B = −I and b = 0.

In solving problem (3), Wang and Banerjee [18] proposed an on-
line ADMM that requires an easy proximal map of l. However, this
is difficult for many loss functions such as logistic loss function.
Ouyang et al. [12], Suzuki [15], Azadi and Sra [2], Gao et al. [7],
and recently Zhao et al. [21] developed several stochastic variants
of ADMM, which linearize l by using its noisy subgradient or gra-
dient and add a varying proximal term. Furthermore, Zhong and
Kwok [22] and Suzuki [16] respectively proposed a stochastic av-
eraged gradient-based ADM and a stochastic dual coordinate ascent
ADM, which can both obtain improved iteration complexities. How-
ever, these methods did not explore the structure of r and need to
update one more vector variable than PDHG-type methods in every
iteration. We will show in the experiments that our proposed SPDHG
algorithm is far more efficient than these algorithms.

It is worth mentioning that another stochastic version of the
primal-dual gradient approach was also analyzed in recent work [10].
However, their convex-concave formulation is different from ours,
and their algorithm cannot be applied to solve problem (1). Regard-
ing the iteration complexity, the proposed SPDHG algorithm has ac-
complished the best possible one for first-order stochastic algorithms
under general convex objective functions [1]. A better convergence
rate of O(1/t2 + 1/

√
t) can be obtained by using Nestrov’s acceler-

ation technique in [11].
The most related algorithm to our proposed SPDHG algorithm is

the SPDC algorithm [20] plus its adaptive variant [24]. Similar to our
SPDHG algorithm, the SPDC algorithm is also a stochastic variant of
the batch primal-dual algorithm developed by Chambolle and Pock

[4], which alternates between maximizing over a randomly chosen
dual variable and minimizing over the primal variable. However, the
SPDC algorithm does not explore the special structure of the regular-
ization term (Assumption 3), and their convex-concave formulation
is different from ours. This leads to the inability of the SPDC algo-
rithm to solve problem (1). Specifically, [20] suggests to reformulate
problem (1) as

min
x∈X

max
y∈Rd

{E [〈y, x〉 − l∗(y, ξ)] + r(Fx)} , (4)

where l∗(y, ξ) = supα∈Rd {〈α, y〉 − l(α, ξ)} is the convex con-
jugate of l(x, ξ). Then the SPDC algorithm in solving problem (4)
requires that the proximal map of l∗ and r(Fx) be easily computed,
which is somewhat strong for a variety of application problems. In
addition, the SPDC algorithm requires r to be strongly convex.

In contrast, our SPDHG algorithm only needs the smoothness of
l and the convexity of r, and hence efficiently solves a wide range
of graph-guided regularized optimization problems, which cannot be
solved by the SPDC algorithm and its adaptive variant.

3 Preliminaries

3.1 Assumptions

We make the following assumptions (Assumption 1-4) regarding
problem (1) throughout the paper:

Assumption 1 The optimal set of problem (1) is nonempty.

Assumption 2 l(·) is continuously differentiable with Lipschitz con-
tinuous gradient. That is, there exists a constant L > 0 such that

‖∇l(x1)−∇l(x2)‖ ≤ L ‖x1 − x2‖ , ∀x1, x2 ∈ X .

Many formulations in machine learning satisfy Assumption 2. The
following least square and logistic functions are two commonly used
ones:

l(x, ξi) =
1

2

∥∥∥a�
i x− bi

∥∥∥2

or l(x, ξi) = log
(
1 + exp

(
−bi · a�

i x
))

,

where ξi = (ai, bi) is a single data sample.

Assumption 3 r(x) is a continuous function which is possibly non-
smooth, and it can be described as follows:

r(x) = max
y∈Y

〈y, x〉 ,

where Y ∈ Rd is a convex compact set with diameter Dy .

Note that Assumption 3 is reasonable for the learning problems with
a norm regularization such as �1-norm or nuclear norm:

‖x‖1 = max
{〈y, x〉 | ‖y‖∞ ≤ 1

}
,

‖X‖∗ = max
{〈Y,X〉 | ‖Y ‖2 ≤ 1

}
.

Assumption 4 The function l(x) is easy for gradient estimation.
That is to say, any stochastic gradient estimation ∇l(·, ξ) for ∇l(·)
at x satisfies

E [∇l(x, ξ)] = ∇l(x),

and
E
[‖∇l(x, ξ)−∇l(x)‖2] ≤ σ2.
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Algorithm 1 SPDHG

Initialize: x0 and y0.
for k = 0, 1, 2, · · · do

Choose one data sample ξk+1 randomly.
Update yk+1 according to Eq. (6).
Update xk+1 according to Eq. (8).

end for

Output: x̄t =
t∑

k=0

αk+1xk+1 and ȳt =
t∑

k=0

αk+1yk+1.

where σ is some small number, and it is used in the proof of Lemma
(7).

Assumption 5 l(·) is μ-strongly convex at x. In other words, there
exists a constant μ > 0 such that

l(y)− l(x)− (y − x)� ∇l(x) ≥ μ

2
‖y − x‖2 , ∀y ∈ X .

We remark that Assumption 5 is optional, and it is only necessary for
the theoretical analysis that can lead to a lower iteration complexity.

3.2 Convex-Concave Saddle Point Problem

According to Assumption 3, we are able to rewrite problem (1) as the
following convex-concave saddle point problem:

min
x∈X

max
y∈Y

{P (y, x) = l(x) + 〈y, Fx〉} . (5)

Remark 6 We remark here that the formulation (5) is greatly dif-
ferent from those used in [10, 20, 24], where they formulate prob-
lem (1) as another convex-concave saddle point problem (4) by us-
ing the convex conjugate of l. Therefore, their algorithms are limited
to solving problem (1) due to the fact that the proximal mapping of
r(Fx) is difficult to compute.

This problem can be solved by Linearized PDHG (LPDHG) with the
following iteration scheme:

yk+1 := argmax
y∈Y

{
P (y, xk)− 1

2s

∥∥∥y − yk
∥∥∥2

}
, (6)

xk+1 :=
[
xk − β

(
∇l(xk) + F�yk+1

)]
X
. (7)

However, the above algorithm is inefficient since computing ∇l(xk)
in each iteration is very costly when the total number of samples n
is large. This inspires us to propose a stochastic variant of PDHG,
where only the noisy gradient ∇l(xk, ξk+1) is computed at each
step.

4 Stochastic PDHG

In this section, we first propose our Stochastic Primal-Dual Hy-
brid Gradient (SPDHG) algorithms with either uniformly or non-
uniformly averaged iterates for solving problem (5); and then provide
the detailed convergence analysis of the proposed algorithms.

4.1 Algorithm

The SPDHG is presented in Algorithm 1, where we have addressed
the following three important issues: how to apply the noisy gradient,
how to choose the step-size, and how to determine the weights for the
non-uniformly averaged iterates.

Stochastic Gradient: Our SPDHG algorithm shares some com-
mon features with the LPDHG algorithm. In fact, the y-subproblems
for both algorithms are essentially the same, while for the x-
subproblem we adopt the noisy gradient ∇l(xk, ξk+1) in SPDHG
rather than the full gradient ∇l(xk) in LPDHG, i.e.,

xk+1 :=
[
xk − βk+1

(
∇l(xk, ξk+1) + F�yk+1

)]
X
. (8)

That is, in SPDHG we first maximize over the dual variable and
then perform one-step stochastic gradient descent along the direction
−∇l(xk, ξk+1)− F�yk+1 with step-size βk+1.

The Step-Size βk+1: The choice of the step-size βk+1 varies with
respect to the different conditions satisfied by the objective function
l. Different step-size rules also lead to different convergence rates.
Note that a sequence of vanishing step-sizes is necessary since we do
not adopt any technique of variance reduction in the SPDHG algo-
rithm.

Non-uniformly Averaged Iterates: It was shown in [2] that the
non-uniformly averaged iterates generated by stochastic algorithms
converge with fewer iterations. Inspired by their work, through non-
uniformly averaging the iterates of the SPDHG algorithm and adopt-
ing a slightly modified step-size, we manage to establish an acceler-
ated convergence rate of O(1/t) in expectation.

For the convenience of readers, we summarize the convergence
properties with respect to different settings in Table 1.

Table 1: Convergence properties.

l General Convex Strongly Convex
βk+1 1√

k+1+L
1

μ(k+1)+L
2

μ(k+2)+2L

αk+1 1
t+1

2(k+1)
(t+1)(t+2)

Rate O( 1√
t
) O(

log(t)
t

) O( 1
t
)

4.2 Convergence of uniformly averaging under
convex objective functions

In this subsection, we analyze the convergence property of the
SPDHG algorithm with uniformly averaged iterates for general con-
vex objective functions.

Lemma 7 Let (yk+1, xk+1) be generated by Algorithm 1, and βk+1

and αk+1 be shown in Table 1. For any optimal solution (y∗, x∗) of
problem (5), it holds that

0 ≥ E

[
P (yk+1, x∗)− P (y∗, xk+1)

]
(9)

≥
√
k + 1 + L

2

(
E

∥∥∥x∗ − xk+1
∥∥∥2

− E

∥∥∥x∗ − xk
∥∥∥2

)

+
1

2s

(
E

∥∥∥y∗ − yk+1
∥∥∥2

− E

∥∥∥y∗ − yk
∥∥∥2

)

−λmax(F
�F )D2

y + σ2

√
k + 1

.

Proof. For any optimal solution (y∗, x∗) of problem (5), the first-
order optimality conditions for Eq. (6) and Eq. (8) are

0 ≤
(
y∗ − yk+1

)� (
−Fxk +

1

s

(
yk+1 − yk

))

0 ≤
(
x∗ − xk+1

)� [
xk+1 − xk + βk+1

(
∇l(xk, ξk+1) + F�yk+1

)]
,
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which implies that(
x∗ − xk+1

)�
∇l(xk, ξk+1)−

(
y∗ − yk+1

)�
Fxk+1

+
(
x∗ − xk+1

)�
F�yk+1

≥ 1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2

−
∥∥∥x∗ − xk

∥∥∥2

+
∥∥∥xk+1 − xk

∥∥∥2
)

+
1

2s

(∥∥∥y∗ − yk+1
∥∥∥2

−
∥∥∥y∗ − yk

∥∥∥2
)

+
(
y∗ − yk+1

)� (
Fxk − Fxk+1

)
. (10)

Furthermore, for any γ > 0 we have(
y∗ − yk+1

)� (
Fxk − Fxk+1

)

≥ −λmax(F
�F )D2

y

γ
− γ

4

∥∥∥xk − xk+1
∥∥∥2

, (11)

and (
x∗ − xk+1

)�
∇l(xk, ξk+1)

=
(
x∗ − xk+1

)�
∇l(xk) +

(
x∗ − xk+1

)�
δk+1

≤ l(x∗)− l(xk+1) +
L

2

∥∥∥xk − xk+1
∥∥∥2

+
(
x∗ − xk+1

)�
δk+1

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)�
δk+1

+
L+

√
k + 1/2

2

∥∥∥xk − xk+1
∥∥∥2

+
1√
k + 1

∥∥∥δk+1
∥∥∥2

,

where the first inequality holds due to Lemma 6.2 [7], and δk+1 =
∇l(xk, ξk+1) − ∇l(xk). Then by letting γ =

√
k + 1 in Eq. (11),

we obtain

l(x∗)− l(xk+1) +

(
y∗ − yk+1

x∗ − xk+1

)� ( −Fxk+1

F�yk+1

)

≥ 1

2βk+1

(∥∥∥x∗ − xk+1
∥∥∥2

−
∥∥∥x∗ − xk

∥∥∥2
)

+
1

2s

(∥∥∥y∗ − yk+1
∥∥∥2

−
∥∥∥y∗ − yk

∥∥∥2
)
− λmax(F

�F )D2
y√

k + 1

−
(
x∗ − xk

)�
δk+1 −

∥∥δk+1
∥∥2

√
k + 1

.

Since xk is independent of ξk+1, we take the expectation on both
sides of the above inequality conditioning on xk, yk, and conclude
that

E

[
P (yk+1, x∗)− P (y∗, xk+1)

]

≥ 1

2βk+1

(
E

∥∥∥x∗ − xk+1
∥∥∥2

−
∥∥∥x∗ − xk

∥∥∥2
)
− E

∥∥δk+1
∥∥2

√
k + 1

+
1

2s

(
E

∥∥∥y∗ − yk+1
∥∥∥2

−
∥∥∥y∗ − yk

∥∥∥2
)
− λmax(F

�F )D2
y√

k + 1
.

Finally, Eq. (9) follows from the above inequality and Assumption 4.
�

We present the main result for uniformly averaged iterates under gen-
eral convex objective functions in the following theorem.

Theorem 8 Denote βk+1, αk+1 and
(
ȳt, x̄t

)
as shown in Table 1.

For any optimal solution (y∗, x∗) of problem (5),
(
ȳt, x̄t

)
converges

to (y∗, x∗) with O(1/
√
t) rate in expectation.

Proof. Because (yk, xk) ∈ Y×X , it holds true that (ȳt, x̄t) ∈ Y×X
for all t ≥ 0. By invoking the convexity of function l(·) and using
Eq. (10), we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 1

t+ 1

t∑
k=0

[
1

2s

(
E

∥∥∥y∗ − yk+1
∥∥∥2

− E

∥∥∥y∗ − yk
∥∥∥2

)

+

√
k + 1 + L

2

(
E

∥∥∥x∗ − xk+1
∥∥∥2

− E

∥∥∥x∗ − xk
∥∥∥2

)

−λmax(F
�F )D2

y√
k + 1

− σ2

√
k + 1

]

≥ − D2
y

2s(t+ 1)
− LD2

x

2(t+ 1)
− D2

x + 2λmax(F
�F )D2

y + 2σ2

√
t+ 1

.

This together with the fact that E
[
P (ȳt, x∗)− P (y∗, x̄t)

] ≤ 0 im-
plies the conclusion in Theorem 8. �

4.3 Convergence of uniformly averaging under
strongly convex objective functions

In this subsection, we analyze the convergence property of the
SPDHG algorithm with uniformly averaged iterates for strongly con-
vex objective functions.

Lemma 9 Let (yk+1, xk+1) be generated by Algorithm 1, and βk+1

and αk+1 be shown in Table 1. For any optimal solution (y∗, x∗) of
problem (5), it holds that

0 ≥ E

[
P (yk+1, x∗)− P (y∗, xk+1)

]
(12)

≥ μ(k + 1) + L

2
E

∥∥∥x∗ − xk+1
∥∥∥2

+
1

2s
E

∥∥∥y∗ − yk+1
∥∥∥2

−μk + L

2
E

∥∥∥x∗ − xk
∥∥∥2

− 1

2s
E

∥∥∥y∗ − yk
∥∥∥2

−λmax(F
�F )D2

y + σ2

μ(k + 1)
.

Proof. By using the same argument as Lemma 7 and the strongly
convexity of l, we have

(
x∗ − xk+1

)�
∇l(xk, ξk+1) (13)

≤ l(x∗)− l(xk)− μ

2

∥∥∥x∗ − xk
∥∥∥2

+ l(xk)− l(xk+1)

+
L

2

∥∥∥xk − xk+1
∥∥∥2

+
(
x∗ − xk+1

)�
δk+1

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)�
δk+1 − μ

2

∥∥∥x∗ − xk
∥∥∥2

+
L

2

∥∥∥xk − xk+1
∥∥∥2

+
κ

4

∥∥∥xk − xk+1
∥∥∥2

+
1

κ

∥∥∥δk+1
∥∥∥2

.

Substituting Eq. (11) with γ = μ(k + 1) and Eq. (13) with κ =
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μ(k + 1) into Eq. (10) yields that

l(x∗)− l(xk+1) +

(
y∗ − yk+1

x∗ − xk+1

)� ( −Fxk+1

F�yk+1

)

≥ 1

2s

∥∥∥y∗ − yk+1
∥∥∥2

− 1

2s

∥∥∥y∗ − yk
∥∥∥2

−
∥∥δk+1

∥∥2

μ(k + 1)

+
μ(k + 1) + L

2

∥∥∥x∗ − xk+1
∥∥∥2

− μk + L

2

∥∥∥x∗ − xk
∥∥∥2

+

(
1

2βk+1
− L+ μ(k + 1)

2

)∥∥∥xk − xk+1
∥∥∥2

.

−λmax(F
�F )D2

y

μ(k + 1)
−

(
x∗ − xk

)�
δk+1.

Then we obtain Eq. (12) as the same as that in Lemma 7. �

We present the main result in the following theorem when the objec-
tive function is further assumed to be strongly convex.

Theorem 10 Denote βk+1, αk+1 and
(
ȳt, x̄t

)
as shown in Table 1.

For any optimal solution (y∗, x∗) of problem (5),
(
ȳt, x̄t

)
converges

to (y∗, x∗) with O(log(t)/t) rate in expectation.

Proof. Because (yk, xk) ∈ Y × X , it holds that (ȳt, x̄t) ∈ Y × X
for all t ≥ 0. By invoking the convexity of function l(·) and using
Eq. (12), we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 1

t+ 1

t∑
k=0

[
1

2s

(
E

∥∥∥y∗ − yk+1
∥∥∥2

− E

∥∥∥y∗ − yk
∥∥∥2

)

+
μ(k + 1) + L

2

∥∥∥x∗ − xk+1
∥∥∥2

− μk + L

2

∥∥∥x∗ − xk
∥∥∥2

−λmax(F
�F )D2

y + σ2

μ(k + 1)

]

≥ − D2
y

2s(t+ 1)
− LD2

x

2(t+ 1)
−

(
λmax(F

�F )D2
y + σ2

)
log(t+ 1)

μ(t+ 1)
.

This together with the fact that E
[
P (ȳt, x∗)− P (y∗, x̄t)

] ≤ 0 im-
plies the conclusion in Theorem 10. �

4.4 Convergence of non-uniformly averaging
under strongly convex objective functions

In this subsection, we analyze the convergence property of the
SPDHG algorithm with non-uniformly averaged iterates for strongly
convex objective functions.

Lemma 11 Let (yk+1, xk+1) be generated by Algorithm 1, and
βk+1 and αk+1 be shown in Table 1. For any optimal solution
(y∗, x∗) of problem (5), it holds that

0 ≥ E

[
P (yk+1, x∗)− P (y∗, xk+1)

]
(14)

≥ μ(k + 2) + 2L

4
E

∥∥∥x∗ − xk+1
∥∥∥2

+
1

2s
E

∥∥∥y∗ − yk+1
∥∥∥2

−μk + 2L

4
E

∥∥∥x∗ − xk
∥∥∥2

− 1

2s
E

∥∥∥y∗ − yk
∥∥∥2

−2λmax(F
�F )D2

y + 2σ2

μ(k + 1)
.

Proof. By substituting Eq. (11) with γ = μ(k+1)
2

and Eq. (13) with
κ = μ(k+1)

2
into Eq. (10), we have(
y∗ − yk+1

)� (
Fxk − Fxk+1

)

≥ −2λmax(F
�F )D2

y

μ(k + 1)
− μ(k + 1)

8

∥∥∥xk − xk+1
∥∥∥2

,

and (
x∗ − xk+1

)�
∇l(xk, ξk+1)

≤ l(x∗)− l(xk+1) +
(
x∗ − xk

)�
δk+1 − μ

2

∥∥∥x∗ − xk
∥∥∥2

+
L

2

∥∥∥xk − xk+1
∥∥∥2

+
μ(k + 1)

8

∥∥∥xk − xk+1
∥∥∥2

+
2

μ(k + 1)

∥∥∥δk+1
∥∥∥2

.

Then we plug the above two inequalities into Eq. (10), and then fol-
low the same argument as Lemma 9 to obtain the desired inequality
in Eq. (14). �

We present the main result for non-uniformly averaged iterates under
strongly convex functions in the following theorem.

Theorem 12 Denote βk+1, αk+1 and
(
ȳt, x̄t

)
as shown in Table 1.

For any optimal solution (y∗, x∗) of problem (5),
(
ȳt, x̄t

)
converges

to (y∗, x∗) with O(1/t) rate in expectation.

Proof. We have (ȳt, x̄t) ∈ Y × X for all t ≥ 0. By invoking the
convexity of function l(·) and using Eq. (14), we have

E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ 2

(t+ 1)(t+ 2)

t∑
k=0

(k + 1)

[
−2λmax(F

�F )D2
y + 2σ2

μ(k + 1)

+
μ(k + 2) + 2L

4

∥∥∥x∗ − xk+1
∥∥∥2

− μk + 2L

4

∥∥∥x∗ − xk
∥∥∥2

1

2s

(
E

∥∥∥y∗ − yk+1
∥∥∥2

− E

∥∥∥y∗ − yk
∥∥∥2

)]

≥ − D2
y

s(t+ 2)
− LD2

x

t+ 2
− 4λmax(F

�F )D2
y + 4σ2

μ(t+ 2)

+
μ

2(t+ 1)(t+ 2)

t∑
k=0

[
(k + 2)(k + 1)

∥∥∥x∗ − xk+1
∥∥∥2

−(k + 1)k
∥∥∥x∗ − xk

∥∥∥2
]
.

Therefore, we conclude that

0 ≥ E
[
P (ȳt, x∗)− P (y∗, x̄t)

]
≥ − D2

y

s(t+ 2)
− LD2

x

t+ 2
− 4λmax(F

�F )D2
y + 4σ2

μ(t+ 2)
,

which implies the conclusion in Theorem 12. �

5 Experiments

We conduct experiments by evaluating two models: graph-guided lo-
gistic regression (GGLR) (15) and graph-guided regularized logistic
regression (GGRLR) (16) [22],

min
x∈X

l(x) + λ‖Fx‖1 (15)
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Figure 1: Comparison of SPDHG with STOC-ADMM (SADMM), RDA-ADMM, OPG-ADMM, Fast-SADMM (FSADMM), Ada-
SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Logistic Regression Task. Epoch for the horizontal axis is the number of
iterations divided by the dataset size. Left Panels: Averaged objective values. Middle Panels: Averaged test losses. Right Panels: Averaged
time costs (in seconds).

and
min
x∈X

l(x) +
γ

2
‖x‖22 + λ‖Fx‖1. (16)

Here l(x) = 1
N

[
N∑
i=1

l(x, ξi)

]
is empirical average of

l(x, ξi) on a set of samples, and l(x, ξi) is logistic function
log

(
1 + exp

(−bi · a�
i x

))
, where ξi = (ai, bi). λ is the regulariza-

tion parameter. F is a penalty matrix promoting the desired sparse
structure of x, which is generated by sparse inverse covariance

selection [13]. To proceed, we reformulate problems (15) and (16)
into the convex-concave saddle point problem (5) and apply our
proposed SPDHG algorithm. On the other hand, we can reformulate
problems (15) and (16) into problem (2) by introducing an additional
variable z = Fx and then apply stochastic ADMM algorithms.

In the experiments, we compare our SPDHG algorithm with
the LPDHG algorithm, and six existing stochastic ADMM algo-
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Figure 2: Comparison of SPDHG-SC1 (Uniformly Averaged) and SPDHG-SC2 (Non-Uniformly Averaged) with STOC-ADMM (SADMM),
RDA-ADMM, OPG-ADMM, Fast-SADMM (FSADMM), Ada-SADMMdiag, Ada-SADMMfull and LPDHG on Graph-Guided Regular-

ized Logistic Regression Task. Epoch for the horizontal axis is the number of iterations divided by the dataset size. Left Panels: Averaged
objective values. Middle Panels: Averaged test losses. Right Panels: Averaged time costs (in seconds).

rithms7: SADMM [12], OPG-ADMM [15], RDA-ADMM [15],
FSADMM[22], and two variants of adaptive SADMM (i.e., SADM-
Mdiag and SADMMfull) [21]. We do not include online ADMM [18]
and SDCA-ADMM [16] since [15] has shown that RDA-ADMM
performs better than online ADMM while [20] has shown that the

7 We use the code of SADMM, OPG-ADMM, RDA-ADMM and FSADMM
provided by the authors while implementing two variants of adaptive
SADMM according to [21].

performance of FSADMM is comparable to that of SDCA-ADMM.
Finally, SPDC and Adaptive SPDC are excluded from the experi-
ments since they cannot solve problem (15) and problem (16), as
clarified in Section 2.

The experiments are conducted on six binary classification
datasets: 20news8, a9a, mushrooms, w8a, splice and svmguide39. On

8 www.cs.nyu.edu/roweis/data.html.
9 https://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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Table 2: Statistics of datasets.
dataset number of samples dimensionality

svmguide3 1243 21
splice 1000 60
a9a 32,561 123
w8a 64,700 300

20news 16,242 100
mushrooms 8,124 112

each dataset, we use 80% samples for training and 20% for testing,
and calculate the lipschitz constant L as its classical upper bound
L̂ = 0.25max1≤i≤n ‖ai‖2. The regularization parameters are set
to λ = 10−5 and γ = 10−2. To reduce statistical variability, ex-
perimental results are averaged over 10 repetitions. We set the pa-
rameters of SPDHG exactly following our theory while using cross
validation to select the parameters of the other algorithms. Addi-
tionally, we use the metrics in [22] to compare our algorithm with
the other algorithms, including objective values, test losses and time
costs to compare our algorithm with the other. The “test loss” means
the value of the empirically averaged loss evaluated on a test dataset,
while the “objective value” means the sum of the empirically av-
eraged loss and regularized terms evaluated on a training dataset,
and the “time cost” means the computational time consumption of
each algorithm. Specifically, we use test losses (i.e., l(x)) on test
datasets, objective values (i.e., l(x)+λ‖Fx‖1 on the GGLR task and
l(x) + γ

2
‖x‖22 + λ‖Fx‖1 on the GGRLR task) on training datasets,

and computational time costs on training datasets.
Figure 1 shows the objective values, test losses and time costs as

the function of the number of epochs on the GGLR task, where the
objective function is convex but not necessarily strongly convex. We
observe that our algorithm SPDHG mostly achieves the best perfor-
mance, surpassing six stochastic ADMM algorithms, all of which
outperform LPDHG by a significant margin. FSADMM sometimes
achieves better solutions but consumes much more computational
time than SPDHG. In fact, our algorithm requires the least iterations
and computational time among all the evaluated algorithms. There-
fore, the performance of our algorithm SPDHG on four datasets is
most stable and effective among all algorithms.

We further compare our algorithm against the other algorithms on
the GGRLR task, where the objective function is strongly convex.
The experimental results are displayed in Figure 2. Our algorithm
still outperforms the other algorithms consistently, which supports
our analysis in the previous sections. We also find that the difference
between uniformly averaging and non-uniformly averaging shown in
Figure 2 is not significant. One reason is that our algorithm converges
within only one or two effective epochs. In this case, non-uniformly
averaging will not exhibit its advantage.

6 Conclusions
In this paper, we proposed a novel convex-concave saddle point for-
mulation to resolve problem (1) as well as the first stochastic vari-
ant of the PDHG algorithm, namely SPDHG. The new algorithm can
tackle a variety of real-world problems which cannot be solved by the
existing stochastic primal-dual algorithms proposed in [10, 20, 24].
We further proved that the proposed SPDHG algorithm converges in
expectation with the rate of O(1/

√
t) and O(log(t)/t) for general

and strongly convex objectives, respectively. By averaging iterates
non-uniformly, the SPDHG algorithm converges in expectation with
the rate of O(1/t) for strongly convex objectives.

The SPDHG algorithm is well-suited for addressing compositely
regularized minimization problems when the penalty matrix F is
non-diagonal. The experiments in performing graph-guided logis-
tic regression and graph-guided regularized logistic regression tasks

demonstrated that our SPDHG algorithm outperforms the other com-
peting stochastic algorithms.
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