
A New Stochastic Local Search Approach for Computing
Preferred Extensions of Abstract Argumentation

Dangdang Niu1 and Lei Liu1 and Shuai Lü1,2,3+

Abstract. 123 In this paper, we proposed a new stochastic local
search algorithm Inc-CCAEP for computing the preferred
extensions in (abstract) argumentation frameworks (AF). Inc-
CCAEP realizes an incremental version of Swcca, specially
designed for computing the preferred extensions in AF.
Experiments show that, Inc-CCAEP notably outperforms the state-
of-the-art solvers consistently on random benchmarks with non-
empty preferred extensions.

1 Introduction
Dung’s theory of (abstract) argumentation frameworks (AF)

provides a general model for computational argumentation [1]. For

preferred semantics in AF, CEGARTIX [2] and ArgSemSAT [3]

are two representative SAT-based argumentation systems, which

both rely on iteratively calling to complete SAT solvers. Each of

above two systems is ranked 1st or 2nd in the SE-PR, DS-PR and

EE-PR tracks of the first International Competition on

Computational Models of Argumentation (ICCMA’15).

There are two popular kinds of algorithms for SAT: conflict

driven clause learning, and stochastic local search (SLS). The

efficiency of SLS algorithms mostly depend on the heuristic

methods selected by them. An efficient heuristic method named

configuration checking (CC) [4] has been proposed. Then Swcca

(smoothed weighting and configuration with aspiration) [5] is

designed based on the heuristics named configuration checking

with aspiration (CCA) which is an improvement of CC.

Only complete SAT solvers have been exploited for computing

preferred extensions in AF so far. It is a natural question that how

the appealing SLS approaches could advance the performance. The

aim of this paper is to answer above question. And a novel

approach Inc-CCAEP is proposed based on the SLS algorithm of

SAT. This paper is organized as follows. Section 2 recalls the basic

concepts of AF and CCA. Section 3 introduces our SLS algorithms

for computing preferred extensions, while Section 4 describes the

test setting and comments the experimental results. Section 5

concludes the paper.

2 Preliminaries

1 College of Computer Science and Technology, Jilin University,

Changchun 130012, China, email: ddniu15@mails.jlu.edu.cn, {liulei,
lus}@jlu.edu.cn.

2 College of Mathematics, Jilin University, Changchun 130012, China.
3 Key Laboratory of Symbolic Computation and Knowledge Engineering

(Jilin University), Ministry of Education, Changchun 130012, China.

An AF is a pair F = (A, R) where A is a set of arguments and R ⊆ A

× A is the attack relation. An extension S ⊆ A is conflict–free iff ∄

a, b ∊ S s.t. a b. An argument a ∊ A is acceptable with respect to

a set S ⊆ A iff ∀b ∊ A s.t. b a, ∃c ∊ S s.t. c b. S ⊆ A is

admissible iff S is conflict–free and every element of S is

acceptable with respect to S. S ⊆ A is an admissible extension iff S

is admissible. S ⊆ A is a preferred extension iff S is a maximal

admissible extension.

Given an AF F = (A, R), a key problem of instantiating the

SAT-based framework is how the AF reasoning tasks are encoded

as CNF formulae. Let φadm(F) be the CNF formula which

corresponds to the expression of admissible semantics of F, the set

of all variables appear in φadm(F) is in correspondence with A.

φadm(F) is shown as follows [3]:

Given a model P, let α(P) be the set of positive literals in P.

Then, a model P of φadm(F) is in correspondence with a preferred

extension of F iff there is no model Q with α(P) ⊂ α(Q).

Let V(F) be the set of all variables appear in the CNF formula F.

N(x) = {y | y V(F) and y occurs in at least one clause with x} is

the set of all neighboring variables of a variable x. Then the

configuration of a variable v ∊ V(F) is a vector Cv consisting of

truth values of all variables in N(v) under the current assignment s.

In the implementation of CCA, each clause c ∊ Φ is associated

with a positive integer number w(c) as its weight, in which w is a

weighted formula. cost(Φ, s) denotes the total weight of all

unsatisfied clauses under the assignment s. Let score(v) = cost(F, s)

- cost(F, s'), measuring the benefit of flipping v, where s' is

obtained from s by flipping v. Any element in the array

confChange is an indicator for a variable. confChange[v] = 1

means the configuration of variable v has been changed since v’s

last flip; and confChange[v] = 0 on the contrary.

CCA heuristics: A configuration changed decreasing (CCD)

variable v is a variable with both confChange[v] = 1 and score(v) >

0. A significant decreasing (SD) variable v is a variable with

score(v) > g, where g is a positive integer large enough. In the

literature [5], g is set to the averaged clause weight (over all

clauses). CCA selects CCD variable with greatest score to flip

firstly. The SD variable with the greatest score is selected to flip if

there are no CCD variables. If there are neither CCD variables nor

SD variables, CCA switches to diversification mode [5].

3 Inc-CCAEP
We are now in a position to introduce our proposed procedure Inc-

CCAEP which is listed in Algorithm 1.

(,) (,)
 () (() () (1))adm a b a cb a R c b R

F v v v v�
� �

� � � � � � � � �

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1652

1652

Alogrithm 1 Inc-CCAEP

1: Input: F = (A, R)

2: output: Ep ⊆ 2A

3: Ep = Ø

4: Φ0 = φadm(F)

5: (Φ, M) = unit-propagation(Φ0)

6: s ← randomly generated truth assignment

7: initialize heuristic information

8: for step ← 1 to maxsteps do
9: if s satisfies Φ

10: while ∃ ¬vi ∊ s & s|flip(vi) satisfies Φ

11: s = s|flip(vi)
12: update heuristic information

13: Ep = Ep {s}

14: Φ =Φ ˄ ¬vi ∊ s vi

15: add heuristic information about ¬vi ∊ s vi

16: v = CCA()

17: s = s|flip(v)

18: update heuristic information

19: Ep = merge(Ep, M)

20: return Ep

The main idea behind Inc-CCAEP is that it intends to compute as

many as possible admissible extensions based on φadm(F) and then

finding all preferred extensions. In order to efficiently compute

preferred extensions, we design two strategies in Algorithm 1:

Strategy 1. There may be some unit clauses in φadm(F). So we

use unit propagation to reduce the scale of φadm(F) in Line 5.

Strategy 2. After Swcca searches a model T, if T is still a model

after flipping some negative literals in it, we flip them in Line 10-

11. This strategy can reduce the calling times of Swcca.

In Algorithm 1, the heuristic information appeared in Inc-

CCAEP mainly concludes the scores of all variables, the weights of

all clauses and the flipping time stamps of all variables [5]. Since

Inc-CCAEP is an incomplete algorithm, it does not know whether

all possible preferred extensions have been found or not. So, we

use maxsteps to control the end of Inc-CCAEP in Line 8. In order to

avoid searching an admissible extension which is the subset of any

admissible extension searched before, we add ¬vi ∊ s vi to Φ in

Line 14. It employs CCA heuristics to pick flipping variable in

Line 16. In Line 19, merge function is used to add all literals in M

to each model in Ep and then find all possible preferred extensions.

4 Experimental results
Our experiments are conducted on the PC with a quad-core Intel(R)

Core(TM) i7-3700, 8GByte RAM and Ubuntu 14.04 operating

system. Because Inc-CCAEP cannot finish their search processes

automatically even if they have found all preferred extensions, we

use actually searching time to measure their efficiencies. We do the

experiments on randomly generated AFs by probo4 which is used

in ICCMA’15. We input two parameters |A| and p to probo. |A| is

the number of arguments, and p is the probability that there is an

attack for each ordered pair of arguments (self-attacks are include).

CEGARTIX5 and ArgSemSAT6 are two alternative AF reasoners

in our experiments.

4 https://sourceforge.net/p/probo/code/HEAD/tree/trunk/doc/
5 http://www.dbai.tuwien.ac.at/research/project/argumentation/cegartix/
6 http://sourceforge.net/projects/argsemsat/

Figure 1. Experiments on random AF instances with fixing p = 0.5.

We generate AF instances with fixing p = 0.5, and |A| is ranging

from 360 to 500 with a step of 20. All instances have non-empty

preferred extensions. The test results are given in Figure 1.

In Figure 1, we can see that the actual searching time of Inc-

CCAEP is far less than the executing time of CEGARTIX and

ArgSemSAT. When fixing p = 0.5, the efficiency of Inc-CCAEP is

only about a tenth of the efficiency of CEGARTIX or ArgSemSAT.

ArgSemSAT is a little better than CEGARTIX. The reason is that

CEGARTIX is more suitable for hard AF instances.

5 Conclusions
We innovatively exploit stochastic local search for enumerating

preferred extensions in abstract argumentation in this paper. And

Inc-CCAEP is proposed based on Swcca for enumerating preferred

extensions in abstract argumentation. Experimental results show

that Inc-CCAEP significantly outperform existing systems on

random AF instances with non-empty preferred extensions.

ACKNOWLEDGEMENTS
This work was supported by the National Natural Science

Foundation of China under Grant No. 61300049; the Specialized

Research Fund for the Doctoral Program of Higher Education of

China under Grant No. 20120061120059; and the Natural Science

Research Foundation of Jilin Province of China under Grant Nos.

20140520069JH, 20150101054JC.

REFERENCES
[1] P. M. Dung, ‘On the acceptability of arguments and its fundamental

role in nonmonotonic reasoning, logic programming and n-person

games’, Artificial Intelligence, 77(2), 321-358, (1995).

[2] W. Dvořák, M. Järvisalo, J. P. Wallner and S. Woltran, ‘Complexity-

sensitive decision procedures for abstract argumentation’, Artificial
Intelligence, 206, 53-78, (2014).

[3] F. Cerutti, M. Giacomin and M. Vallati, ‘ArgSemSAT: Solving

argumentation problems using SAT’, in Proc. 5th International
Conference on Computational Models of Argument (COMMA), pp.

455-456, Scottish Highlands, UK, (2014).

[4] S. Cai, K. Su and A. Sattar, ‘Local search with edge weighting and

configuration checking heuristics for minimum vertex cover’,

Artificial Intelligence, 175(9-10), 1672-1696, (2011).

[5] S. Cai and K. Su, ‘Configuration checking with aspiration in local

search for SAT’, in Proc. 26th AAAI Conference on Artificial
Intelligence (AAAI), pp. 434-440, Toronto, Ontario, Canada, (2012).

300 320 340 360 380 400 420 440 460 480 500
10

-1

10
0

10
1

10
2

C
P

U
 t

im
e/

s

Number of arguments

Inc-CCA
EP

CEGARTIX

ArgSemSAT

D. Niu et al. / A New Stochastic Local Search Approach for Computing Preferred Extensions of Abstract Argumentation 1653

