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Belief space planning (BSP) and decision-making under un-
certainty are fundamental problems in robotics and artificial
intelligence, with applications including autonomous naviga-
tion, object grasping and manipulation, active SLAM, and
robotic surgery. In the presence of uncertainty, such as in
robot motion and sensing, the true state of variables of inter-
est (e.g. robot poses), is unknown and can only be represented
by a probability distribution over possible states, given avail-
able data. This distribution, the belief space, is inferred using
probabilistic approaches based on incoming sensor observa-
tions and prior knowledge. The corresponding BSP problem
is an instantiation of a partially observable Markov decision
problem (POMDP) [4].

Existing BSP approaches (e.g. [2,5,9,11]) typically assume
data association to be given and perfect, i.e. the robot is as-
sumed to correctly perceive the environment to be observed
by its sensors, given a candidate action. However, this as-
sumption, denoted for brevity as DAS, can be harder to jus-
tify while operating in ambiguous and perceptually aliased
environments (see Figure 1), and in the presence of different
sources of uncertainty (uncertainty due to stochastic control
and imperfect sensing).

Indeed, in the presence of ambiguity, DASmay lead to incor-
rect posterior beliefs and as a result, to sub-optimal actions.
More advanced approaches are thus required to enable reliable
operation in ambiguous conditions, approaches often referred
to as (active) robust perception. Yet, existing robust percep-
tion approaches (e.g. [1, 3, 6, 10]) focus on the passive case,
where robot actions are externally determined and given.

In this work we develop a general data association aware
belief space planning (DA-BSP) framework capable of better
handling complexities arising in a real world, possibly per-
ceptually aliased, scenarios. We rigorously incorporate rea-
soning about data association within belief space planning
(and inference), while also considering other sources of un-
certainty (motion, sensing and environment). In particular,
we show that due to perceptual aliasing, the posterior be-
lief becomes a mixture of probability distribution functions,
and design cost functions that measure the expected level of
ambiguity and posterior uncertainty. Using these and stan-
dard costs (e.g. control penalty, distance to goal) within the
objective function, yields a general framework that reliably
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Figure 1: (a) Generative graphical model. Standard BSP approaches
assume data association (DA) is given and perfect (DAS). We in-
corporate data association aspects within BSP and thus can reason
about ambiguity (e.g. perceptual aliasing) at a decision-making level.
(b) Schematic representation of pose, scene and observation spaces.
Scenes A1 and A3 when viewed from perspective x and x′ respec-
tively, produce the same nominal observation ẑ, giving rise to per-
ceptual aliasing.

represents action impact, and in particular, capable of active
disambiguation. Our approach is thus applicable to robust
active perception and autonomous navigation in perceptually
aliased environments. In this short paper, we provide a concise
overview of the DA-BSP approach, referring the interested
reader to [7, 8] for full details.

Concept and Approach Overview

Given some candidate action uk and the belief at planning
time k, we can reason about a future observation zk+1 (e.g. an
image) to be obtained once this action is executed; its actual
value is unknown. All the possible values such an observation
can assume should be thus taken into account while evaluating
the objective function, which can be written as:

J(uk)
.
=

∫
zk+1

(a)︷ ︸︸ ︷
P(zk+1 | H−

k+1) c

⎛
⎜⎝

(b)︷ ︸︸ ︷
P(Xk+1|H−

k+1, zk+1)

⎞
⎟⎠ , (1)

where Xk+1 denotes the past and current robot poses Xk
.
=

{x0, . . . , xk}, and H−
k+1

.
= {u0:k, Z0:k}.

The two terms (a) and (b) in Eq. (1) have intuitive meaning:
for each considered value of zk+1, (a) represents how likely is
it to get such an observation when both the history H and
control uk are known, while (b) corresponds to the posterior
belief given this specific zk+1.

Existing BSP approaches typically consider data associa-
tion is solved (DAS), i.e. given and perfect. In other words, DAS
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means we can correctly associate each possible measurement
zk+1 with the corresponding scene Ai it captures and write the
corresponding measurement likelihood term P(zk+1|xk+1, Ai).
Yet, it is unknown from what future robot pose xk+1 the ac-
tual observation zk+1 will be acquired, since the actual robot
pose xk at time k is unknown, the control is stochastic and
sensing is imperfect. In inference, we have a similar situation
with the key difference that the observation z has been ac-
quired.

Rather than assuming DAS, in this work we incorporate
within BSP (and similarly within inference) reasoning about
possible scenes or objects that the future observation zk+1

could be generated from, see Figure 1. While this may seem
computationally expensive, realistic scenarios typically ex-
hibit parsimonious data association: If the environment has
only distinct scenes or objects, then for each specific value of
zk+1, there will be only one scene Ai that can generate such
an observation. In the case of perceptually aliased environ-
ments, there could be several other scenes (or objects) that
are either completely identical or have a similar visual ap-
pearance when observed from appropriate viewpoints. They
could equally well explain the considered observation zk+1.
Thus, there are several possible associations {Ai} and due to
localization uncertainty determining which association is the
correct one is not trivial. As we show in [7], in these cases the
posterior (term (b) in Eq. (1)) becomes a Gaussian mixture
with appropriate weights that we rigorously compute. Ad-
ditionally, the weight updates are capable of discriminating
against unlikely data-associations, during the planning steps.

We now briefly summarize how terms (a) and (b) in Eq. (1)
are calculated while reasoning about data association, refer-
ring the reader to [7] for full details.

Computing the term (a): P(zk+1|H−
k+1): Applying to-

tal probability over non-overlapping scene space {AN} and
marginalizing over all possible robot poses, yields

P(zk+1|H−
k+1)≡

|AN|∑
i

∫
x

P(zk+1, x, Ai |H−
k+1)

.
=

|AN|∑
i

wi
k+1. (2)

As seen from the above equation, to calculate the likelihood
of obtaining some observation zk+1, we consider separately,
for each scene Ai ∈ {AN}, the likelihood that this observation
was generated by scene Ai. This probability is captured for
each scene Ai by a corresponding weight wi

k+1; these weights
are then summed to get the actual likelihood of observation
zk+1. As shown in [7], these weights naturally account for
perceptual aliasing aspects for each considered zk+1.

In practice, instead of considering the entire scene space
{AN} that could be computationally costly, the availability
of the belief from the previous time step, b[X−

k+1], enables us
to consider only those scenes that could be actually observed
from the viewpoints with non-negligible probability according
to b[X−

k+1].

Computing the term (b) : P(Xk+1|H−
k+1, zk+1): The term

(b), P(Xk+1|H−
k+1, zk+1), represents the posterior probability

conditioned on observation zk+1. This term can be similarly
calculated, with a key difference: since the observation zk+1

is given, it must have been generated by one specific (but
unknown) scene Ai according to an appropriate measurement
model. Hence, also here, we consider all possible such scenes
and weight them accordingly, with weights w̃i

k+1 represent-

ing the probability of each scene Ai to have generated the
observation zk+1.

As shown in [7], the term (b) in Eq. (1) is a GMM with

Mk+1 components, P(Xk+1|H−
k+1, zk+1)=

∑Mk+1
r=1 ξrk+1b[X

r+
k+1],

where b[Xr+
k+1] represents the rth component of the belief, and

the weights ξrk+1 are defined recursively (see full details in [7]).
Interestingly, the number of components can not only go down
Mk+1 ≤ Mk (as a result of a partially or fully disambiguating
action), but could also go up, i.e. Mk+1 > Mk.

To summarize the discussion thus far, we have shown that
for the myopic case, the objective function (1) can be re-
written as

J(uk) =

∫
zk+1

(

|AN|∑
i

wi
k+1) · c

⎛
⎝Mk+1∑

r

ξrk+1b[X
r+
k+1]

⎞
⎠ . (3)

In [7], we present the other ingredients of our approach,
including sampling-based simulation of future observations
{zk+1} given b[X−

k+1], and the design of suitable cost functions
to quantify ambiguity level. We also show that DA-BSP con-
siders data-association parsimoniously and a simple thresh-
olding is enough for a scalable application of data-association
aware belief space planning, and demonstrate key aspects ba-
sic and realistic simulations. Potential directions for future
research include extension to non-myopic planning as well as
proving the general theoretical properties of DA-BSP.
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