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Abstract. The basic idea of most distance metric learning methods
is to find a space that can optimally classify data points belong to
different categories. However, current methods only learn one Ma-
halanobis distance for each data set, which actually fails to perfectly
classify different categories in most real world applications. To im-
prove the classification accuracy of k-nearest-neighbour algorithm, a
multi-metric learning method is proposed in this paper to complete-
ly classify different categories by sequentially learning sub-metrics.
The proposed algorithm is based on minimizing the Burg matrix di-
vergence between metrics. The experiments on five UCI data set-
s demonstrate the improved performance of Multi-Metric learning
when comparing with the state-of-the-art methods.

1 Introduction

Learning a good distance metric in feature space is crucial in many
learning algorithms, such as nearest neighbors classifier and K-
means clustering [2]. Over the past decade, a large number of dis-
tance metric learning (DML) algorithms have been proposed to learn
a Mahalanobis distance in feature space, and some of them have been
successfully applied to real world applications. In order to learn a
distance metric that can well classify the dis-similar data pairs, an
earlier work [2] uses a semi-definite programming formulation un-
der similarity and dissimilarity constraints. In [5], the Large Margin
Nearest Neighbor (LMNN) is suggested to learn a Mahalanobis dis-
tance metric for kNN Classification.

Current DML methods are actually learning one metric space that
properly classify different categories. Unfortunately, due to the com-
plexity and uncertainty, a linear space that can perfectly classify d-
ifferent categories may not exist. In order to remedy the disadvan-
tages, we propose a method to learn multi-metric spaces so that all
the training data can be correctly classified in at least one metric s-
pace, as shown in figure 1. In section 2, the base-metric learning

Figure 1. The Sequentially shrinking of Inseparable Set

problem and sub-metric learning problem will be defined. In section
3, the optimization of these two problems are introduced. In case s-
tudy, we conduct experiments on five public data sets to demonstrate
the effectiveness of the proposed method.
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2 Problems and Definitions

Given a data set xi, where xi ∈ Rd, i = 1, 2, . . . , n, the Maha-
lanobis distance parameterized by positive semi-definite (PSD) ma-
trix A is expressed as:

dA(xi, xj) =
√

(xi − xj)TA−1(xi − xj) (1)

The uncertain data in this metric space can be defined as follows.

Definition 1 Uncertain Data. For data xi, if

dA(xi, μi,k)− dA(xi, μi,j) < ρ (2)

then xi is uncertain in metric space A. In this formula, μi,j is the
class center with the same label to xi, and μi,k is the nearest class
center with different class label to xi, ρ is a hyper-parameter, which
represents the desired margin between different classes

Definition 2 Uncertain Set. If xi is uncertain in all the existing
metric spaces, then it will belong to uncertain set U. As shown in
figure 1, the goal of proposed method is gradually shrinking the un-
certain set to empty: U → ∅.

Definition 3 Base-Metric Learning. The base-metric will be a
Mahalanobis distance parameterized by a PSD matrix A0. It is a
global optimal metric learnt with the following problem:

min
A0

Dφ(A
0,M)

s.t.1)

n∑

i

(dA0(xi, μi,j)− u) ≤ 0

2)

n∑

i

(dA0(xi, μi,k)− l) ≥ 0;

(3)

where Dφ() denotes the distance between matrix A0 and M , M is
a baseline matrix (we choose M equal to the covariance matrix of
training set in this paper ), u and l are upper limit and lower limit
for distance, respectively.

Definition 4 Sub-Metric Learning. The Sub-metrics is a group of
Mahalanobis distances parameterized by PSD matrix A1, · · · , Ak.
Under different distance constraints that force the data in uncertain
set to be correctly classified, these distance metrics will be learnt
with following problem:

min
Anew

Dφ(A
new, A0)

s.t.

xi∈U∑

i

(dAnew (xi, μi,k)− dAnew (xi, μi,j)) ≥ ρ ∗NU

(4)

where U denotes the uncertain set defined in definition 2, NU is the
size of U . The details of this problem will be analyzed in section 3.
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3 Optimization

3.1 Measure of Similarity Between Metrics

In problem (3) and (4), the objective is minimizing the difference
Dφ() between target matrix A0 and original matrix M . In this paper,
The Burg matrix divergence is adopted to quantify this difference [4],
which defines the Dφ() as:

Dφ(A,M) = KL(p(x,A)||p(x,M))

= tr(AM−1)− log |AM−1| − d
(5)

3.2 Base-Metric Learning

With formula (5), we can rewrite the base-metric learning problem
in (3) as a Burg matrix optimization process:

min
A0

tr(A0M−1)− log |A0M−1| − d

s.t.1)tr((A0)−1

n∑

i

(xi − μi,j)(xi − μi,j)
T ) ≤ n ∗ u

2)tr((A0)−1

n∑

i

(xi − μi,k)(xi − μi,k)
T ) ≥ n ∗ l;

(6)

In above formulation, since the constraints here only have de-
mands on the averaged distance to class centers, they are weaker than
the commonly used pairwise constraints [4] or triplet constraints [3].
A colesd-form solution for this problem is derived in [1].

3.3 Sub-metric learning

The weaker constraints adopted in problem (6) may not be able to en-
sure a prefect metric that can found linear boundaries between differ-
ent categories. To remedy the disadvantage of base-metric learning,
we propose sub-metric learning problem shown in (4). The task of
sub-metric learning is shrinking the uncertain set U so that each data
instance can be correctly classified in at least one metric. Following
formula (5), the sub-metric learning can be rewritten as:

min
Anew

tr(AnewA0−1
)− log |AnewA0−1| − d

s.t. tr((Anew)−1

xi∈U∑

i

((xi − μi,k)(xi − μi,k)
T )

− (xi − μi,j)(xi − μi,j)
T )) ≤ −ρ ∗NU ;

(7)

where U denotes the uncertain set (defined in section 2), NU is the
size of U . A closed-form solution for this problem is proposed in [3],
which is much more efficient than other common DML methods.

3.4 Classification

For input xi, its confidence weight in metric space Am is defined as:

ωi = − log
dAm(xi, μ1st)

dAm(xi, μ2nd)
(8)

where μ1st denotes the nearest class center to xi, and μ2nd denotes
the second nearest class center to xi. Then, the classification result
will be the class label with the maximum weight. For example, in
0− 1 classification, the probability of y = 1 will be:

p(y = 1|x,A0, . . . , Am) =

∑m

i=0
ωifAi(x∗)∑m

i=0
ωi

(9)

4 Experiments

In this section we compare the proposed Multi-ML, method with a
few methods: Euclidean distance, Mahalanobis distance, lda, ITML
[4] and LMNN [5]. Experiments were run on 5 UCI data sets, that
are: 1)Pima Indian Diabetes, 2)Breast Cancer Wisconsin Diagnostic,
3)Heart, 4)Liver Disorders and 5)Robot execution failures . All ex-
perimental results are obtained by averaging 50 runs. For each run,
we randomly split the data sets 70% for training and 30% for testing.

Table 1. KNN (k=1) average classification accuracy of 50 random experi-
ments via different metrics

Diabetes WDBC Heart Liver Failures
Multi-ML 0.693 0. 936 0.758 0.607 0.879

LMNN 0.680 0.916 0.660 0.588 0.853
LDA 0.678 0.927 0.755 0.567 0.882
ITML 0.681 0.912 0.728 0.608 0.850

Euclidean 0.680 0.915 0.590 0.607 0.798
Mahalanobis 0.671 0.895 0.581 0.551 0.785

As we can see from Table 1, the proposed Multi-ML method out-
performs other state-of-the-art methods on 4 of the 5 date sets. To
understand the complexity of proposed method, the average compu-
tation time of different algorithms are listed in Table 2. We can find
that Multi-ML is much faster than LMNN and ITML.

Table 2. Computation time (s)
Diabetes WDBC Heart Liver Failures

LMNN 3.65 1.55 0.33 0.70 7.15
ITML 5.34 6.16 6.37 4.79 27.82

Multi-ML 0.10 0.17 0.062 0.071 1.01

5 Conclusion

Instead of current single-metric learning method, a multi-ML is pro-
posed in this paper to improve the accuracy classification. By propos-
ing base-ML and sub-ML problem as Burg matrix optimization prob-
lem, the proposed model enables us to derive an efficient close-form
algorithm. The experiments on five UCI data sets prove the effective-
ness of the proposed method.
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