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Burg Matrix Divergence Based Multi-Metric Learning
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Abstract. The basic idea of most distance metric learning methods
is to find a space that can optimally classify data points belong to
different categories. However, current methods only learn one Ma-
halanobis distance for each data set, which actually fails to perfectly
classify different categories in most real world applications. To im-
prove the classification accuracy of k-nearest-neighbour algorithm, a
multi-metric learning method is proposed in this paper to complete-
ly classify different categories by sequentially learning sub-metrics.
The proposed algorithm is based on minimizing the Burg matrix di-
vergence between metrics. The experiments on five UCI data set-
s demonstrate the improved performance of Multi-Metric learning
when comparing with the state-of-the-art methods.

1 Introduction

Learning a good distance metric in feature space is crucial in many
learning algorithms, such as nearest neighbors classifier and K-
means clustering [2]. Over the past decade, a large number of dis-
tance metric learning (DML) algorithms have been proposed to learn
a Mahalanobis distance in feature space, and some of them have been
successfully applied to real world applications. In order to learn a
distance metric that can well classify the dis-similar data pairs, an
earlier work [2] uses a semi-definite programming formulation un-
der similarity and dissimilarity constraints. In [5], the Large Margin
Nearest Neighbor (LMNN) is suggested to learn a Mahalanobis dis-
tance metric for kNN Classification.

Current DML methods are actually learning one metric space that
properly classify different categories. Unfortunately, due to the com-
plexity and uncertainty, a linear space that can perfectly classify d-
ifferent categories may not exist. In order to remedy the disadvan-
tages, we propose a method to learn multi-metric spaces so that all
the training data can be correctly classified in at least one metric s-
pace, as shown in figure 1. In section 2, the base-metric learning
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Figure 1. The Sequentially shrinking of Inseparable Set

problem and sub-metric learning problem will be defined. In section
3, the optimization of these two problems are introduced. In case s-
tudy, we conduct experiments on five public data sets to demonstrate
the effectiveness of the proposed method.
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2 Problems and Definitions

Given a data set z;, where ©; € R% i = 1,2,...,n, the Maha-
lanobis distance parameterized by positive semi-definite (PSD) ma-
trix A is expressed as:

dA(IEi,Ij) = \/(1‘1 — Ij)TAfl(CCi — CL']‘) (1)

The uncertain data in this metric space can be defined as follows.

Definition 1 Uncertain Data. For data x;, if
da(zi, pik) — da(zi, prig) < p (@)

then x; is uncertain in metric space A. In this formula, pi; ; is the
class center with the same label to x;, and ; i is the nearest class
center with different class label to x;, p is a hyper-parameter, which
represents the desired margin between different classes

Definition 2 Uncertain Set. If x; is uncertain in all the existing
metric spaces, then it will belong to uncertain set U. As shown in
figure 1, the goal of proposed method is gradually shrinking the un-
certain set to empty: U — (.

Definition 3 Base-Metric Learning. The base-metric will be a
Mahalanobis distance parameterized by a PSD matrix A°. It is a
global optimal metric learnt with the following problem:

. 0
minDy (A", M)
s.t.1 doxi, i,7) — U SO
) zij( a0 (@i, i) — ) o
2) > (dao(wi, i) — 1) > 0;
where D () denotes the distance between matrix A° and M, M is
a baseline matrix (we choose M equal to the covariance matrix of
training set in this paper ), u and | are upper limit and lower limit
for distance, respectively.

Definition 4 Sub-Metric Learning. The Sub-metrics is a group of
Mahalanobis distances parameterized by PSD matrix A*,- - | A*.
Under different distance constraints that force the data in uncertain
set to be correctly classified, these distance metrics will be learnt
with following problem:

jnin Dy(A™", A°)
zieU (4)
s.t. Z (dAnew (1'27#61,16) — dAnew (l'iyﬂi,j)) Z P * NU

where U denotes the uncertain set defined in definition 2, Ny is the
size of U. The details of this problem will be analyzed in section 3.
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3 Optimization
3.1 Measure of Similarity Between Metrics

In problem (3) and (4), the objective is minimizing the difference
Dy () between target matrix A® and original matrix M. In this paper,
The Burg matrix divergence is adopted to quantify this difference [4],
which defines the Dy () as:

Dy (A, M) = K L(p(z, A)||p(x, M))

5
=tr(AM™ ") —log |AM™'| —d ©

3.2 Base-Metric Learning

With formula (5), we can rewrite the base-metric learning problem
in (3) as a Burg matrix optimization process:

miontr(AOM_l) —log|A°M ' —d
Al

n

st )tr((A%) 7! 2 — i) (@i — 1)) <mxu

)r((A%) Zj( i) (@i = pig)") < ©

2)tr((A°) 7Y (@i — ) (@i — pap)”) Zmxls

In above formulation, since the constraints here only have de-

mands on the averaged distance to class centers, they are weaker than

the commonly used pairwise constraints [4] or triplet constraints [3].
A colesd-form solution for this problem is derived in [1].

3.3 Sub-metric learning

The weaker constraints adopted in problem (6) may not be able to en-
sure a prefect metric that can found linear boundaries between differ-
ent categories. To remedy the disadvantage of base-metric learning,
we propose sub-metric learning problem shown in (4). The task of
sub-metric learning is shrinking the uncertain set U so that each data
instance can be correctly classified in at least one metric. Following
formula (5), the sub-metric learning can be rewritten as:

min tr(Aneonil) —log |A"EwA071

Anew

| —d
z, €U
st tr((A") TS (@ = ) (@i — min)) D
— (@i — pag) (s — pay)")) < —p* Nuj;
where U denotes the uncertain set (defined in section 2), Ny is the

size of U. A closed-form solution for this problem is proposed in [3],
which is much more efficient than other common DML methods.

3.4 Classification

For input z;, its confidence weight in metric space A™ is defined as:

dam (%‘, Mlst)

8
dam (z;, fhoand) ®)

w; = — log

where p115+ denotes the nearest class center to x;, and p2,q denotes

the second nearest class center to z;. Then, the classification result

will be the class label with the maximum weight. For example, in
0 — 1 classification, the probability of y = 1 will be:

Z:ZO wlfAL (Jf*)
Yoo wi

ply =1z, A% ... A") = )

4 Experiments

In this section we compare the proposed Multi-ML, method with a
few methods: Euclidean distance, Mahalanobis distance, 1da, ITML
[4] and LMNN [5]. Experiments were run on 5 UCI data sets, that
are: 1)Pima Indian Diabetes, 2)Breast Cancer Wisconsin Diagnostic,
3)Heart, 4)Liver Disorders and 5)Robot execution failures . All ex-
perimental results are obtained by averaging 50 runs. For each run,
we randomly split the data sets 70% for training and 30% for testing.

Table 1. KNN (k=1) average classification accuracy of 50 random experi-
ments via different metrics
Diabetes | WDBC | Heart | Liver | Failures

Multi-ML 0.693 0. 936 0.758 | 0.607 0.879
LMNN 0.680 0.916 0.660 | 0.588 0.853
LDA 0.678 0.927 0.755 | 0.567 0.882
ITML 0.681 0.912 0.728 | 0.608 0.850
Euclidean 0.680 0.915 0.590 | 0.607 0.798
Mahalanobis 0.671 0.895 0.581 | 0.551 0.785

As we can see from Table 1, the proposed Multi-ML method out-
performs other state-of-the-art methods on 4 of the 5 date sets. To
understand the complexity of proposed method, the average compu-
tation time of different algorithms are listed in Table 2. We can find
that Multi-ML is much faster than LMNN and ITML.

Table 2. Computation time (s)

Diabetes | WDBC | Heart | Liver | Failures
LMNN 3.65 1.55 0.33 0.70 7.15
ITML 5.34 6.16 6.37 4.79 27.82
Multi-ML 0.10 0.17 0.062 | 0.071 1.01

5 Conclusion

Instead of current single-metric learning method, a multi-ML is pro-
posed in this paper to improve the accuracy classification. By propos-
ing base-ML and sub-ML problem as Burg matrix optimization prob-
lem, the proposed model enables us to derive an efficient close-form
algorithm. The experiments on five UCI data sets prove the effective-
ness of the proposed method.
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