
Strategic Path Planning Allowing On-the-Fly Updates

Ofri Keidar and Noa Agmon1

Abstract. This work deals with the problem of strategic path plan-
ning while avoiding detection by a mobile adversary. In this prob-
lem, an evading agent is placed on a graph, where one or more nodes
are defined as safehouses. The agent’s goal is to find a path from its
current location to a safehouse, while minimizing the probability of
meeting a mobile adversarial agent at a node along its path (i.e., being
captured). We examine several models of this problem, where each
one has different assumptions on what the agents know about their
opponent, all using a framework for computing node utility. We use
several risk attitudes for computing the utility values, whose impact
on the actual performance of the path planning algorithms is high-
lighted by an empirical analysis. Furthermore, we allow the agents to
use information gained along their movement, in order to efficiently
update their motion strategies on-the-fly. Analytic and empiric anal-
ysis show that on-the-fly updates increase the probability that our
agent reaches its destination safely.

1 Introduction

The problem of path planning is one of the fundamental problems in
the field of agents and robotics [5,7,9,10]. The goal in path planning
is to find a sequence of world locations which allows the agent to
arrive at its destination while optimizing some criteria, usually mini-
mizing travel cost while avoiding obstacles.

In this paper we introduce a new variant of traditional path plan-
ning problem: Strategic Path Planning (or STRAPP, in short). In
this problem, we aim at planning a path for our agent (denoted as
R), while avoiding being captured by a mobile adversarial agent (de-
noted as C). The agents travel about a graph, representing a map of
the environment (referred to as map graph), where a set of nodes in
this graph are defined as safehouses. The goal of R is to arrive at one
of the safehouses without being intercepted by C on its way there
(capture it). This problem is applicable in various domains, e.g., de-
livering humanitarian aid into a hostile area, evading enemy forces
in battlefield and even modeling better video games agents.

The problem of traveling in an environment while avoiding threats
has been studied from different perspectives [2,4,6,11]. In the prob-
lem of Pursuit-Evasion [1,3,8], two rival agents move around the en-
vironment (e.g., along the edges of a graph), until the pursuer moves
to the evader’s location. Most research in pursuit evasion focuses on
aspects concerning topology of the graph, for example, on defining
properties related to graph theory of the given graph, in order to char-
acterize graphs where the pursuer is guaranteed to capture the evader
or finding minimal number of pursuers required. In our problem,
however, the evader R moves to a certain destination, and does not
try only evade its pursuer. Furthermore, our problem addresses strate-
gic behavior and game theory concepts. R’s path is planned based on
strategies that take into account its risk attitude.

1 Bar Ilan University, Israel, email: ofri.keidar@biu.ac.il, agmon@cs.biu.ac.il

We formally introduce the STRAPP problem, and examine dif-
ferent variants of it. We present a framework for computing utili-
ties associated with each node in the graph, computed in polynomial
time. This framework is used for finding solutions to the STRAPP
problem in all examined variants, which differ in the level of knowl-
edge the agents have on their opponents, and on the risk attitude they
adopt.

2 STRAPP Problem Definition

The STRAPP (Strategic Path Planning) problem is formally defined
as follows:
Given a graph G = (V,E), representing a map of the environment
(referred to as map graph), VG⊆V a set of goal nodes (safehouses)
and two distinct initial positions of an agent R and an adversarial
agent C, find a strategy that will maximize R’s chances of reaching
some node vg∈VG without being captured by C. R is captured by C
if both agents reside the same node. R wins if it reached a goal node
vg ∈ VG without being captured, while C wins if it captures R.

Note that the strategy may be deterministic or stochastic, and
changes based on the knowledge the agents have on their opponent’s
strategy and location, and on the risk attitude adopted by the agents.

3 Estimating Safety of Map Graph Nodes

We define a utility value for each map graph node v ∈ V . The utility
of v ∈ V expresses how safe it is for R if moves to v, i.e., how
probable it is to evade capture and reach a goal node (i.e., win). This
value is derived by evaluating the game configurations (i.e., game
states) where R resides at v.

More specifically, a game configuration holds current location of
both R,C. The configuration graph Gconf = (Vconf ,Econf ) is de-
fined with a node for each configuration and an edge between any
pair of consecutive game states. Configurations matching game states
where R wins (win configuration) are given a utility of 1, while those
matching game states where R loses (lose configurations) are given a
utility value of 0. For all other configurations, the utility depends on
that of its neighbors, and this value is propagated from the terminal
configurations (i.e., win and lose configurations):
Configurations are traversed along Gconf in ascending order from
any terminal configuration. The utility value of a configuration V is
computed based only on its neighbors whose utility value had already
been computed. Various risk attitudes can be used: risk averse (utility
of V is minimal utility among visited neighbors), risk neutral (aver-
age utility among neighbors) or risk seeking (maximal utility among
neighbors).

Once all configurations have been given a utility value, the utility
for a map graph node v ∈ V is the average utility of all configu-
rations V ∈ Vconf , such that V =< v, u >, u ∈ V . This manner

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1579

1579



relates to a risk neutral type of player. Other risk attitudes can be ap-
plied, e.g., risk averse (utility of a node v is the minimal utility of
a configuration V =< v, u >) or risk seeking (utility of v is the
maximal one of a configuration V =< v, u >).

4 Constructing Stochastic Motion Strategies

We assume that the adversarial agent C is capable of performing the
same computations as we do. If our agent R would have followed a
known deterministic movement policy, then given its initial location,
C is capable of knowing its current location at each turn. Hence, there
are cases where R cannot win in such model. However, if both play-
ers choose their next move according to a stochastic strategy, even if
these strategies are known for each player, then there is a non-zero
probability of R choosing a move that results in safe arrival to a goal
node vg ∈ VG. As a matter of fact, in this case C benefits also from a
stochastic motion pattern. A stochastic strategy Pv (i.e., a probability
distribution over possible actions) is associated for each node v ∈ V
(Pv[u] is the transition probability from v to u, (v, u)∈E), in order
to employ uncertainty among the opponent.

Given the utility value of each map graph node, Pv[u] ((v, u)∈E)
is u’s utility value normalized by utility values of all v’s neighbors.
This implies that R has a greater chance to move towards safer nodes,
i.e., nodes with greater utility. Moving towards the neighboring node
with the maximal utility value makes R’s moves predictable for C,
which can compute these utility values (C is assumed to have equal
computational capabilities). However, such stochastic motion leads
to uncertainty regarding R’s assumed path.

We have proven that if C follows these stochastic strategies, as
well, then an equilibrium is achieved.

5 Strategy Updates On-the-Fly

So far, strategies were computed offline, such that they aim to reduce
the probability that C captures R, based on the map graph’s topol-
ogy. However, relying solely on graph topology, i.e., offline planning,
means no reaction to new information gained while moving around
the map graph. If some nodes can be observed by the other nodes
(which can be considered as viewpoints), these nodes may provide
information (or, knowledge) regarding an agent, e.g., tracks the agent
had left behind or perhaps whether the agent currently resides at the
node. When the agents follow the strategies computed as stated in
Section 4, they can use these viewpoints in order to acquire infor-
mation concerning their opponent’s location or visited nodes, and
update their strategies accordingly (each agent and its own objec-
tive). The updates are extremely efficient, i.e., linear in the number
of neighbors.

The contribution of these runtime updates had been proven both
theoretically and empirically.

6 Empirical evaluation

We have evaluated our path planning strategies, using different risk
attitudes for computing the utility functions, and examined the effect
of online strategies update. Utility functions were used in order to
compute a utility value for a map graph node or a configuration node
(given the values of the node’s neighbors) and also used to evaluate
the information obtained at a node visited by an agent.

A collection of graphs with 10 to 60 (with jumps of 5) nodes was
randomly generated (40 of each size), so were the visibility edges.

For each number of nodes, 10% of the nodes where randomly set as
goal nodes (i.e., safehouses).

An experiment was executed for each combination of node, con-
figuration and information utility functions for R,C. Each experiment
was repeated 20 times for each graph within the graphs collection.
Each time new starting locations for both agents were randomly cho-
sen (not among the safehouses). For each graph size, combination
of node, configuration and information utilities, the average winning
rate of R was calculated (R’s winning rate).

Figure 1 shows the results when both agents update their strategies
on-the-fly. R was tested with several behaviors for on-the-fly strategy
updates. The curve labeled as OFFLINE is where R did not perform
any on-the-fly updates (i.e., runs offline). In order to specifically ex-
amine the influence of on-the-fly updates on R’s winning rate, when
R did update its strategies on-the-fly, executions where R did not
observe C even once were discarded.

ANOVA test with α = 0.05, followed by post hoc test, has con-
firmed that R’s winning rate is significantly increased with on-the-fly
updates.

Figure 1: R’s winning rate when both R,C update their strategies on-the-fly. C’s
information utility is risk seeking, at a viewpoint C updates by capture probability

REFERENCES

[1] Brian Alspach, ‘Searching and sweeping graphs: a brief survey’, Le
matematiche, 59(1, 2), 5–37, (2006).

[2] Richard B Borie, Craig A Tovey, and Sven Koenig, ‘Algorithms and
complexity results for pursuit-evasion problems.’, in Proc. Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), volume 9,
pp. 59–66, (2009).

[3] Timothy H Chung, Geoffrey A Hollinger, and Volkan Isler, ‘Search and
pursuit-evasion in mobile robotics’, Autonomous Robots, 31(4), 299–
316, (2011).

[4] Fedor V Fomin and Dimitrios M Thilikos, ‘An annotated bibliography
on guaranteed graph searching’, Theoretical Computer Science, 399(3),
236–245, (2008).

[5] Jean Claude Latombe, Robot Motion Planning, Boston: Kluwer Aca-
demic Publishers, 1991.

[6] Mohamed Marzouqi and Ray Jarvis, ‘Covert path planning for au-
tonomous robot navigation in known environments’, in Proc. Aus-
tralasian Conference on Robotics and Automation, Brisbane. Citeseer,
(2003).

[7] Andreas C Nearchou, ‘Path planning of a mobile robot using genetic
heuristics’, Robotica, 16(05), 575–588, (1998).

[8] Richard Nowakowski and Peter Winkler, ‘Vertex-to-vertex pursuit in a
graph’, Discrete Mathematics, 43(2), 235–239, (1983).

[9] Clement Petres, Yan Pailhas, Pedro Patron, Yvan Petillot, Jonathan
Evans, and David Lane, ‘Path planning for autonomous underwater ve-
hicles’, IEEE Transactions on Robotics, 23(2), 331–341, (2007).

[10] Anthony Stentz, ‘Optimal and efficient path planning for partially-
known environments’, in Proceedings of IEEE International Confer-
ence on Robotics and Automation, pp. 3310–3317, (1994).

[11] Roi Yehoshua and Noa Agmon, ‘Adversarial modeling in the robotic
coverage problem’, in Proceedings of International Conference on Au-
tonomous Agents and Multi-Agent Systems (AAMAS), (2015).

O. Keidar and N. Agmon / Strategic Path Planning Allowing On-the-Fly Updates1580


