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Abstract. 123  In this paper, we proposed a new stochastic local 
search algorithm Inc-CCAEP for computing the preferred 
extensions in (abstract) argumentation frameworks (AF). Inc-
CCAEP realizes an incremental version of Swcca, specially 
designed for computing the preferred extensions in AF. 
Experiments show that, Inc-CCAEP notably outperforms the state-
of-the-art solvers consistently on random benchmarks with non-
empty preferred extensions. 

1 Introduction 
Dung’s theory of (abstract) argumentation frameworks (AF) 

provides a general model for computational argumentation [1]. For 

preferred semantics in AF, CEGARTIX [2] and ArgSemSAT [3] 

are two representative SAT-based argumentation systems, which 

both rely on iteratively calling to complete SAT solvers. Each of 

above two systems is ranked 1st or 2nd in the SE-PR, DS-PR and 

EE-PR tracks of the first International Competition on 

Computational Models of Argumentation (ICCMA’15). 

There are two popular kinds of algorithms for SAT: conflict 

driven clause learning, and stochastic local search (SLS). The 

efficiency of SLS algorithms mostly depend on the heuristic 

methods selected by them. An efficient heuristic method named 

configuration checking (CC) [4] has been proposed. Then Swcca 

(smoothed weighting and configuration with aspiration) [5] is 

designed based on the heuristics named configuration checking 

with aspiration (CCA) which is an improvement of CC.  

Only complete SAT solvers have been exploited for computing 

preferred extensions in AF so far. It is a natural question that how 

the appealing SLS approaches could advance the performance. The 

aim of this paper is to answer above question. And a novel 

approach Inc-CCAEP is proposed based on the SLS algorithm of 

SAT. This paper is organized as follows. Section 2 recalls the basic 

concepts of AF and CCA. Section 3 introduces our SLS algorithms 

for computing preferred extensions, while Section 4 describes the 

test setting and comments the experimental results. Section 5 

concludes the paper. 

2  Preliminaries 

                                                                 
1 College of Computer Science and Technology, Jilin University, 

Changchun 130012, China, email: ddniu15@mails.jlu.edu.cn, {liulei, 
lus}@jlu.edu.cn. 

2 College of Mathematics, Jilin University, Changchun 130012, China. 
3 Key Laboratory of Symbolic Computation and Knowledge Engineering 

(Jilin University), Ministry of Education, Changchun 130012, China. 

An AF is a pair F = (A, R) where A is a set of arguments and R ⊆ A 

× A is the attack relation. An extension S ⊆ A is conflict–free iff ∄ 

a, b ∊ S s.t. a b. An argument a ∊ A is acceptable with respect to 

a set S ⊆ A iff ∀b ∊ A s.t. b a, ∃c ∊ S s.t. c b. S ⊆ A is 

admissible iff S is conflict–free and every element of S is 

acceptable with respect to S. S ⊆ A is an admissible extension iff S 

is admissible. S ⊆ A is a preferred extension iff S is a maximal 

admissible extension. 

Given an AF F = (A, R), a key problem of instantiating the 

SAT-based framework is how the AF reasoning tasks are encoded 

as CNF formulae. Let φadm(F) be the CNF formula which 

corresponds to the expression of admissible semantics of F, the set 

of all variables appear in φadm(F) is in correspondence with A. 

φadm(F) is shown as follows [3]: 

Given a model P, let α(P) be the set of positive literals in P. 

Then, a model P of φadm(F) is in correspondence with a preferred 

extension of F iff there is no model Q with α(P) ⊂ α(Q). 

Let V(F) be the set of all variables appear in the CNF formula F. 

N(x) = {y | y  V(F) and y occurs in at least one clause with x} is 

the set of all neighboring variables of a variable x. Then the 

configuration of a variable v ∊ V(F) is a vector Cv consisting of 

truth values of all variables in N(v) under the current assignment s. 

In the implementation of CCA, each clause c ∊ Φ is associated 

with a positive integer number w(c) as its weight, in which w is a 

weighted formula. cost(Φ, s) denotes the total weight of all 

unsatisfied clauses under the assignment s. Let score(v) = cost(F, s) 

- cost(F, s'), measuring the benefit of flipping v, where s' is 

obtained from s by flipping v. Any element in the array 

confChange is an indicator for a variable. confChange[v] = 1 

means the configuration of variable v has been changed since v’s 

last flip; and confChange[v] = 0 on the contrary.  

CCA heuristics: A configuration changed decreasing (CCD) 

variable v is a variable with both confChange[v] = 1 and score(v) > 

0. A significant decreasing (SD) variable v is a variable with 

score(v) > g, where g is a positive integer large enough. In the 

literature [5], g is set to the averaged clause weight (over all 

clauses). CCA selects CCD variable with greatest score to flip 

firstly. The SD variable with the greatest score is selected to flip if 

there are no CCD variables. If there are neither CCD variables nor 

SD variables, CCA switches to diversification mode [5]. 

3  Inc-CCAEP 
We are now in a position to introduce our proposed procedure Inc-

CCAEP which is listed in Algorithm 1. 
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Alogrithm 1 Inc-CCAEP 

1: Input: F = (A, R) 

2: output: Ep ⊆ 2A 

3: Ep = Ø 

4: Φ0 = φadm(F) 

5: (Φ, M) = unit-propagation(Φ0) 

6: s ← randomly generated truth assignment 

7: initialize heuristic information 

8: for step ← 1 to maxsteps do 
9:    if s satisfies Φ 

10:       while ∃ ¬vi ∊ s & s|flip(vi) satisfies Φ 

11:          s = s|flip(vi) 
12:          update heuristic information 

13:       Ep = Ep  {s} 

14:       Φ =Φ ˄ ¬vi ∊ s vi 

15:       add heuristic information about ¬vi ∊ s vi 

16:    v = CCA() 

17:    s = s|flip(v) 

18:    update heuristic information 

19: Ep = merge(Ep, M) 

20: return Ep 

 

The main idea behind Inc-CCAEP is that it intends to compute as 

many as possible admissible extensions based on φadm(F) and then 

finding all preferred extensions. In order to efficiently compute 

preferred extensions, we design two strategies in Algorithm 1: 

Strategy 1. There may be some unit clauses in φadm(F). So we 

use unit propagation to reduce the scale of φadm(F) in Line 5. 

Strategy 2. After Swcca searches a model T, if T is still a model 

after flipping some negative literals in it, we flip them in Line 10-

11. This strategy can reduce the calling times of Swcca. 

In Algorithm 1, the heuristic information appeared in Inc-

CCAEP mainly concludes the scores of all variables, the weights of 

all clauses and the flipping time stamps of all variables [5]. Since 

Inc-CCAEP is an incomplete algorithm, it does not know whether 

all possible preferred extensions have been found or not. So, we 

use maxsteps to control the end of Inc-CCAEP in Line 8. In order to 

avoid searching an admissible extension which is the subset of any 

admissible extension searched before, we add ¬vi ∊ s vi to Φ in 

Line 14. It employs CCA heuristics to pick flipping variable in 

Line 16. In Line 19, merge function is used to add all literals in M 

to each model in Ep and then find all possible preferred extensions. 

4 Experimental results 
Our experiments are conducted on the PC with a quad-core Intel(R) 

Core(TM) i7-3700, 8GByte RAM and Ubuntu 14.04 operating 

system. Because Inc-CCAEP cannot finish their search processes 

automatically even if they have found all preferred extensions, we 

use actually searching time to measure their efficiencies. We do the 

experiments on randomly generated AFs by probo4 which is used 

in ICCMA’15. We input two parameters |A| and p to probo. |A| is 

the number of arguments, and p is the probability that there is an 

attack for each ordered pair of arguments (self-attacks are include). 

CEGARTIX5 and ArgSemSAT6 are two alternative AF reasoners 

in our experiments. 
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Figure 1. Experiments on random AF instances with fixing p = 0.5.  

 

We generate AF instances with fixing p = 0.5, and |A| is ranging 

from 360 to 500 with a step of 20. All instances have non-empty 

preferred extensions. The test results are given in Figure 1. 

In Figure 1, we can see that the actual searching time of Inc-

CCAEP is far less than the executing time of CEGARTIX and 

ArgSemSAT. When fixing p = 0.5, the efficiency of Inc-CCAEP is 

only about a tenth of the efficiency of CEGARTIX or ArgSemSAT. 

ArgSemSAT is a little better than CEGARTIX. The reason is that 

CEGARTIX is more suitable for hard AF instances. 

5 Conclusions  
We innovatively exploit stochastic local search for enumerating 

preferred extensions in abstract argumentation in this paper. And 

Inc-CCAEP is proposed based on Swcca for enumerating preferred 

extensions in abstract argumentation. Experimental results show 

that Inc-CCAEP significantly outperform existing systems on 

random AF instances with non-empty preferred extensions. 
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