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Abstract. Deep networks such as autoencoders and deep belief
nets are able to construct alternative, and often informative, repre-
sentations of unlabeled data by searching for (hidden) structure and
correlations between the features chosen to represent the data and
combining them into new features that allow sparse representations
of the data. These representations have been chosen to often increase
the accuracy of further classification or regression accuracy when
compared to the original, often human chosen representations. In
this work, we attempt an investigation of the relation between such
discovered representations found using related but differently repre-
sented sets of examples. To this end, we combine the cross-domain
comparison capabilities of unsupervised manifold alignment with
the unsupervised feature construction of deep belief nets, resulting
in an example mapping function that allows re-encoding examples
from any source to any target task. Using the t-Distributed Stochastic
Neighbour Embedding technique to map translated and real exam-
ples to a lower dimensional space, we employ KL-divergence to de-
fine a dissimilarity measure between data sets enabling us to measure
found representation similarities between domains.

1 Introduction

While raw data is abundant, the difficulty with using this data, and
according to the authors’ one of the biggest challenges in the current
big data hype, is the lack of any structured way of representing the
data, leading to many different, human chosen, but unmatching rep-
resentations of similar or related, but most of the time not identical2

data. Examples of this are numerous, ranging from data stemming
from medical questionnaires, where almost never the same questions
are asked, but the topics are often similar, over gene transcription data
where old style microarray data and more recent RNAseq measure-
ments exist over a pool of intersecting but not identical gene sets to
control oriented data where samples of system behaviour of a num-
ber of control problems exist, but almost never match in the chosen
representation.

The subfield of machine learning in which this problem is tack-
led is known under the names transfer learning, inductive transfer
and domain adaptation. The idea behind transfer learning is to en-
hance learning performance on a task by employing, i.e., re-using
data, experience, and/or solutions from different but related tasks
that were solved earlier. Existing work on transfer learning and in
domain adaptation for supervised tasks [18, 9, 11] mainly focuses on
the shift of the probability distributions observed between different
tasks and how to correct for those, but not on the issue of different

1 Maastricht University, email: kurt.driessens@maastrichtuniversity.nl
2 With identical, we refer to the representation and domain of the data, not

the examples measured.

representations. Also in reinforcement learning, the usual drawback
of the tabula rasa approach when confronting new tasks has lead to a
flurry of research on transfer learning [28]. Historically, defining the
relation between the old task and the new, e.g. feature mapping, goal
mapping, translating the model or policy to match the representations
was handled by a human expert [29].

More recent work proposes autonomous transfer methods that aim
at deriving the inter task mapping from learning examples of the two
tasks automatically [27, 8, 7, 5]. These work by studying, or hav-
ing an algorithm analyse the internal structure of the examples in
the data set and trying to exploit the similarities between data sets in
such structure. For example, in reinforcement learning, the dynamics
of the task to be solved can be observed from sample interactions
with the environment, consisting of the state the agent was in, the
action that was selected and the state the action lead to. Analysing
these dynamics and mapping the samples from both tasks into a joint
feature space can give an indication of how the two tasks are re-
lated, i.e. where and how they shared dynamics and control response.
The same idea applies to standard supervised learning tasks such as
classification or regression, where the structure arises from the fact
that, in principle, examples do not uniformly cover the entire exam-
ple space as defined by the human chosen representational format.
Existing work that takes this approach has used sparse coding [8]
and manifold alignment [32] to define the joint space.

The contribution of this work is twofold, as we introduce:

(i) a data driven difference measure for comparing data sets
(ii) an automatically derived inter-task mapping that can be used

to compare any two data sets and thus learning tasks, whether they
are supervised, unsupervised or reinforcement learning.

The approach takes the shape of a pipeline employing well studied
and tested techniques. The pipeline relies on deep belief nets to gen-
erate expressive features for both data repositories and on unsuper-
vised manifold alignment to find the best mapping between these
features. Applying one deep belief net to generate hidden feature
activations, a forward and backwards projection into the alignment
space and the other deep belief net to reconstruct the visible node ac-
tivations from the projected hidden node activations, it becomes pos-
sible to translate learning examples from a source task into examples
for the target task. By comparing the embedding of the original and
the translated examples in a low dimensional projection built using
the t-Distributed Stochastic Neighbour Embedding, we define a dif-
ference measure based on the Kullback-Leibler divergence between
the two example distributions. Experiments show that the pipeline is
able to autonomously find meaningful analogies between data-sets
that match human intuition.

The pipeline draws on the power of already developed techniques
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and applies and combines them in a new problem domain. The com-
bination of the techniques adds little to no complexity to these tech-
niques except for the way in which they are combined. No additional
parameters to set or tune are introduced and no expert knowledge on
any of the involved tasks is required. The exact set-up of the pipeline
will be further discussed in section 3.

The rest of the paper is structured as follows: we introduce the
necessary concepts and discuss related work in section 2. Section 4
demonstrates the capabilities of the pipeline using data sets from a
number of well known classification tasks and reinforcement learn-
ing benchmarks to show that the discovered relations and similarities
have a striking resemblance to human intuition.

2 Preliminaries

In this section, we introduce the problem we are trying to address
with this work, we present related work and introduce the different
concepts we will use later on. Given the similarity possible appli-
cation of our technique to transfer learning and the similarity of the
settings, we will adopt the vocabulary of the transfer learning domain
and talk about source and target data sets/tasks to make referencing
the two different domain easier.

2.1 Autonomous Transfer Learning

Transfer learning [30, 28] is concerned with the re-use of data, or
experience in the case of reinforcement learning, or the learned mod-
els and policies from a previously learned source task, to improve
learning performance in a new, sometimes more complex target task.
Shallow transfer is concerned with the transfer of information when
the learning examples from the source and the target task share their
feature space. However, since these features are usually chosen by
a human expert, or simply chosen by their availability for a learn-
ing task, they often differ between tasks, leading to what is known as
deep transfer. This is the setting under which we operate in this work.
When reusing previous experience from a source task S with feature
representation ψS in a new target task T with different features ψT ,
the two representations need to be related. This relation often takes
the form of an inter-task mapping T : ψS → ψT that relates the
expert chosen features to each other.

When a set of source tasks (S1, S2, . . . , Sn) is available to trans-
fer from, or if the task is to build an optimised learning path through
a number of related learning tasks, a task similarity measure M can
be used to select which source task to transfer from, or which task to
select next. Such a measure will map any combination of two learn-
ing tasks to R, giving a score to each combination according to their
similarity.

Related Work

Given the difficulties with its tabula rasa learning premise, transfer
learning for reinforcement learning tasks has received quite a bit
of attention in the past years [28]. Where historically the required
inter-task mapping was defined by domain experts [29] more recent
work has focussed on completely autonomous transfer. Bou Ammar
et al. [8] construct a joint space for the source and task domain sam-
ples through sparse coding [21]. In this joint space, samples from
the source and the target domain are paired using a Euclidean dis-
tance and used as learning examples in a supervised learning task
that attempts to model the inter-task mapping. The problem with this
approach is that in the commonly high dimensional joint space, the

Euclidean distance carries little information. In follow up work [7],
Bou Ammar et al. use a three way restricted Boltzmann machine to
learn the inter-task mapping. This setup relies on a complex training
phase based on mini-batch learning and re-learning that randomly
pairs samples from the two domains and relies on the reconstruction
error of the Boltzmann machine to select which pairs match best.
This makes training the machine quite involved, as many repetitions
of randomly paired samples are necessary.

For supervised learning tasks, unsupervised manifold alignment
has been used to relate the learning examples from the source and tar-
get tasks [32]. Very recently, Bou Ammar et al. [2] applied this man-
ifold alignment technique to policy gradient reinforcement learning.
Since this technique is so closely related to ours, in fact, the unsuper-
vised manifold alignment is a part of our pipeline, we will compare
the inter-task mapping generated by both techniques in our experi-
mental section.

On top of the inter-task mapping, our approach also gives rise to
a domain similarity measure. Of existing work on domain similarity
measures, the most related to ours in the work by Bou Ammar et al.
on RBDist [6] that bases its similarity measure on the reconstruc-
tion error of a single restricted Boltzmann machine and the follow
up work on DRBDist [4] using a combination of Deep Belief Nets
a bit like ours. The main difference is that DRBDist uses an identity
mapping between the top layers of two DBNs. This not only places
a restriction on the number of nodes of the top layer of the DBNs,
i.e. the number of nodes must be equal, it also assumes a ordered
pairwise similarity between the features learned by both networks.
Additionally, since the similarity measure relies on the reconstruc-
tion error, it is very sensitive to the convergence results of the DBN
learning phase. In fact, when trying to reproduce the results from this
work, we were unable to reach the same results.

2.2 Deep Belief Networks

A restricted Boltzmann machine (RBM) is a neural network (NN)
consisting of two layers (one visual and one hidden) of stochastic
nodes that can be trained to represent a probability distribution over
data points [19]. Each neuron in a layer is connected to all neurons in
the other layer forming a fully connected bipartite graph. An RBM
is trained using gradient descent where the gradient is not directly
computed but estimated by the contrastive divergence algorithm [17].
A deep belief network (DBN) is a stack of RBMs trained in a layer-
wise setup. Increasing the number of layers is done to improve the
fit of the probability distribution and can be shown to extract, in an
unsupervised way, higher level features from a dataset.

While a single hidden layer RBM is able to capture basic fea-
tures, stacking multiple layers on top of each other allows learning
higher level features. Such a stack of RBMs, which itself forms a
NN, is called a Deep Belief Network (DBN). Each layer is trained
in a greedy, layer wise fashion. This forces each additional hidden
layer to learn a new feature representation to encode the layer below
and makes this technique well suited for automated feature extrac-
tion. It has been successfully applied to domains like handwritten
digit recognition [25], speech recognition [15] and Atari games [23],
among other things [3].

2.3 Manifold Alignment

Finding feature correspondences in a source and a target task
is important when assessing the similarity between them. Chang
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Figure 1. Pipeline using DBNs, manifold alignment and t-SNE.

Wang [32] proposed a method to align two datasets of arbitrary di-
mensions by finding these correspondences in an unsupervised way.
The alignment is performed in a new space into which the data can
be mapped. The algorithm also provides inverse mappings which al-
low to reconstruct data points belonging to a source task into a target
task’s original space. It then follows that the quality of this recon-
struction will depend on the quality of the alignment and therefore
will depend on the similarity between the two datasets.

The alignment and the corresponding transformation is achieved
by first computing intra-similarities between the points in the same
dataset. Then, the local geometries in both domains are represented
by the distances of the k-nearest neighbours for each point. Intu-
itively, if the two sets have the same local geometries, up to affine
transformations, the sets can be perfectly aligned.

Having this local information, the mappings for both domains can
be found by minimising a cost function that forces points exhibit-
ing similar geometries to be mapped closely together in the common
space, and at the same time enforce the points which are close to
others in their respective space to also be close in the common space.

2.4 t-Distributed Stochastic Neighbour Embedding

Measuring similarities between data points or data sets in high
dimensional spaces is complex and not always meaningful. t-
Distributed stochastic neighbour embedding or t-SNE [31] is a di-
mensionality reduction method that aims to maintain the same data
distribution from the original high dimensional (HD) space in a low
dimensional (LD) one. Since the technique originates in visualisa-
tion, LD space is usually two dimensional.

The mapping done in such a way that close points in the HD space
should also be close into the LD space. In other words, t-SNE finds,
in an unsupervised way, a mapping R

n → R
2 that conserves the lo-

cal geometries of the original dataset. To do so, it computes a joint
probability distribution for observing a point xj around a point xi
using a multivariate Gaussian distribution centred at xi. The algo-
rithm also finds a proper variance for each distribution at xi in order
to model the local geometries by taking the density around that point
into consideration. This probability is at the core of the method as the
LD space should reflect the same probability distribution as the HD
one and therefore model the same similarities. To achieve this, a gra-
dient descent search is performed on the Kullback-Leibler divergence

with the aim at minimising the difference between the distribution in
R

n and the one in R
2. The embedding in the low dimensional space

comes at the price of not conserving the global geometries of the
original dataset. Points far away in the HD space will be even farther
away in the LD.

3 Data Driven Similarity Construction

We want our approach to match and find similarities between the
two domains completely autonomously, so we define a set-up that
computes a similarity measure between any two previously unseen
(and possibly unlabelled) domains and constructs a mapping between
the two domains that allows re-encoding samples from one domain
into samples of the other. The similarity measure will indicate the
degree to which the two domains match and will quantify the quality
of the re-encoding.

3.1 Working Constraints

Having the inter-task mapping and the domain similarity measure
constructed completely unsupervised leads to the following con-
straints:

(i) No prior information about the domains must be required besides
data samples.

(ii) No requirements can be placed on the dimensionality of the dif-
ferent domains.

Our approach consists of a pipeline that makes use of three core
methods to construct both the inter-task mapping and the similarity
measure: (i) deep belief networks [16], (ii) manifold alignment [32]
without correspondence and (iii) t-SNE [31].

3.2 The pipeline

Our pipelined approach, illustrated by Figure 1, goes as follows:

(i) For each of the datasets, a separate DBN is used to extract high
level features. Each dataset consists of (unlabelled) samples from
one domain. This step is expected to result in a better representa-
tion of the data for each domain and to help increase the compar-
ativeness by working on underlying characteristics instead of the
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low level (human chosen) features of the raw data. No restrictions
are placed on the number of nodes used in any layer or on the
number of layers itself, so the DBN can be optimised to match the
domain it is used for, independent of the rest of the pipeline and
according to the experience of the user.

(ii) The manifold alignment uses samples from two domains, re-
encoded into the feature space extracted by the DBNs, and com-
putes a mapping to a space where the samples from the source and
the target domains can be compared. As mentioned in Section 2.3,
this method is able to work with data originating from spaces with
different dimensionalities, to get rid of affine transformations and
to provide an inverse mapping that allows the data from one do-
main to be transformed into the other domain. The quality of this
transformation is influenced by the quality of the alignment which
in turn is dependent of the similarity between the two datasets. A
good alignment will transform the source’s data points into a set
of data points that matches the original target distribution.

(iii) In order to obtain a meaningful similarity measure, t-SNE re-
duces the original, usually high dimensional, space into a two
dimensional one. Then, the Kullback-Leibler divergence (KL-
divergence) is computed in t-SNE’s space between the original
target distribution and the distribution of the reconstructed source
samples. This KL-divergence represents the measure between the
source and target datasets.

The training of the DBNs is done for each domain to be measured,
but since this step is independent of any other domains involved,
it only has to be executed once for each domain. Subsequently, the
manifold alignment is trained with the source’s and target’s last hid-
den layers activations for each pair of domains that we want to com-
pare. The last phase is to train the t-SNE algorithm in order to re-
duce the dimensionality of the target’s space. With the aim to use the
KL-divergence over points laying on the plane generated by t-SNE,
probability distributions for the target’s original and reconstructed
datasets have to be estimated. In the experiments reported below, we
used kernel density estimators at 150× 150 equidistant points.

4 Experiments

In this section we empirically evaluate the pipeline presented above.
Since there is no ground truth when comparing different datasets
with respect to the inter domain mapping and the computed similarity
measure, we’ve selected domains that can be matched using human
intuition, as well as domains from reinforcement learning where re-
lated work generated a base for comparison.

To compare with previous work and to illustrate the importance of
each step in the pipeline we first use the MNIST dataset of written
characters [20]. Since this dataset is composed of easy to interpret
images, this data allows us to clearly show how the approach works
and what the influence is of each step. To allow comparisons on this
data set, we treat the samples of each digit as a separate domain, al-
lowing us to visually show the results of the re-encoding to compare
the similarity measure to human intuition.

To illustrate the use of the pipeline on data stemming from spaces
with different dimensionality, we then apply our approach to ac-
complish transfer between the pen-digits dataset [1] and the MNIST
dataset. This setup again allows us to show qualitative results of the
re-construction. Additionally, we present some quantitative results of
the influence our inter-task mapping method could have on classifier
accuracy through example transfer.

We end with a set of experiments on reinforcement learning bench-
marks which allows us to compare to previously published data

driven similarity measures [4].

Figure 2. Experiment using 3 as source and 4 as target. (a) samples used as
source (b) shows the reconstruction of with the full pipeline. (c) the

reconstruction without manifold alignment. (d) the reconstruction without
DBNs
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4.1 MNIST

The MNIST [20] dataset holds images of centered handwritten digits,
each composed of 28× 28 grayscale pixels. The goal of this experi-
ment is to measure the similarity between different digits in MNIST.
For example, it aims at testing if the digit 0 is closer to 8 than it is to
4. Multiple parameters had to be set up and have been kept fixed for
all experiments in this section. Given that the pipeline is independent
of the used DBN architecture, we decided to follow literature and
composed the DBN of two hidden layers: the first one having 300
units and the second one having 100 units. Each NN was trained to
model the distribution of one digit, using on average 6000 examples
per digit. The manifold alignment used a parameter μ = 1 and was
trained on 1000 sets of activations (i.e. samples) per dataset. Once
the data is reconstructed by the target DBN, it is used to compute the
t-SNE scatter plot. t-SNE initialised the LD space embedding using
a PCA with 2 components and used a maximum of 1000 iterations
for the optimisation.

Figure 2b shows the results when using the full pipeline, taking
samples of the digit 3 as source and digit 4 as the target. The re-
constructed digits are a bit more blurry than the originals, but the
samples do cover both the open version of the digit 4 as well as the
closed top version. The t-SNE scatter plot in Figure 3a shows that the
reconstructed samples are centred inside the distribution of the origi-
nal samples. This means that less variance will be observed from the
reconstructed samples. The dissimilarity measure for this experiment
was 11.61.

Figure 3. Examples of t-SNE for the experiment using 3 as source and 4 as
target. (a) t-SNE associated to Figure 2b of the experiment with the full

pipeline. (b) t-SNE associated to Figure 2c when the manifold alignment has
been removed from the pipeline

Table 1 shows all dissimilarity values computed by our measure.
For example 8 is easier to reconstruct from a 3 than a 4 which, from
a human perspective, is explained by the loops and shape of 3 being
similar to 8. Because of the lack of a ground truth, the table also in-
cludes the summarised results of an online survey we held to estimate
human intuition about the similarity of written digits. In case two dig-
its received approximately the same number of votes, both are listed.
The survey was filled in by approximately 100 participants. One can
observe that our approach agrees with the survey results for a number
of case, but surely not all.

4.1.1 Removing the DBNs

As discussed in the related work section, recent work by Bou Am-
mar et al. [2] constructs an inter-task mapping using only the mani-
fold alignment part of our setup. In Figure 2d we depict the results
obtained by attempting to transform a 3 digit into a 4 using the man-
ifold alignment on the raw MNIST data. Comparing the results with
those of Figure 2b shows the amount of noise generated by this ap-
proach.

4.1.2 Removing the manifold alignment

Figure 2c shows the experiment again, but removing the manifold
alignment step, a setup briefly mentioned in [4]. Since both DBNs
have the same architecture, the activations of the source’s last hidden
layer can be mapped with an identity function to those of the target.
It has to be noted that there is no theoretically foundation for the
use of an identity mapping. The weights of the DBN are initialised
randomly in order to break symmetry [14, p. 173] which leads to a
random allocation of the high level features to the nodes, even when
the DBN is trained multiple times on the same data. This experi-
ment empirically demonstrates the necessity of using a method in-
variant under affine transformations. The results given by t-SNE in
Figure 3b show that two distant distributions have been found. The
KL-divergence for these distributions is 57.17, much higher than the
value from the experiment using the full pipeline.

The results presented above demonstrate the necessity and advan-
tages of each step in the pipeline. Each stage is required to solve a
part of the problem described.

4.2 Pendigits

The pen-digits dataset [1] represents handwritten digits captured us-
ing a graphic tablet. Each instance is composed of 8 pairs of x, y
coordinates taken along the path of the digit as depicted in Figure 4.
The following experiment compares this sequential digit representa-
tion to the images of MNIST. While the domain of the two datasets
is hand-written digits, the representation of the data is very differ-
ent: first of all, the pen-digit samples have only 16 dimensions and
represents coordinates over time, while MNIST uses 784 pixels in-
tensities. While in this case, there seems to be a ground truth for the
similarity measure to discover, without any background information
about the two data-sets, they are very difficult, if not impossible for
humans to match.

The pen-digit DBNs use two hidden layers with sizes of 60 units
for the middle and 80 units for the last layer. The MNIST DBNs as
well as the manifold alignment and t-SNE were configured as before.

Figure 4 shows the original pen-digit data for the digit 8 mapped
on a two dimensional field, the reconstructed MNIST like images
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Source\Target 0 1 2 3 4 5 6 7 8 9
0 � 1 49.67 12.38 3.47 10.15 12.70 9.03 15.91 6.75 11.18
1 14.19 � 1 10.96 10.27 10.99 12.50 10.03 7.16 7.74 13.20
2 13.98 46.41 � 1 12.36 11.78 8.68 14.35 16.64 4.94 9.83
3 11.24 39.71 10.90 � 1 11.61 8.48 13.14 16.91 3.58 8.08
4 13.58 32.64 11.14 7.80 � 1 11.40 12.71 10.12 4.40 9.04
5 13.39 56.18 9.50 5.45 10.80 � 1 15.84 14.43 5.42 15.16
6 11.78 41.37 10.27 6.21 8.22 11.73 � 1 15.66 5.23 13.61
7 14.38 47.07 8.61 7.19 6.07 12.23 12.22 � 1 9.69 8.34
8 14.14 44.05 9.30 6.95 12.56 10.44 16.73 17.46 � 1 15.98
9 12.99 41.39 8.37 5.07 9.30 13.56 13.81 9.36 6.29 � 1

2nd most similar 3 4 9 0 7 3 0 1 3 3
3rd most similar 6 3 7 9 6 2 1 9 4 4
human choices 6 7 3 8;2 9 6 0;5 1 3 4

Table 1. Similarity measure values obtained when comparing different MNIST digits. The bottom row represents the most similar digit according to a
humans obtained with an online survey.

generated and the t-SNE plot of the resulting probability distribu-
tions. Again, it can be observed that although the reconstructions are
a bit more blurry than the originals, a variety of recognisable 8 digits
is produced.

We show the full dissimilarity matrix for all digits in Table 2. Sur-
prisingly, most of the time, the pen-digits and their corresponding
MNIST digit turn out to be the most similar by a huge margin when
compared to others. For digit 3, there is a clear mismatch. For digits
1 and 2, the difference between the first and second closest digit is so
small that it should be considered ambiguous. Given that t-SNE in-
volves stochasticity in the mapping, two runs of the algorithm could
give slightly different results [31] pointing to a different most similar
digit. Nonetheless, even then, the matching digits remain among the
topmost similar.

4.3 A Transfer Learning Scenario: Mapping
Pendigit to MNIST

While not the primary aim of our data similarity measure, the inter-
task mapping generated by our approach gives rise to a simple trans-
fer learning scenario, as examples from one domain can be trans-
formed into additional learning examples in another domain. To
make this approach useful however, one would need to have both
sufficient data to learn a deep belief network modelling the target
data while at the same time, too few examples of the target set to
be able to learn a good classification algorithm. Although these two
seem to contradict each other, unsupervised learning of the DBN,
followed by a fine tuning stage using a limited amount of data might
be possible.

We tested the performance of such a transfer scenario using our
automatically generated inter-task mapping. We performed a simple
classification experiment that aims at identifying the digit 8 in a full
set of digits, i.e. classifying 8’s versus all other digits. For this we
compared using a standard MNIST dataset with a 10% share of the
dataset for each digit, with datasets that included an extra share of
re-constructed 8’s. We believe that this is a good analogy to how
this technique could be used in practice, by generating a number of
extra learning examples through the re-construction of a number of
available source task examples. All experiments were performed us-
ing 10-fold cross validation, using the SMO support vector machine
implementation in WEKA [13]. The results are displayed in Table 3.

They show a contribution made by the re-encoded learning examples.
Unfortunately, we were unable to measure a correlation between the
similarity measure and the amount of improvement in this setting.
We assume the re-encodings of the examples are too close to mea-
sure a difference, enhanced by the fact that the re-encodings often
appear at the center of the originals data distribution.

We would also like to emphasise that the experiment described in
Table 3 is closely related to the problem described in domain adap-
tation [18, 9, 11]. Techniques used in domain adaptation attempt at
using source data related to target data used to train a classifier in
order to improve its accuracy [11]. The pipeline presented in this
work could and should be investigated further in conjunction with
the problems addressed by domain adaptation.

4.4 Comparing Markov Decision Processes

Next, we test our approach on three standard reinforcement learn-
ing benchmarks that have been previously compared [7]: (1) inverted
pendulum, where the goal is to swing up and balance a pole with
an underpowered motor, (2) cart pole, where the goal is to balance a
pole hinged to a cart by pulling the cart back and forth and (3) moun-
tain car, where the goal is to drive an under-powered car up a hill by
building up momentum.

The datasets for these tasks were generated by uniformly sam-
pling the environment for a state s, picking the action a that max-
imises a Q-function learned by SARSA and adding the state s′ that
the chosen action led to to build < s, a, s′ > triplets that sample
the domain’s transition function. For each task 5000 samples were
generated. Computing the similarities between the different domains
resulted in Table 4 and match the ranking found in [4].

The table highlights the similarities between IP→MC and
CP→MC and the fact that the similarity measure is not symmetric.
MC does not seem to present a close similarity to IP nor CP. We be-
lieve this is caused by the relative simplicity of the learned policy of
MC. The t-SNE space for the CP→MC transfer case is shown in Fig-
ure 5. It can be observed that the samples from MC are divided into,
what we believe are, separate pathways. The samples re-constructed
from CP do not follow these pathways, but represent a decent spread
over the example space. In the reverse transfer case (MC→CP), this
is not the case and all samples re-encoded from MC are grouped to-
gether instead.

D. Lejeune and K. Driessens / A Data Driven Similarity Measure and Example Mapping Function for General, Unlabelled Data Sets 163



Pen\MNIST 0 1 2 3 4 5 6 7 8 9
0 22.42 68.09 87.47 71.72 81.99 63.04 70.19 83.23 72.56 77.77
1 57.56 45.06 59.04 62.30 57.06 64.08 55.95 60.24 51.51 62.28
2 68.76 55.05 45.15 63.49 60.09 51.46 60.44 51.13 63.08 58.88
3 66.01 54.63 81.02 51.42 63.86 32.06 81.85 61.56 64.90 65.14
4 56.88 61.22 55.08 58.84 17.40 48.34 44.61 50.52 64.18 29.66
5 43.86 46.51 49.61 31.60 46.95 18.01 49.10 44.59 31.57 37.20
6 70.12 60.91 65.05 73.87 69.00 71.35 24.17 63.41 73.54 62.02
7 61.41 56.61 53.34 50.77 47.28 57.02 63.48 14.02 58.72 46.40
8 61.43 43.34 44.75 42.24 45.75 24.45 58.16 46.80 8.31 48.55
9 73.64 66.28 65.04 62.55 48.07 53.82 61.94 44.28 56.28 12.71

Most similar 0 8,1* 8,2* 5 4 5 6 7 8 9

Table 2. Table of dissimilarities between the pen-digits as source and the MNIST as target. Asterisks highlight ambiguities in the similarity between digits.

Figure 4. Pen-digit experiment. The top image shows samples from the
pen-digit dataset. Only the dots are taken into consideration by the DBNs,
the lines represent the sequential nature of the measurements. The middle

image shows the corresponding MNIST reconstruction. The bottom image is
the t-SNE plot.

Source Dissimilarity Value ROC area for class 8
none n/a 0.848

pen digit 5 31.57 0.92
pen digit 6 73.54 0.92
pen digit 8 8.31 0.92

Table 3. Table of dissimilarities between the pen-digits as source and the
MNIST as target. Asterisks highlight ambiguities in the similarity between

digits.

Figure 5. t-SNE space for transferring CP samples to MC.

5 Conclusions and Future Work

We presented a fully autonomous and data driven technique for com-
puting (i) an inter-task mapping and (ii) dissimilarity measure for
unrestricted data sets. While domain specific data driven similarity
measures exists, for example in the image analysis field [26], it is our
belief that we are the first to present a technique that is able to trans-

Source\Target IP CP MC
IP 0.76 20.84 4.23
CP 18.35 5.19 7.05
MC 20.12 21.70 0.002

Table 4. The dissimilarity values between all reinforcement learning tasks.

D. Lejeune and K. Driessens / A Data Driven Similarity Measure and Example Mapping Function for General, Unlabelled Data Sets164



late learning examples between highly dissimilar domains with such
high correlation to human intuition. We showed in the experimen-
tal section that the presented technique can be applied to supervised,
unsupervised and reinforcement learning tasks. We showed a num-
ber of experiments that both quantitatively and qualitatively illustrate
of the power of the presented technique as well as the necessity and
contribution of each part of the involved pipeline.

In future work we would like to approach even more challenging
tasks such as measuring the similarity of phonemes in speech and
test the robustness by using, for example, affNIST (i.e. MNIST with
affine transformations). We would also like expand the technique to
e.g. bigger images that require convolutional networks. This leads to
additional complexity caused by the challenge in reversing convolu-
tion and pooling layers. However, related work exists for reversing
these networks and using them to reconstruct data [22, 10] that could
be useful to extend the pipeline presented.

We also plan to research transfer learning scenarios in which this
technique could be used as a basis. While there are straightforward
applications of the dissimilarity measure, such as source domain se-
lection when multiple sources are available, the initial test using the
inter-taks mapping to do example transfer does not yet seem to lead
to a useful approach. The examples transformed through a success-
ful mapping function seem to converge to the center of the target
data set, not necessarily leading to additional information about the
classes boundaries. To make the approach successful, a way will have
to be devised to generate a more diverse set of transferred examples.
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