
Explained Activity Recognition with Computational
Assumption-Based Argumentation

Xiuyi Fan1 , Siyuan Liu1, Huiguo Zhang1, Cyril Leung2 , Chunyan Miao1

Abstract. Activity recognition is a key problem in multi-sensor sys-
tems. In this work, we introduce Computational Assumption-based
Argumentation, an argumentation approach that seamlessly com-
bines sensor data processing with high-level inference. Our method
gives classification results comparable to machine learning based ap-
proaches with reduced training time while also giving explanations.

1 Introduction

We present an argumentation based approach for activity recognition.
Computational Assumption-based Argumentation (CABA) is an ar-
gumentation framework that connects low-level sensor data process-
ing with high-level argumentative reasoning. In the proposed CABA
framework, sensor data is processed to form arguments. Together
with pre-defined arguments based on domain knowledge represent-
ing activities, they jointly construct argumentative inferences such
that “winning arguments” represent recognized activities.

CABA frameworks are extensions of the widely recognized
Assumption-based Argumentation (ABA) frameworks [4] with
added Computation Units (CUs). A CU represents a purposefully
designed (numerical) computation that is difficult to represent with
plain ABA. CUs are seamlessly built into CABA arguments in ways
assumptions are built into ABA arguments. With CUs introduced,
the acceptability of a CABA argument depends on attack relations
and its CUs. Thus, low-level data processing is “packaged” into CUs
whereas high-level reasoning as defined by standard argumentation
semantics. Upon recognizing activities, explanation for classification
is provided. We leverage our previous work on argumentation expla-
nation [1, 2, 3] in the development of CABA explanation.

We test our CABA based activity recognition algorithm in a smart
home equipped with: (1) two Grid-Eye inferred sensors3, (2) two
force sensors, (3) one noise sensor, and (4) one electric current detec-
tor. We focus on six activities: (1) eat, (2) watch TV, (3) read books,
(4) sleep, (5) visit and (6) other. We assume that at any moment, there
is one and only one activity taking place.

2 CABA and Explained Activity Recognition

Computation Units (CUs) are core components of CABA. Formally:

Definition 1. A computation unit (cu) is a tuple u = 〈T,C,E〉:
• T ⊆ Du: T is the Data, and Du is the Domain;

1 Joint NTU-UBC Research Centre of Excellence in Active Living for the
Elderly (LILY), Nanyang Technological University, Singapore

2 Electrical and Computer Engineering, The University of British Columbia,
Canada

3 https://na.industrial.panasonic.com/products/sensors/sensors-automotive-
industrial-applications/grid-eye-infrared-array-sensor

• C : Du �→ Ru: C is the Computation Function (Computation), and
Ru is the Range;
• E : Ru �→ {�,⊥}: E is the Evaluation Function (Evaluation).

We say that u = 〈T,C,E〉 is successful iff E = � and well-formed
iff both C and E are total and computable.

In this work, we focus on well-formed CUs. We introduce four
CUs: utv , utb, ubed and uone representing whether the TV is on, the
table is occupied, the bed is occupied and there is a single person,
respectively.
1. TV on: utv = 〈Ttv,Ctv,Etv〉 in which:
Ttv ⊆ {0, 1} is the output from the current sensor;
Ctv(Ttv) = Ttv; and
Etv = � if Ctv = 1 and Etv = ⊥ otherwise.
2. Table occupied: utb = 〈Ttb,Ctb,Etb〉 in which:
Ttb ⊆ N

8×8 is the output from GridEye 1;4

Ctb(Ttb) = CLtb(Ttb, ωtb) is a classifier such that, with some pa-
rameter ωtb, CLtb(Ttb, ωtb) ∈ {�,⊥} indicates whether there is
any person sitting next to the dining table; and
Etb = Ctb.
3. Bed occupied: ubed = 〈Tbed,Cbed,Ebed〉 in which:
Tbed ⊆ N

8×8 is the output from GridEye 2;
Cbed(Tbed) = CLbed(Tbed, ωbed) is a classifier such that, with some
parameter ωbed, CLbed(Tbed, ωbed) ∈ {�,⊥} indicates whether
there is any person on the bed; and
Ebed = Cbed.
4. One person in room: uone = 〈Tone,Cone,Eone〉 in which:
Tone ⊆ N

132×1 is the output from all of our sensors;
Cone(Tone) = CLone(Tone, ωone) is a classifier such that, with
some parameter ωone, CLone(Tone, ωone) ∈ {�,⊥} indicates
whether there is a single person in the room; and
Eone = Cone.

Definition 2. Computational Assumption-based Argumentation
frameworks are tuples 〈U ,L,R,A, C〉 where
• U is a set of well-formed CUs;
• 〈L,R,U〉 is a deductive system, with L the language and R a set
of rules of the form s0 ← s1, . . . , sm(m ≥ 0, si ∈ L∪U for i > 0,
si ∈ L for i = 0);
• A ⊆ L is a (non-empty) set, whose elements are assumptions;
• C is a total mapping from A into 2L − {{}}, where each s ∈ C(a)
is a contrary of a, for a ∈ A.
Given a rule ρ of the form s0 ← s1, . . . , sm, s0 is referred as the
head and s1, . . . , sm as the body of ρ.

We use the following CABA framework for activity recognition.
• U contains the following CUs: utv utb ubed uone

4 The output of a GridEye is an 8-by-8 integer matrix.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1590

1590

• L contains the following sentences:
watchTV eat sleep visit
notWatch notEat notSleep notVisit
read other notRead noAct
TVon tableOccupied bedOccupied onePerson
TVoff emptyTable emptyBed twoAct
• R contains the following rules:

notWatchTV ← TVoff notEat ← emptyTable
notSleep ← emptyBed notVisit ← onePerson
notRead ← TVon notRead ← tableOccupied
notRead ← bedOccupied other ← noAct
twoAct ← watchTV, eat twoAct ← watchTV, sleep
twoAct ← watchTV, visit twoAct ← watchTV, read
twoAct ← eat, sleep twoAct ← eat, visit
twoAct ← eat, read twoAct ← sleep, visit
twoAct ← sleep, read twoAct ← visit, read
TVon ← utv tableOccupied ← utb

bedOccupied ← ubed onePerson ← uone

• A contains the following assumptions:
watchTV eat sleep visit read
TVoff emptyTable emptyBed noAct
• C are:

C(noAct) = {watchTV, eat, sleep, read, visit}
C(watchTV) = {notWatchTV, twoAct} C(eat) = {notEat, twoAct}
C(sleep) = {notSleep, twoAct} C(read) = {notRead, twoAct}
C(visit) = {notVisit, twoAct} C(TVoff) = {TVon}
C(emptyTable) = {tableOccupied} C(emptyBed) = {bedOccupied}

We define CABA arguments and attacks as follows.

Definition 3. A CABA argument for (claim) s ∈ L supported by
Δ ⊆ A based on U ⊆ U (denoted [Δ, U] s) is a finite tree with
nodes labeled by sentences in L, CUs in U or by τ /∈ L∪U , the root
labeled by s, leaves labeled by either τ , assumptions in Δ, or CUs in
U , and non-leaves labelled by s′ with, as children, sentences in the
body of some rule with head s′.

A CABA argument A = [Δ, U] s is applicable iff for all CUs
u = 〈Tu,Cu,Eu〉 ∈ U , Eu = �. For a CABA argument A =
[Δ, U] s, if U = {}, then A is abbreviated to Δ s. Given a
CABA framework F, an argument is in F iff all its rules, assumptions
and CUs are in F. AF denotes the set of all arguments in F.

Definition 4. Given a CABA framework F, an argument [A1, U1]
s1 (in F) attacks an argument [A2, U2] s2 (in F) iff s1 is a contrary
of some assumption in A2. RF denotes the set of all attacks in F.

We let admissibility apply in CABA with additional conditions:
(1) a set of arguments is admissible only if they are applicable and
(2) an admissible set of arguments only needs to counter-attack all
attacks from applicable attackers. We formalize explanations for non-
admissible CABA arguments as follows.

Definition 5. Given a CABA framework F with arguments AF and
attacks RF, and CABA argument A ∈ AF such that A is not admis-
sible in F, then, if there exists some As ⊆ AF, such that: (1) A is
admissible in 〈AF, RF〉 \ As, and (2) there is no As′ ⊂ As such that
A is admissible in 〈AF, RF〉 \ As′, then As is an explanation of A.
Otherwise, {A} is the explanation of A.

Suppose that for some sensor data, both utb and uone are success-
ful whereas utv and ubed are not successful. We see that {watchTV}
 watchTV is not admissible. However, if arguments
A = {TVoff} notWatchTV, B = [{}, utb] TableOccupied

are removed, then {watchTV} watchTV becomes admissible.
Hence, {A, B} is an explanation for {watchTV} watchTV. We
can interpret this as:

An explanation for “not watching TV” is that the TV is off and
there is a person using the dining table.

To evaluate CABA based activity recognition, we have had four
individuals performing the six activities. Each person performs the
six activities in two runs. Data collected from six runs from three
testing subjects are used for training with the remaining two runs
from the fourth subject for testing. Overall, there are 7781 instances
of training samples and 1437 instances of testing samples.

With the CABA framework presented earlier, to perform activity
recognition we use four CUs, utv , utb, ubed and uone. We let utv use
the value directly from the current sensor. To construct utb and uone,
we choose perceptron classifiers for their simplicity. Specifically, for
utb, we construct a 64-node perceptron model with a single output
node; for uone, we construct a 132-node perceptron model with a
single output node. To construct ubed, we use binary thresholding
based on GridEye 2’s output to test if the bed is occupied.

We compare our CABA-based classifier with Naive Bayes, Deci-
sion Tree and Neural Networks using precision, recall and training
time. The results are summarized in Table 1. These results illustrate
the effectiveness of introducing domain knowledge in argumentation
form in solving activity recognition problems.

Precision Recall Training Time (s)
Naive Bayes 0.558 0.578 2.89

Decision Tree 0.576 0.397 0.46
NN 2-Hidden Layers 0.801 0.797 549.32

Deep Neural Network 0.816 0.812 1865.34
CABA-Classifier 0.821 0.831 53.55

Table 1. Performance comparison between Naive Bayes, Decision Tree,
Neural Networks 2 and 8 hidden layers and the proposed CABA-classifier.

3 Conclusion

In this work, we presented CABA to seamlessly connect low-level
data processing with high-level inference based reasoning. We used
CABA to solve an activity recognition problem, with promising re-
sults comparable to traditional machine learning algorithms. The ad-
vantage of CABA is twofold. Firstly, used as a channel for inject-
ing domain knowledge into problem solving, CABA significantly re-
duces the training time required for model construction. Secondly,
the argumentative structure of CABA provides the basis for generat-
ing explanations for the modeled computation.

Acknowledgments

This research was supported by the National Research Foundation
Singapore under its Interactive Digital Media (IDM) Strategic Re-
search Programme.

REFERENCES

[1] X. Fan and F. Toni, ‘On computing explanation in abstract argumenta-
tion’, in Proc. ECAI, (2014).

[2] X. Fan and F. Toni, ‘On computing explanations for non-acceptable ar-
guments’, in Proc. TAFA, (2015).

[3] X. Fan and F. Toni, ‘On computing explanations in argumentation’, in
Proc. of AAAI, (2015).

[4] F. Toni, ‘A tutorial on assumption-based argumentation’, Argument &
Computation, Special Issue: Tutorials on Structured Argumentation,
5(1), 89–117, (2014).

X. Fan et al. / Explained Activity Recognition with Computational Assumption-Based Argumentation 1591

