
DARDIS: Distributed And Randomized DIspatching and
Scheduling

Thomas Bridi 1 and Michele Lombardi 1 and Andrea Bartolini23 and Luca Benini23 and Michela Milano1

Abstract. Scheduling and dispatching are critical enabling tech-
nologies in supercomputing and grid computing. In these contexts,
scalability is an issue: we have to allocate and schedule up to tens
of thousands of tasks on tens of thousands of resources. This prob-
lem scale is out of reach for complete and centralized scheduling
approaches.

We propose a distributed allocation and scheduling paradigm
called DARDIS that is lightweight, scalable and fully customizable
in many domains. In DARDIS each task offloads to the available re-
sources the computation of a probability index associated with each
possible start time for the given task on the specific resource. The
task then selects the proper resource and start time on the basis of the
above probability.

1 Introduction

Large-scale computing infrastructure like grids and High-
Performance Computing (HPC) facilities require efficient workload
scheduling and dispatching.

Consider for example the number of computational nodes a sched-
uler has to manage for high-performance computers like the top 1
HPC in 2015 or the future exascale HPC. This machine features
a number of nodes estimated between 50’000 and 1’000’000 [3].
Classical job schedulers are rule-based. These are heuristic sched-
ulers that use rules to prioritize jobs. In these scheduling systems, a
job requests a set of resources on which the job will execute. The
scheduler checks for each job if it can execute on a node while re-
specting the capacity of the target resources. If the job can use the
requested amount of resources, the job is executed. It is quite clear
that for these large scale machines a centralized, optimization-based
scheduler [2, 1], is not a feasible option. Hence, scalable, distributed
schedulers are needed to handle thousands of nodes while at the same
time optimizing efficiency metrics.

This work takes inspiration from Randomized Load Control pro-
posed in [4]. We substantially extend this work to the case of multiple
resources and introduce new start times generators and dispatching
policies.

In this work we present a Distributed And Randomized DIspatch-
ing and Scheduling (DARDIS) approach that is:

• Distributed to scale to an ultra-large system. The scheduler and
dispatcher basically leave the dispatching choice to the task and
each resource then schedules its own tasks.

1 DISI, University of Bologna, Viale Risorgimento 2, 40123, Bologna, Italy.
{thomas.bridi,michele.lombardi2,michela.milano}@unibo.it

2 DEI, University of Bologna, Viale Risorgimento 2, 40123, Bologna, Italy.
{a.bartolini,luca.benini}@unibo.it

3 Integrated Systems Laboratory, ETH Zurich, Switzerland.

• Supporting variable resources’ utilization profile. Each re-
source, besides its capacity, exhibits a (variable) desired utilization
profile.

• Randomized. The scheduler can choose the proper probability
distribution for selecting resources and start times to optimize dif-
ferent objective functions.

• Deadlines aware. Each activity can specify a time window in
which it should start.

Tests against classical commercial scheduler, on standard job
traces, show an improvement of 2.6% in makespan and 18% in the
total job waiting while having a scheduler 42 times faster in term of
computational overhead.

2 Approach

The workload dispatching and scheduling problem can be modeled
by a set of resources resr , with r ∈ R and a set of activities ai with
i ∈ A. Each resource has a capacity cr , a desired profile dpr(t) and
a utilization profile upr(t), with t ∈ [0, .., Eoh]. The desired profile
is a profile decided by the administrator that shows how the resource
should be used (in term of number of amount of resource used by
activities) in time. The utilization profile is the amount of resource
already used and reserved to scheduled activities. This profile is a
periodic profile repeated in time. As in example for HPC and grid
computing this could be a daily utilization profile.

Each activity is submitted to the system in a time instant qi. At the
submission it specifies its earliest start time esti, the latest start time
lsti, its duration wti, and the amount of resource required reqi.

The scheduling problem consists of allocating each activity to a
given resource and assigning it a start time sti and a resource uri
such that

sti :: [esti..lsti] ∀i ∈ A

uri ∈ resr ∀i ∈ A, r ∈ R
∑

i

reqi ≤ cr ∀i ∈ A|sti ≤ t ∧ sti + wti > t, ∀t ∈ [0, .., Eoh]

∑

i

reqi ≤ dpr(t) ∀i ∈ A|sti ≤ t ∧ sti + wti > t, ∀t ∈ [0, .., Eoh]

(1)

The main idea is to partition the decision process in two main
phases performed by two separate software entities: the task agent
and the resource manager. The task agent is responsible for the activ-
ity submission and the dispatching. This agent resides into the user-
space. The resource manager is responsible for the scheduling. This
agent resides into the resources host.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1598

1598



Task Agent

Ac�vity

Resource manager 1

Resource

Start-�me 

prob. Gen.

Resource 

reserv.

Resource manager R

Start-�me 

prob. Gen.

Resource 

resv.

…

1

1

2
2

3
3

Resource 

sel.

4

5

5

6
6

Job Submission

Start-�me response

Resource confirma�on

Resource

Task Agent

Ac�vity

Resource 

sel.

Task Agent

Ac�vity

Resource 

sel.el. l.. l...

…

Figure 1: DARDIS architecture and phases (number ordering corresponds to time
progression)

Figure 1 shows the different phases of our approach. These phases
are subdivided in:

Job Submission (1) - Our approach starts with a task agent sub-
mitting an activity to all the resource managers of the system. After
the submission to all the resource managers, the task agent waits for
the responses.

Start time probability generation (2) - Each resource manager re-
ceives the submitted activity and starts the start time probability gen-
eration phase in which the manager generates a start time for the
activity according to an internal rule (Section 2.1).

Start time response (3) - After the start time generation, the re-
source manager sends a generated start time to the task agent.

Resource selection (4) - The task agent, after receiving the re-
sponses from all the resources, applies a policy (Section 2.2) to select
the resources for the activity execution.

Resource confirmation (5) - The task agent sends the result to all
the resource managers involved in the submission, namely, the one
selected and those not selected.

Resource reservation (6) - The resource managers in which the
activity has to execute, reserves the proper capacity for the execution,
by modifying the utilization profile.

2.1 Start time probability generation

The start time generation process for the resource j starts by comput-
ing a fitting index for the submitted activity i. This index indicates
how many parallel runs of the same activity could be executed in a
given start time s while satisfying the desired utilization profile for
the resource. Due to the variability over time of the desired profile,
we have to check for each time instant t ∈ {s, .., s+wti} how many
times the activity’s resource requirement reqi can fit the space left
between the utilization profile and the desired profile (equation 2).

I ′(s) = mint(
dpj(t)− upj(t)

reqi
) ∀t ∈ {s, .., s+ wti} (2)

Note that I ′(s) = 1 means that the activity perfectly fits into the
resource without exceeding the desired profile. I ′(s) > 1 means that
the activity fits the desired profile and leaves some resource for other
activities. If I ′(s) < 1, it means that the activity exceeds the de-
sired profile. The capacity instead cannot be exceeded by definition.
To handle this case, we use equation 3. Where \ represents integer
division.

I(s) = min(I ′(s),mint((cj − upj(t)) \ reqi))∀t ∈ {s, .., s+ wti}
(3)

The index distribution I is calculated for each possible start time
between the earliest start time esti and the latest start time lsti of the
activity: I = {I(esti), .., I(lsti)}. In this way, we obtain the fitting
profile for the activity.

We defined three generators for the start time selection:

• First: the goal of this star-time generation procedure is to maxi-
mize the throughput of the entire system. This deterministic selec-
tion works by picking up the first feasible start time.

• Uniform: the goal of this generator is to produce a scheduler that
allocates resources following the shape of the desired profile for
its entire window. This is a probabilistic selection that chooses the
start times randomly.

• Exponential: this generator has been designed to reach a trade-
off between throughput and profile chase. This is a probabilistic
generator that chooses a start time following an exponential dis-
tribution.

2.2 Resource selection

After the start time generation process, the task agent receives the
responses from all the resource managers involved in the submission.
This algorithm selects the resources for the activity execution.

The designed policies are:

• MIN START: it selects the resource that will execute the activity
first. This approach goes in the direction of optimizing the activity
throughput.

• MAX PROB: it selects the resource that gives the highest fitting
index. This means that it selects the most unloaded resource. This
approach is designed to minimize the standard deviation from the
desired profile.

• MIN PROB: it selects the resource that gives the lowest fitting
index. This policy is designed to ensure the best fitting for the
desired profile. This is useful when we have to prefer solutions
that saturate one resource before starting filling another one.

• RANDOM: it selects randomly the resources using a uniform.
This policy is designed to enforce each resource to have the same
probability of hosting an activity.

ACKNOWLEDGEMENTS

This work was partially supported by the FP7 ERC Advance project
MULTITHERMAN (g.a. 291125), by the YINS RTD project (no.
20NA21 150939), evaluated by the Swiss NSF and funded by Nano-
Tera.ch with Swiss Confederation financing and by CINECA.

REFERENCES

[1] Andrea Bartolini, Andrea Borghesi, Thomas Bridi, Michele Lombardi,
and Michela Milano, ‘Proactive workload dispatching on the eurora su-
percomputer’, in Principles and Practice of Constraint Programming,
ed., Barry OSullivan, Lecture Notes in Computer Science, Springer In-
ternational Publishing, (2014).

[2] Thomas Bridi, Andrea Bartolini, Michele Lombardi, Michela Milano,
and Luca Benini, ‘A constraint programming scheduler for heteroge-
neous high-performance computing machines’, IEEE Transactions on
Parallel & Distributed Systems, (2016).

[3] JF Lavignon et al. Etp4hpc strategic research agenda achieving hpc
leadership in europe. http://www.etp4hpc.eu/wp-content/
uploads/2013/06/ETP4HPC_book_singlePage.pdf, 2013.

[4] Menkes Van Den Briel, Paul Scott, and Sylvie Thiébaux, ‘Randomized
load control: A simple distributed approach for scheduling smart appli-
ances’, in Proceedings of the 23th international joint conference on Ar-
tificial Intelligence. AAAI Press, (2013).

T. Bridi et al. / DARDIS: Distributed And Randomized DIspatching and Scheduling 1599


