1618

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.

This article is published online with Open Access by I0S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/978-1-61499-672-9-1618

Learning of Classification Models from Noisy Soft-Labels

Yanbing Xue ! and Milos Hauskrecht 2

Abstract. We develop and test a new classification model learning
algorithm that relies on the soft-label information and that is able to
learn classification models more rapidly and with a smaller number
of labeled instances than existing approaches.

1 Introduction

While huge amounts of data in various areas of science, engineer-
ing, and every day life are available nowadays, these data alone may
not be sufficient for all the learning tasks we are ultimately interest-
ed in, and additional data collection is necessary to address them.
These learning tasks include classification problems in which class
labels are based on subjective human assessment. Examples include
various text annotation problems, annotation of images or videos, or
annotation of patient cases with diseases, and many others. For all
these problems annotation effort is needed to supplement the data.
However, the annotation effort may often be too costly limiting the
number of instances one may feasibly label. The challenge is to de-
velop methods that can reduce the number of the labeled instances
but at the same time preserve the quality of the learned models.

Here we study the sample labeling problem in binary classification
settings. Our solution advances a relatively new approach to address
the problem: learning with soft label information [7, 8], in which
each instance is associated with a soft-label further refining the class
label. Soft labels reflect the certainty of human annotators in the spe-
cific class label, such as, the probability the patient suffers from a
specific disease. The benefit of soft labels is that they distinguish da-
ta instances that are strong, weak or marginal representatives of a
class, and when properly used in the training phase they can help us
learn better models with a smaller number of labeled samples.

In this work we assume that soft-labels given to learners by hu-
mans are probabilistic. The caveat of learning models from such la-
bels is that humans are often unable to give consistent probabilistic
assessments; a phenomenon well documented in psychology and de-
cision making literature [6, 3]. In such a case, learning methods that
are robust to 'noisy’ soft-label assessments are necessary. [7, 8, 9]
address the problem by using probabilistic soft-labels to first deter-
mine the relative order of examples in the training data and then build
the final classification model by considering all pairwise orderings a-
mong them [5, 4]. They showed this approach is more robust to the
soft-label noise than regression methods trying to directly fit prob-
abilities. However, the limitations of their approach is that (1) the
number of pairwise orderings one aims to satisfy is quadratic in the
number of data points in the training data, and (2) all orderings (with
both small and large soft-label differences) are treated equally.

Our objective is to develop a more efficient approach for learning
models from noisy soft-label information. Our solution relies on soft-
label binning. Briefly, we modify the all-pair problem formulation
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through binning where constraints within each bin are ignored and
only constraints among data points in the different bins are enforced.
This leads to a smaller number of pairwise constraints to satisfy and
exclusion of constraints that are more likely corrupted by the noise.
Second, we reformulate the problem of satisfying constraints among
data points in different bins as an ordinal regression problem and
solve it using ranking-SVM [5, 4] defined on these bins [1]. This
reformulation reduces the number of constraints one has to satisfy
leading to a more efficient solutions where the number constraints to
satisfy is linear in the number of data instances.

2 Methodology

Our binning approach divides data instances into multiple non-
overlapping bins according to their soft label information. The idea is
to satisfy constraints only among entries placed in the different bin-
s. Optimally we would like to have data entries that are in the same
bin according to its probability label fall into the same bin also after
the projection. We can use this to reformulate the optimization prob-
lem as an ordinal regression problem [1]. Briefly we want to find the
function f(x) = w7 x that puts the data points into bins according
to their soft label. We can achieve this by having every example x
project on the correct side of each bin boundary. For example, if the
example x is located in ith bin, then after the projection, f(x) should
be smaller than the lower margin (boundary) of bin j in the projected
space, whenever ¢ < j. In general, assuming m bins labeled from 1
to m, bin boundaries b1, bz, . . . bp,—1 separating them in the project-
ed space, and bin function bin(p;) that maps the probability to the
bin number (lowest probability maps to lowest number), then, after
the projection, the example x; with soft label p; should project to val-
ue smaller than b; whenever bin(p;) < j, otherwise its value should
be larger than b;. Overall, for N data entries and m boundaries there
are (m — 1) N constraints, one for each data entry/boundary pair.

In general, because of the soft label noise, we cannot expect that
all the constraints will be always satisfied. We allow violations of
constraints but penalize them via bin-constraint loss function. This
leads to the following optimization problem:
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where j = 1,2,...,m — 1 indexes bin boundaries in b, and
i = 1,2, ..., N indexes data entries. The first term in the objective
function is the regularization term, the second term (single sum) de-
fines the hinge loss with respect to binary labels, and the third ter-
m (double sum) defines the bin-constraint loss function. 7; and &; ;
are non-negative slack variables permitting violations of binary class
and soft-label bins respectively. B and C' are constants weighting
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the objective function terms. This optimization yields a discriminan-
t function f(x;) = wTx; + wo that tries to minimize the number
of violated constraints, but the number of constrains is reduced to
O(mN) as compared to O(N?) for the pairwise-ordering methods.

One important open question is how to define the bins and how to
choose their number. In our work, we use equal size binning, that is,
the bin boundaries are built such that each bin covers approximately
the same number of examples. The challenge, however, is to choose
the number of bins. The caveat is that the number of bins may affect
the quality of the result. Briefly, choosing the number of bins to be
equal to N (singleton bins) reduces to (N — 1) bin boundaries and
the total of O(N?) constraints in the optimization problem which
basically mimics all pairwise orderings. On the other side, having
just two bins means we are trying to separate two groups of data
points, which is equivalent to binary classification. The optimal bin
choice is somewhere in between these two extremes. One approach
to select the number of bins is to use a heuristic. Our heuristic is
inspired by the results on the optimal binning for discretization of
continuous values [2] who determined that the number of bins for NV
examples should follow floor(Y/N) trend.

3 Experiments and Results

We use UCI Housing data set to test our method. We normalize the
real-valued outputs and reinterpreted them as probabilistic scores.
We also defined a binary class threshold over the probabilistic scores
to distinguish class O from class 1. The outputs in Housing data set
represents the attractiveness of houses to the consumers. In this case,
we define two classes: houses with high attractiveness (class 1) and
houses with low attractiveness (class 0). We use 30% of data entries
with top score to define class 1, the rest are assigned to class 0. Our
experiments compare the following methods:

BinarySVM: The standard linear SVM with the hinge loss and
quadratic regularization trained on examples with binary labels.
SoftLogReg: The logistic-regression-based model based on [7] that
directly fits the soft-label information to the model.

GPR: The Gaussian process regression approach [10] for learning
with soft-label information.

SoftSVMRankPair: The soft-label method proposed in [7] that re-
lies on all pairwise ordering of data instances.

SoftSVMOrd: Our SVM-based ordinal regression model that splits
the data into m bins based on the soft labels and enforces the bin-
entry constraints. The bin size m is floor(/N).
SoftSVMRankKN: A version of SoftSVMRankPair that uses a ran-
dom subset of K N pairwise constraints. The value of K is selected
to assure the SoftSVMOrd and SoftSVMRankKN methods always
use the same number of constraints.

We evaluated the performance of the different methods by calcu-
lating the Area under the ROC (AUC) the learned classification mod-
el would achieve on the test data. Hence, each data set prior to the
learning was split into the training and test set (using % and % of all
data entries respectively). The learning considered training data on-
ly, the AUC was always calculated on the test set. To avoid potential
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train/test split biases, we repeated the training process (splitting) and
learning steps 24 times. We report the average AUC. To test the im-
pact of soft label information on the number of data entries, we trace
the performance of all models for the different sizes NV of labeled da-
ta. Figure 1(left) shows the performance of methods when simulated
soft-labels are not corrupted by additional noise. The results show
that all methods that rely on soft-label information outperform the
SVM method trained on binary labels only. This demonstrates the
sample-size benefit of soft-labels for learning classification models
and basically reiterates the point made in [7]. Figure 1(left) assumes
the soft labels are accurate. However, in practice, probabilistic infor-
mation (when collected from humans) may be imprecise and subject
to noise. In order to generate soft-label with the noise (p’) we mod-
ify a soft label p derived from the UCI data by injecting a Gaussian
noise of different strength. The noise injection levels indicate the av-
erage proportion of noise. Figures 1 (middle, right) show results for
the noise signal at weak (10%) and strong (30%) levels respective-
ly. The figures demonstrates that the performance of a model may
drop when noise is injected. One of the methods, SoftLogReg that
directly fits probabilities is particularly sensitive to the noise and its
performance drops significantly for both noise levels and across al-
I data sets. Other soft-label models that use constraints or bins are
more robust and do not suffer from such a performance drop. Our
new method, SoftSVMOrd, is the most consistent and tends to out-
perform other SVM-based models. These experiments demonstrate
the robustness of our method on the soft-label learning tasks.
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