
Cuilt: A Scalable, Mix-and-Match Framework for Local
Iterative Approximate Best-Response Algorithms

Mihaela Verman and Philip Stutz and Robin Hafen and Abraham Bernstein 1

Abstract. We implement CUILT, a scalable mix-and-match frame-
work for Local Iterative Approximate Best-Response Algorithms for
DCOPs, using the graph processing framework SIGNAL/COLLECT,
where each agent is modeled as a vertex and communication path-
ways are represented as edges. Choosing this abstraction allows us to
exploit the generic graph-oriented distribution/optimization heuris-
tics and makes our proposed framework scalable, configurable, as
well as extensible. We found that this approach allows us to scale to
problems more than 3 orders of magnitude larger than results com-
monly published so far, to easily create hybrid algorithms by mixing
components, and to run the algorithms fast, in a parallel fashion.

1 Introduction

A Distributed Constraint Optimization Problem (DCOP) consists of
a set of variables, a set of domains for the variables, a set of con-
straints over subsets of the variables, and utility functions for each
of the constraints. Variables are controlled by agents, and the goal is
to find the variable assignment that will maximize the global utility
function, usually defined as the sum of utilities over all constraints.
Chapman et al. [3, 4] propose a theoretical unifying framework for
the class of Local Iterative Approximate Best-Response Algorithms,
where agents can only be aware of their immediate neighbors’ states.
CUILT2 is based on this framework. Chapman et al. identify three
components for the algorithms, making them easily comparable and
enabling the creation of hybrid algorithms: (1) the state evalua-

tion, which updates an algorithm-specific target function to eval-
uate prospective states; (2) the decision rule, which represents how
the agent decides which action to take next by using the already com-
puted target function from the state evaluation step; (3) the adjust-

ment schedule, which refers to the order in which the agents execute
their processes.

There are other implemented frameworks for algorithms for
DCOPs [6, 12, 10, 7], but to our knowledge, none is tailored for this
class of algorithms or takes advantage of their modularity. CUILT

seeks to model exactly that, and we implement it inside a graph pro-
cessing framework that comes with several other benefits.

SIGNAL/COLLECT [9] is a framework for distributed large-scale
graph processing implemented in Scala3. The programming model
is vertex-centric: vertices communicate with each other via signals
that are sent along directed edges (signal), and use the received sig-
nals to update their state (collect). A problem and an algorithm are
specified by providing the graph structure, initial states, and the sig-
nal and collect functions. We chose SIGNAL/COLLECT not only be-
cause DCOPs can map well to graph abstractions, but also because of

1 University of Zurich, Switzerland
2 https://github.com/elaverman/cuilt/
3 www.signalcollect.com

the capabilities and unique features of this graph processing frame-
work: parallel and distributed execution, synchronous/asynchronous
scheduling, aggregation operations and convergence detection.

2 CUILT

In CUILT, variables are represented as vertices; the neighborhood
(two variables sharing at least one constraint) relationship is de-
scribed by edges. The utility function of the “agent” responsible for
a variable is dependent on the state of the adjacent vertices.

The Algorithm will be specified by the way in which different
components are mixed and matched. To add different components
we use Scala traits, which can be easily combined. CUILT defines the
base Algorithm trait, with the types it needs and the methods that it
requires. Implementations for the specified CUILT modules then get
mixed and need to cover all the required methods of the Algorithm.
The flexibility of CUILT comes from the fact that the components
are loosely coupled and can be easily mixed and matched. The Sig-

nalCollectAlgorithmBridge provides the implementations for the
vertices and edges, which assemble the components provided by the
implementations of other modules, and describes, through its collect
method, the behaviour of an agent at every step. The methods of Al-
gorithm, which are used inside the collect step, are each provided
by implementations of the several modules that extend Algorithm:
the TargetFunction, DecisionRule and AdjustmentSchedule, pro-
viding the functionality described by Chapman et al., and the added
StateModule, Utility and TerminationRule.

To illustrate the flexibility of the framework, we provide imple-
mentations (through the recombination of components) of four algo-
rithms from the category of iterative approximate best-response al-
gorithms for DCOPs: the Distributed Stochastic Algorithm (DSA-A,
DSA-B)[11, 1], Distributed Simulated Annealing with Termination
Detection (DSAN-TD), Joint Strategy Fictitious Play with Inertia
(JSFPI) [8], Weighted Regret Matching with Inertia (WRMI) [2]. Be-
sides these components, we also added the ε-Greedy Decision Rule
[3]. DSAN-TD is a modification of Distributed Simulated Annealing
[1]. While DSAN exhibits oscillations in under-constrained problems
[5], in DSAN-TD, to enable termination detection, the probability of
exploring decreases over time even when the utilities for the candi-
date and current value are equal.

3 Evaluation
First, we show how hybrids can be exhaustively evaluated and that
they can play an important role when it comes to both speed of con-
vergence and solution quality. Second, we show that our framework
can handle problems with up to 1 million variables on one machine.

We chose the canonycal vertex coloring problem, chromatic num-
bers of 3, 4 and 5, average edge density of 3, constraints with max-
imum utility 1, and constructed five graphs per size and chromatic

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1660

1660



Figure 1. Solution quality vs. computation time in ms (log) for the top 10
average solution quality and top 10 computation time hybrids.

number. In the case of algorithms with the Parallel Random adjust-
ment schedule, for the asynchronous mode we used a degree of par-
allelism 0.95, as asynchronous mode does not shield from thrashing.

Hybrid algorithms We generated algorithms by taking all pos-
sible combinations of the implemented components, with different
parameter values. The graphs had 40 vertices and were constructed
like in [4]. All the algorithms were run 5 times on these graphs. The
machines that we used have 128 GB RAM and two E5-2680 v2 at
2.80GHz processors, with 10 cores per processor.

Figure 1 shows the top 10 combinations in terms of solution qual-
ity and convergence speed. We can observe four clusters. The bot-
tom cluster in Series 4 is represented by all the top 10 convergence
speed algorithms. They all ran asynchronously, with a Flood ad-
justment schedule, and with either argmax or ε-Greedy adjustment
schedules. They were all new hybrids, three being modifications of
Fading Memory JSFPI, with a flood schedule, and one being a modi-
fication of WRMI with a flood schedule. Most of the top 10 solution
quality algorithms (Series 1-3) used the Simulated Annealing deci-
sion rule (one of them being DSAN-TD). The algorithms with lowest
computation time were asynchronous hybrids with Flood schedule,
most of them using the Average Weighted Expected Utility target
function from Fading Memory JSFPI and either argmax or ε-Greedy
decision rules.

Hybrid algorithms can lead to both reduced computation time and
improved quality, and running the algorithms asynchronously seems
to positively impact speed of convergence.

Data scalability We varied the number of vertices between 10
and 1 million. The graphs were constructed similarly to [4]4. The
timeout was 300 seconds and we executed each configuration 10
times. Convergence was detected only by using the signaling scores
of the vertices, which depend on the termination condition. We ran
the known algorithms DSA-A, DSA-B, and JSFPI on machines with
two twelve-core AMD Operon

TM
6174 processors and 66 GB RAM5.

With regard to solution quality, the algorithms behave similarly,
dropping from size 10 to 100, and then keeping a relatively stable
quality, even when the size of the graph increases. We can see that

4 We picked colors for each vertex, we randomly added edges between ver-
tices with different colors, and then randomly edited edges to connect iso-
lated vertices.

5 Full results at: https://docs.google.com/spreadsheets/
d/1A0auNnM0MedEgu0SjNk9OjWIn9wdyefMLhmnfcanvwQ/
edit#gid=2036767986

the asynchronous variants (with probabilities 0.95) usually behave
better, but suffer another drop in quality on the largest graphs.

DSA-A appears to have the best convergence speed. One possible
explanation for the non-linearity of the computation time is reaching
the memory limit of the available machines, which makes the compu-
tation slower. This could be addressed by using a machine with more
memory, or by distributing the framework across multiple machines.

4 Conclusions and Future Work
We introduced CUILT, a software framework based on a mapping of
Chapman et al.’s theoretical framework to a graph processing model.
CUILT is flexible and configurable, allowing to easily create and
mix components into hybrid algorithms that can then be exhaustively
evaluated to determine a good balance between speed of convergence
and solution quality. It has automatic convergence detection, and it
enables scaling to problems with 1 million variables and exploiting
the advantages of asynchronous execution.

In the future, we intend to implement more components, evaluate
the hybrids on different scales and types of problems, including real-
world ones, and investigate the behaviour of the algorithms on even
larger problems, using the distributed version of SIGNAL/COLLECT.

We believe that our findings show how CUILT enables the system-
atic exploration of new hybrid algorithms and opens the possibility
of applying them to big real-world constraint problems.

ACKNOWLEDGEMENTS

We would like to thank the Hasler Foundation for their generous sup-
port, and Dr. J. Enrique Munoz de Cote for his advice.

REFERENCES

[1] M. Arshad and M.C. Silaghi, ‘Distributed simulated annealing and
comparison to dsa’, in Proceedings of the fourth international work-
shop on distributed constraint reasoning (DCR-03), (2003).

[2] G. Arslan, J.R. Marden, and J.S. Shamma, ‘Autonomous vehicle-target
assignment: A game-theoretical formulation’, Journal of Dynamic Sys-
tems, Measurement, and Control, 129, 584, (2007).

[3] A.C. Chapman, A. Rogers, N.R. Jennings, and D.S. Leslie, ‘A unify-
ing framework for iterative approximate best-response algorithms for
distributed constraint optimization problems’, Knowledge Engineering
Review, 26(4), 411–444, (2011).

[4] Archie Chapman, Alex Rogers, and Nicholas Jennings, ‘Benchmarking
hybrid algorithms for distributed constraint optimisation games’, Au-
tonomous Agents and Multi-Agent Systems, 22, 385–414, (2011).

[5] A. Flueckiger, M. Verman, and A. Bernstein, ‘Improving approximate
algorithms for dcops using ranks’, in OptMAS, (2016).

[6] Thomas Léauté, Brammert Ottens, and Radoslaw Szymanek,
‘FRODO 2.0: An open-source framework for distributed con-
straint optimization’, in Distributed Constraint Reasoning Workshop,
Pasadena, California, USA, (2009). http://frodo2.sourceforge.net.

[7] B. Lutati, I. Gontmakher, M. Lando, A. Netzer, A. Meisels, and
A. Grubshtein, ‘Agentzero: A framework for simulating and evaluat-
ing multi-agent algorithms’, in Agent-Oriented Software Engineering,
pp. 309–327. Springer Berlin Heidelberg, (2014).

[8] J. R. Marden, G. Arslan, and J. S. Shamma, ‘Joint strategy fictitious
play with inertia for potential games’, IEEE Transactions on Automatic
Control, 54(2), 208–220, (2009).

[9] P. Stutz, D. Strebel, and A. Bernstein, ‘Signal/Collect: Processing Large
Graphs in Seconds’, Semantic Web Journal - forthcoming, (2015).

[10] E. Sultanik, R. Lass, and W. Regli, ‘Dcopolis: A framework for sim-
ulating and deploying distributed constraint reasoning algorithms’, in
Proc. of 7th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS), (2008).

[11] G. Tel, Introduction to distributed algorithms, Cambridge Univ Press,
2000.

[12] Mohamed Wahbi, Redouane Ezzahir, Christian Bessiere, and El Hous-
sine Bouyakhf, ‘Dischoco 2: A platform for distributed constraint rea-
soning’, in Distributed Constraint Reasoning Workshop, (2011).

M. Verman et al. / Cuilt: A Scalable, Mix-and-Match Framework for Local Iterative Approximate Best-Response Algorithms 1661


