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Abstract. The Differential Evolution (DE) is a powerful bio-
inspired algorithm searching optimal solutions. The actual DE mod-
ifications can handle the real, integer and discrete valued problems.
The values of the discrete-valued variables represent the integer in-
dices addressing the discrete samples in the ordered array. The opti-
mization in unordered samples leads to a random search. This paper
proposes a novel modification dealing with d-dimensional discrete
vertices. A vertex hashing is used to strengthen the local properties
of a dataset and to improve the spatial convergence of the evolution.

1 Introduction

Several DE modifications dealing with the real, integer and discrete
valued problems have been published [6][4][3][1]. The discrete DE
variants [1][4] iteratively optimize integer indices addressing the
enumerative samples in the memory during g generations. The pre-
sented method is based on the DDE by Onwubolu and Davendra [1].
The DDE uses the integer/real value transformation and profits from
the robustness of the real-coded DE [6]. The efficiency of the algo-
rithm depends on the order of the data, because it significantly af-
fects the convergence of the evolution [4]. This paper aims at spatial
combinational problems, where a set of discrete vertices represents
the solution. An analysis of the spacial data is a very common task
in computer vision, robotics or pattern recognition. Such a problem
can be classified as a discrete-valued problem, so that integer indices
addressing the proposed vertices are iteratively optimized. However,
the d-dimensional vertices cannot be simply ordered in memory. The
vertices are often non-uniformly distributed, thus the linear combi-
nation of indices addressing unordered vertices leads to the random
selection. This paper proposes a solution using a linearization of the
spatial data with the space-filling curves (SFCs) [2][5].

2 Spatial optimization with DDE

The parameters of our modification are similar to the DDE [1]. P is
the number of individuals of a population, F is the mutational factor,
C is the crossover probability, g is the maximum number of genera-
tions, n is the number of individual variables, d is the dimension of
the vertices, l is the total number of vertices and f(X) is the objective
function f(X) : Rn → R, where X = (x1, . . . , xn) represents the
vertex indices. The DDE defines so-called Forward Backward Trans-
formation of the variable values. The values are transformed from
integer to real values (Forward) before the DE strategy starts. The
real values are transformed to integers (Backward) for the objective
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function evaluation. Our algorithm is explained on the DE/best/l/bin
variant [1] and it is modified in the initialization, evaluation and mu-
tation phases. The crossover and selection phases are traditional.

2.1 Initialization and evaluation

First, the l vertices are hashed and sorted in the memory according to
the selected SFC (see e.g. [2][5]). The SFC makes the d-dimensional
data partly sequenced, so that the spatially close vertices are stored
in a row in the memory. Next, the DDE schematic is followed [1].
The input parameters are set and the initial population with random
values within the bounds 〈0, l) is generated.

The objective function f(X) evaluates the quality of the found
individual. An individual consists of n variables storing the vertex
indices. The variable values are regularly transformed from real to
integer ones (Backward Transformation) to address the correspond-
ing vertices for the evaluation. In our test case, the point-to-point dis-
tance function is tested, thus the distances of n vertices are computed
and the total sum of the distances is used as the objective value.
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Figure 1. The random vertices are ordered by the Hilbert curve. A new
curve index V is computed by the mutation operator from the three

individual indices (best, A, B).

2.2 Mutation operator

The mutation operator computes a mutant vector as a linear combi-
nation of three different individuals: two from the current popula-
tion and the best-known one (Figure 1). In this case, an individual is
a set of vertex indices, which represents the potential solution of a
discrete optimization. The integer values are transformed to the real
ones before the mutation phase (Forward Transformation). For each
index xG

i,j a mutant index vGi,j = xG
best,j + F · (xG

A,j − xG
B,j) is

computed, where i = 1, . . . , P , j = 1, . . . , n, G is a generation
counter and i �= A �= B. If vGi,j is placed out of the interval 〈0, l),
a random index from the interval is selected. An application of this
operator to the indices addressing the unordered vertices is waste-
ful, because they do not provide any information about the course
of the dataset. However, the SFCs systematically connect the nearby
vertices, so that the vertex order represents the spatial character of
the data. The SFCs better ensure that a mutant index vGi,j addresses
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a vertex that lies closer to the reference vertices with indices xG
best,j ,

xG
A,j and xG

B,j (see Figure 1). The evolution thus better converges
to the extremes. The Figure 2 shows a comparison of the heatmaps
representing the distribution of mutation indices depending on F for
the three different SFCs. It shows that the greater F leads to greater
number of mutant indices placed out of the interval 〈0, l). The pa-
rameter F affects the coverage of the area. The smaller F leads to
gentler sampling of the area. Thus, the specific F can improve the
accuracy of the local search in the dataset. The dark areas represent
the places with worse coverage. The wrong mutation indices that do
not meet the constraints are replaced by random ones, thus they can
additionally cover the dark areas.
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Figure 2. The heatmaps showing the distribution of the mutation indices
for different SFCs (C-curve, Hilbert, Z-order) and factor F . The heatmaps
were obtained by computation of the all 2563 existing combinations of the
complete level-4 SFC indices. The errors (dependent on F ) represent the
number of combinations leading to mutant indices placed out of bounds.

3 Experiments

The proposed method was tested on the nearest neighbors (NN) prob-
lem and five datasets (see Figure 3) to show the functioning and the
improved spatial convergence of the DDE combined with the three
selected SFCs (Z-odrer, Hilbert, C-curve). The C-curve was selected
as a naive approach for comparison with the more sophisticated
SFCs. A vertex �p is randomly selected from the dataset for each mea-
surement. The DDE algorithm searches the NN of the �p, so that the
distance between the proposed vertices and the �p is minimized. The
DDE was tested with the following parameters: n = 5, C = 0.95,
F = 0.15, P = 30. Stochastic search of the precise n-nearest neigh-
bors is practically impossible. A sufficient result is searched, which
is defined as a vertex with lower distance than the best analytically
computed solution multiplied by the fitness rate fR = 2.0. This pays
for all the n vertices addressed by the individual indices. Figure 3
shows the comparison of the SFCs on the three standard Stanford
datasets (buddha, bunny, dragon) and two artificial datasets with 106

vertices (uniform and standard normal distribution).

4 Conclusion

This paper introduced a novel variant of the Discrete Differential
Evolution (DDE) which searches the optimal solutions in the spatial
data. The problem with d-dimensional vertex ordering was solved by
the space filling curves (SFCs) to strengthen the local properties of
discrete datasets. Figure 3 proves that the DDE combined with the
more sophisticated SFCs (Z-order, Hilbert) converges faster to the
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Figure 3. The box plot comparing the SFCs on the point-to-point distance
minimization problems in the 3D space. The horizontal axis shows the

number of generations needed to reach a sufficient result. Each measurement
was done 50 times for the same parameters and datasets.

sufficient result than with the naive C-curve order. Thus, our modi-
fied DDE seems to be an efficient and functional method.
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