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Iterative Judgment Aggregation

Marija Slavkovik' and Wojciech Jamroga?

Abstract. Judgment aggregation problems form a class of collec-
tive decision-making problems represented in an abstract way, sub-
suming some well known problems such as voting. A collective de-
cision can be reached in many ways, but a direct one-step aggrega-
tion of individual decisions is arguably most studied. Another way
to reach collective decisions is by iterative consensus building — al-
lowing each decision-maker to change their individual decision in re-
sponse to the choices of the other agents until a consensus is reached.
Iterative consensus building has so far only been studied for voting
problems. Here we propose an iterative judgment aggregation algo-
rithm, based on movements in an undirected graph, and we study
for which instances it terminates with a consensus. We also compare
the computational complexity of our itterative procedure with that of
related judgment aggregation operators.

1 Introduction

Social choice aggregation methods, such as voting [32], are of inter-
est to artificial intelligence as methods for collective decision-making
among humans and automated agents alike [3]. Judgment aggrega-
tion problems [26] are problems of aggregating individual judgments
on a fixed set of logically related issues, called an agenda. Intuitively,
an issue is a question that can be answered “yes” or “no.” Alterna-
tively, an issue is a proposition that can be accepted or rejected. A
judgment is a consistent collection of “yes” and “no” answers, one
for each issue. Judgment aggregation has been used to model col-
lective decision-making in multi-agent systems [2, 39, 41]. It is also
interesting because it generalises voting problems, i.e., problems of
choosing one option from a set of available options by aggregating
agents’ individual preferences over these options. A voting problem
can be represented as a judgment aggregation problem under some
mild conditions, see e.g. [6, 23].

Aggregation methods produce a joint decision for a group of
agents by aggregating the set of their individual decisions, called a
profile, using an aggregation operator. Another approach to collec-
tive decision-making is deliberation, when agents negotiate which
decisions to make. In multi-agent systems, deliberation procedures
are constructed using an abstract argumentation framework to model
relations between decisions, cf. e.g. [35, 20]. A third, comparatively
less explored method to reach collective decisions is by iterative con-
sensus building: each agent starts with an individual decision which
she then iteratively changes in response to the individual decisions of
the other agents until all agents end up supporting the same decision,
i.e., until a consensus is reached. While in standard aggregation all
individual decisions are elicited once, forming a profile, and after the
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elicitation the agents can no longer change the profile, an iterative
procedure allows agents to change their decisions many times, even
back and forth.

The existence of judgment transformation functions, i.e., functions
that transform one profile of individual judgments into another pro-
file of individual judgments (possibly towards consensus) has been
considered by List [25]. It was shown that under a set of reasonable
and minimal desirable conditions no transformation function can ex-
ist. Social choice aggregation theory is rife with impossibility results
such as this, yet few specific aggregation operators (that violate some
of the desirable conditions) are proposed. There are more voting op-
erators than judgment aggregation operators, which is unsurprising
since voting is a much older discipline, but the number of judgment
aggregation operators is also on the rise. Those include: quota-based
rules [7, 9], distance-based rules [11, 13, 14, 28, 37, 40], generali-
sations of Condorcet-consistent voting rules [21, 29, 30], and rules
based on the maximisation of some scoring function [5, 21, 42].
Deliberation and iterative consensus reaching procedures for voting
problems have been explored, e.g., in [27, 24, 17, 18, 34]. However,
to the best of our knowledge, there are no iterative procedures for
aggregating judgments. With this work we aim to fill in the gap.

We consider all possible judgments for an agenda as vertices in a
graph. The existence of an edge between judgments in the graph de-
pends on the relations between the truth-value assignments on the
same issue in the connected judgments. We define three intuitive
agenda graphs. We design an iterative consensus building algorithm
which reaches consensus in the following way: In the first step of
the algorithm, each agent chooses a vertex and lets the other agents
know what she has chosen. In each subsequent step each agent inde-
pendently from the other agents moves to an adjacent vertex if this
move reduces her path distance to the other vertices in the profile.
The agents are only allowed to move along a shortest path towards
some other agent. The moving continues until a consensus is reached
(i.e., when all agents end up on the same vertex). We then exploit
properties of graphs to study for which subgraphs corresponding to
a profile of judgments the algorithm terminates with a consensus.

Judgment aggregation operators suffer from two shortcomings.
First, they are often irresolute, i.e., more than one collective decision
is produced Unlike in voting, tie-breaking in judgment aggregation is
not straightforward and virtually unexplored. Secondly, deciding if a
given judgment is among the possible “winners” of the aggregation is
often intractable [23, 12]. The set of tractable aggregation functions
is very limited, exceptions being [7, 9, 13]. An iterative procedure
clearly avoids ties when it reaches a consensus, and this is one ad-
vantage of our proposal. We also show that our consensus-oriented
procedure may offer some computational benefits when compared to
standard judgment aggregation rules.

The motivation for our iterative procedure is both descriptive and
prescriptive. On one hand, our algorithm is meant to approximate
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$1 P2 P3
agent 1 0 1 0
agent 2 1 0 0
agent 3 1 1 1
majority H 1 1 0
Figure 1. Doctrinal paradox

consensus formation that happens in human societies. On the other
hand, our procedure can be useful for implementing artificial agents,
as producing a consensual judgment is in some cases distinctly
cheaper than computing the collective opinion in one step elicitation
by a standard judgment aggregation procedure.

The paper is structured as follows. In Section 2 we introduce the
judgment aggregation framework. In Section 3 we define three rele-
vant agenda graphs and recall some useful concepts from graph the-
ory. In Section 4 we present the algorithm for iterative judgment ag-
gregation, and discuss necessary conditions for its termination with
a consensus. In Section 5 we investigate sufficient termination con-
ditions for each of the three agenda graphs. In Section 6 we briefly
discuss the quality of the reached consensus with respect to some
judgment aggregation operators, and study the computational com-
plexity of the algorithm. In Section 7 we discuss the related work. In
Section 8 we present our conclusions and discuss future work.

2 Preliminaries

We first introduce the basic definitions of judgment aggregation.

Judgments. Let £ be a set of propositional variables. An agenda
A = {p1,...,om} is a finite set A C L. The elements of A are
called issues. A judgment is a (truth assignment) function J : A —
{0, 1} mapping each issue to either O (reject) or 1 (accept). We write
{0,1}* as a shorthand for A — {0,1}, the space of all possible
judgments for m issues, i.e., all sequences of length m comprised of
0Os and 1s. We use J(¢) to denote the value assigned to ¢ € A. The
Hamming distance between two judgments is defined as the number
of issues on which the judgments differ, i.e., dy, (J®, J®) = #{p €
Al J@) # T (@)}

With each agenda we associate a constraint I' € L 4, where £ 4
is the set of well formed formulas constructed with variables from
A and the logical connectives — (negation), A (conjunction), V (dis-
junction), and — (implication). The formula I" is assumed not to be a
contradiction. A judgment from {0, 1}’4 is rational for I if and only
if it is a model for I" in the sense of classical propositional logic. For
agiven I' € L4, we define Jar C {0,1}* to be the set of all
rational judgments for A and I.

Agents and profiles. Let N = {1,2,...,n} be a finite set of
agents. A profile P = (J1,...,Js,...,Jn) € Jir is a list of
rational judgments, one for each agent. We denote P[i] = J; and
P_; = (J,...,Ji—1,Jix1,. .., Jn). Further let {P} be the set
of all distinct judgments that are in P. We often abuse notation
and write J; € P when P[i] = J;. We reserve subscripted judg-
ments, e.g., J;, to denote judgments that belong to some profile and
the superscripted judgments, e.g., J%, J°, to denote rational judg-
ments that may not belong to some profile. A profile is unanimous
if {P} = {J}, for some J € Jar. A judgment J is a plurality
Jjudgment in P if and only if #{i | P[i] = J} > #{i | P[i]| # J}.

Example 1 The quintessential example in judgment aggregation
is the “doctrinal paradox” which is described with A =
{o1,02,08} and T = (o1 A 92) > @3 The Jar =

©
O
o

Figure 2. Agenda graphs for the doctrinal paradox: (a) the Hamming
graph Gi, (b) the Model graph G:Z,r’ (c) the Complete graph Git,r for
A and T" in Example 1.

{(0,0,0),(0,1,0),(1,0,0), (1,1,1)}. The doctrinal paradox pro-
fileis P = ((0,1,0),(1,0,0), (1,1, 1)), see also Figure 1. Note that
all the three profile judgments are rational, but the collective judg-
ment obtained by taking the value for each issue assigned by a strict
majority of agents, the so called majority rule, is not rational.

3 Agenda Graphs

An agenda graph is a graph G 4,r = (V, E) whose nodes are judg-
ments for some agenda A, namely V' C {0, 1}’4. Given an agenda
A and constraints I we define three agenda graphs. The Hamming
graph G" is the graph over all possible (not necessarily rational!)
judgments, that connects vertices which differ on exactly one issue.
The Model graph G’; r is the graph over all rational judgments,
where two judgments are adjacent iff no “compromise” exists be-
tween them. The Complete graph G°4 r is the fully connected graph
over all rational judgments. Formally:

The Hamming graph is G% = ({0,1}*, E") where (J¢,J) €
EMiff dy (J*, J°) = 1.

The Model graph is G’ = (Jar, E™) where (J*, J*) € E™
iff there exists no judgment J¢ € Ja,r between J and J A
judgment J¢ € J4 r is between judgments J* € J4r and J® €
Jar when J¢ # J%, J¢ # J°, J* # J° and for every ¢ € A if
J4 () = J*(p), then J°(p) = J%(¢) = J*().

The Complete graph is G5 = (Jar, £°) where E = Jar x
Jar.

The agenda graphs for the doctrinal paradox of Example 1 are shown
in Figure 2.

We use d, to denote the (shortest) path distance on an agenda
graph G . The path distance on G r- is also known as the drastic
distance: the distance between two judgments is O iff they are the
same on all issues and 1 iff they differ on at least one issue. The path
distance on Gﬁ‘ is the Hamming distance, and the path distance on
G'% r is the Model distance introduced and formally characterized
in [11]. Recall that a path distance on a graph G 4,r, as on any graph,
is a distance function in the true sense since for every J¢, J bJcev
it satisfies: d(J®, J®) = 0iff J* = J°, d(J?, J*) = d(J®, J*), and
d(Je, J¢) < d(J*, Jb) 4 d(J°, J¢) (triangle inequality).

A graph G’ = (V' E’) is a subgraph of graph G = (V, E),
denoted G’ C G,if V! C V and E’ C E. The V'-induced subgraph
of a graph G is the graph G’ C G with vertices V' and edges E’
which satisfies that, for every pair of vertices in V", they are adjacent
in G if and only if they are adjacent in G’

We consider profile-induced subgraphs of G 4,r and make use of
their “geometry”. Therefore we define some useful concepts for a
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given agenda graph G4 r = (V, E) and agents N = {1,2,...,n},
following the terminology from graph theory [36].

The interval between a pair of vertices J¢, J b € V, denoted
Iaor[J?,JY, is the set of all the judgments on all the shortest
paths in G4 - from J° to J®.

A subset S C V is convex if it is closed under [ 4 r, namely when
it includes all shortest paths between two vertices in S.

The convex hull of P on G a1, denoted CH(P), is the smallest
convex subset of V' from G 4,1 that contains { P}.

The eccentricity of a judgment J* € S C V is es(J*) =
max{d(J*, J®) | J® € S}, ie., the farthest that J* gets from
any other judgment in S.

A diameter of a set S C V' is mxq(S) = max{es(J) | J € S},
namely the maximal eccentricity of a vertex in .S. All judgments
for which ma4(S) = es(J) are called peripheral judgments for
S.For S = { P} we call these judgments peripheral judgments of
a profile P. If for two judgments J¢, J° it holds that d(J%, J®) =
maq(P), then these are called antipodal judgments of a profile P.

Example 2 Consider the Hamming graph Gfﬁt for the doctrinal
paradox, presented in Figure 2a, and take the profile P as defined
in Example 1. The CH(P)-induced subgraph of G% is given in Fig-
ure 3; this graph contains all the shortest paths, and nodes from
Ja,r, between (0,1,0) and (1,0,0), between (0,1,0) and (1,1, 1),
and between (1,0,0) and (1,1,1). Node (0,0,1) is not in this
CH(P)-induced subgraph of G"\ because this node is not on any
of the shortest paths between the profile judgments.

Figure 3. The CH(P)-induced subgraph of GZ‘ for P in Example 1.

We have defined the convex hull of P because we will build our
iteration algorithm on the principle of only allowing the agents to
move from their current judgment to an adjacent judgment in the hull
of P. By doing this we ensure that the agents do not disperse away
from each other. The Proposition 1 shows that if agents in profile
P each move to a judgment in CH(P), thus creating profile P’, the
diameter of the P’ profile cannot be bigger than that of the P.

Proposition 1 For an agenda graph G 4,r and profile P € Jj r,
if S C CH(P), then CH(S) C CH(P) and mxq(CH(S)) <
mxq(CH(P)).

Proof This property follows from the fact that CH is a finitary clo-
sure operator [36, p. 6, Theorem 1.3]. Thus, for the convex hull
CH(P), it holds that if S C CH(P), then CH(S) C CH(CH(P)),
and CH(CH(P)) = CH(P). |

Definition 1 We say that the profile P has a k-cycle in Ga,r if
and only the CH(P)-induced subgraph of G a,r has a simple cy-
cle of length k. We say that P is a k-cycle in G o,r if and only if

the CH(P)-induced subgraph of G 4,r is a simple cycle in G ar of
length k.

The doctrinal paradox profile from Example 1 is a 4-cycle in
GA r, and it has a 6-cycle in G",, as can be inferred from Figure 2.
We make the following observation.

Observation 2 No profile P € Jj 1 has a 3-cycle in G" or in
GA r, regardless of A and I

This exclusion of 3-cycles is due to the betweenness property
of path distances: if J° is between J and J€ in the graph, then
d(Je, Je) =d(J*, J°) 4+ d(J°, J°).

Definition 2 An interval Ia,r[J*, J®] is e-connected in G o r if and
only if the maximal path distance between two adjacent rational
judgments in the I r[J®, J°)-induced subgraph of G 4 is at most
e € N. A profile P is e-connected in G 4,1 if and only if every interval
Ia,r[Pi], P[j]] fori,j € N is e-connected in G 4 r.

While every interval in G r and G} - is e-connected for every
€ > 1, this may not be the case for intervals in G . As an example,
consider the doctrinal paradox profile P from Example 1 and graph
G" in Figure 2a. Here, the interval 4 r[(1,1,1),(0,1,0)] is 2-
connected because every shortest path between (1,1, 1) and (0, 1, 0)
passes only through judgments that are not rational.

4 Iteration Algorithm

Collective opinions in human societies are often formed not in one
step, but rather in an intricate process that involves mutual infor-
mation exchange, argumentation, persuasion, and opinion revision.
Typically, social agents are motivated by two somewhat conflicting
needs: on one hand, they want to form a unified stance with a sig-
nificant enough part of the community; on the other hand, they do
not want to concede too much of their own opinion. Here, we try to
mimic this kind of behaviour — obviously, in a very simplified way.
To this end, we design an iteration algorithm, Algorithm 1, based on
an agenda graph G 4,r. As it is standard in judgment aggregation,
we assume that the agents can only chose rational judgments at each
iteration step. For an agenda .4 and constraints I, each agent’s judg-
ment is a node in the graph G 4 r. In the first step of the iterative
procedure each agent announces which node she has chosen. Two
or more agents may choose the same node. The agents do not have
a constructed G 4, available. At each subsequent step, the agents
(simultaneously) compute their adjacent nodes and try to “move” to
one of these adjacent nodes along some shortest path towards the
other agents. A move is possible if and only if the adjacent judg-
ment is rational and it brings the agent closer to the rest of the pro-
file, i.e., it decreases its aggregated path distance to the other judg-
ments. More precisely, an agent ¢ € N will move from P[i] to a
J iff there exist a rational J € CH(P) s.t. d(J,P[{]) = 1 and
> d(P[),Plj]) < > d(J,P[j]), where d is a path dis-
JENj#i JENj#i
tance for a given G 4,r. Given a choice between two moves the agent
chooses the one which better reduces the distance to the rest of the
profile. If more than one move reduces the distance to the same ex-
tent, the agent chooses using some internal decision-making proce-
dure which we do not model. We take it that in this case the agent
chooses non-deterministically, with all move options being probable.
The agents continue moving along the nodes of G 4,r until no agent
in the profile can move, or all of the agents “sit” on the same node,
namely until a consensus is reached.
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Data: € > 0, Ja,r, N, own identifier ¢ € NN, initial judgment
0

Result: P € jXYll

t := 0; MOVES := 0; J; := J2; P := empty list;
repeat

P =P

P[’L] = Ji;

for j € N,j #ido

‘ send(J;, 7). receive(J;, 1), P[] := Jj;
end
MOVES := argmin
JECH(P)NJT A, T

{J|0<d(J,J;) < land D(3, J, P) < D(i, P[i], P)};

if MOVES # () then

‘ select J € MOVES, J; := J;
end
t:=t+1;
until P is unanimous or P’ = P;
return P;

D(i,J,P) N

Algorithm 1: Iteration algorithm

In Algorithm 1, send(J;, j) informs agent j € N that agent
i € N has chosen to move to node J; € V, while receive(J;,1)
denotes that the agent ¢ € N has been informed that agent j € N
has chosen to move to node J; € V. To ease readability we use
D(@i,J,P)= > d(J,P[j]). We call D(i, J, P) the distance of

JEN,j#i
J to the profile P_;. In Algorithm 1, at each iteration ¢, MOVES is
the set of judgments that are strictly closer to P than the current judg-
ment J;. Note that the algorithm is fully decentralised, in the sense
that there is no need for any central authority to take over the iteration
at any point of the process.

The starting profile P° collects the initial individual opinions of
the agents. That is, it is the profile that would be aggregated under
classical one-step social choice. We say that the algorithm reaches
consensus J for P°, if it terminates starting from P° by returning
the unanimous profile {P} = {J}. We first observe a necessary
condition for reaching consensus.

Proposition 3 If Algorithm 1 reaches consensus, then P° is e-
connected for € = 1.

Proof Assume that the algorithm terminates with a J*-unanimous P
at some t. In each t' < ¢, every agent either keeps her own judgment
Pli],ormovestoanew J € Ja,r withd(P[i], J) = 1.Sincea J" is
reached by every agent, there must exist a 1-connected path between
any two judgments in P°. Thus P° must be 1-connected. |

Note also that if P? is e-connected, so is P at any step ¢ > 0. The
interesting question is: what are the sufficient conditions for reaching
consensus by Algorithm 1?7 We address the question in Section 5.

5 Reaching Consensus

In this section, we examine the sufficient conditions for reaching con-
sensus by Algorithm 1. We begin by looking at the iteration over the
complete agenda graph G% r, and then we move on to the more in-

teresting cases of G* and GAr.

5.1 Iteration with G, -

Theorem 4 [f P contains a unique plurality judgment J, then Algo-
rithm 1 always reaches consensus in one step.

Proof On G r, the path distance d. between any two judgments
that are different is 1. Let J be the unique plurality judgment in

e S

Figure 4. An agenda graph of a non-equidistant profile P = (J1, J2, J3)

P € Jj ., selected by k agents. For every J; = J # Jj, we have
D(i,J,P) =n—k < D(i, P[j], P), so the agents selecting .J can
not change their judgments. Moreover, switching from J; to J de-
creases the distance to P_; most, so all the other agents will switch
to J in the first iteration. |

What about starting profiles with several plurality judgments?
They converge towards consensus under reasonable conditions.

Theorem 5 If N consists of an odd number of agents, then Algo-
rithm I probabilistically reaches consensus, i.e., it reaches consensus
with probability 1.

Proof If there is a single plurality judgment in P, then the al-
gorithm converges in one step. If there are two or more plural-
ity judgments J*,...,J* € Jar, then those agents swap non-
deterministically between J', ..., J*, and the other agents move to
one of J',..., J*. In the next round, the same argument applies.
Eventually, P converges either to the unanimous profile P’ such that
{P'} = {J} for some J € {J*,..., J*}, or to a profile P’ such
that {P"} = {J',...,J™} for an odd m, each favoured by the
same amount of agents. From then on, the agents keep swapping
judgments until one judgment gets plurality in the profile, and wins
in the next round.

Formally, let MOVES; ; be the set of moves available to agent ¢
at the step ¢ of Algorithm 1. We assume that there is some § > 0
such that, for each step ¢, agent ¢ selects judgment J € MOVES; ¢
with probability p;(J) > §. Then, there exists 6 > 0 such that
the probability of all the agents “hitting” a profile with no plurality
in the next round is at most 1 — §’. Hence, the probability that the
profile stays with no plurality in m steps is at most (1 — &")™, which
converges to 0 as m increases.

The Algorithm 1 has good convergence properties on G% r but
the consensus it reaches is limited to the judgments that are already
in the starting profile. On the Hamming and Model agenda graphs
Algorithm 1 surpasses this limitation. However, its convergence be-
comes a subtler issue.

5.2 Iteration with G and G} |

In this section, we will use G 4 r to refer to one of G\ r, G in
order to avoid stating and proving the same properties for G'J - and
G" separately when the same proof can be applied.

We start with a negative result. Let us call equidistant those pro-
files P such that, for any ¢,j,r € N with¢ # j, i # r,j # r, it
holds that d(P[i], P[j]) = d(P]i], P[r]).

Proposition 6 Consider N = {1,2,3} agents and a 1-connected
PO If Algorithm I reaches a P that is an equidistant k-cycle, then
Algorithm 1 will not terminate with a consensus.

Proof If P is an equidistant k-cycle then no agent can reduce the
distance to one agent by 1 without increasing the distance to the other
agent by 1. Thus no agent has a possible move. |
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Note that the same applies to some non-equidistant k-cycles. For
example, the profile in Figure 4 is not equidistant, but it is easy to
check that each agent has an empty set of moves.

3-agent profiles that form a simple cycle are problematic because
an agent may not be able to get closer to one of the other agents with-
out distancing itself from the third. For profiles of more than three
agents that form a simple cycle, the judgments cannot be equidistant,
and this is no longer a problem.

Lemma 7 If P is a (I-connected) k-cycle for n > 3 agents at step t
of Algorithm 1, then the set MOVES at t is nonempty for some i € N.

Proof Take any judgment P[i] which is peripheral in CH(P),
and consider its antipodal judgment P[j]. Let p1, p2 be the two
paths from P[i] to P[j] in CH(P), and let J,, € CH(P) be
the node adjacent to P[i] on path pm, m = 1,2. We have that
d(Ji, P[r]) = d(PJi],P[r]) — 1 for every P[r] on p1, while
d(J2, P[s]) = d(PJi], P[s]) + 1 for every P[s] on pz. If there are
more profile judgments on p; than on p2, then J; € MOVES, oth-
erwise Jo € MOVES. If there are exactly as many judgments on py
as there are on pz2, then both J; € MOVES and J2 € MOVES be-
cause in that case d(J1, P[j]) = d(J2, P[j]) = d(P[i], P[j]) — 1
and consequently D (¢, J, P) = D(i, J', P) < D(i, P[i],P). W

Let us consider the case of a 1-connected P° for |N| > 3. Let
P be the profile produced by Algorithm 1 at step t > 0, and let P’
be the profile produced by Algorithm 1 at step ¢t + 1. We begin by
showing that for graphs in which no judgment has a degree higher
than 2, it is never the case that P = P, i.e., there exist at least one
agent for which MOVES = () for P.

Lemma 8 Let P be a profile for n > 3 agents, produced by Algo-
rithm 1 at step t > 0, and let P’ be the profile produced by Algo-
rithm 1 at step t + 1. Assume that P is 1-connected on G o,r. If the
CH(P)-induced subgraph of G a,r is such that no vertex in it has a
degree higher than two, and mxq(P) > 1, then P # P'.

Proof We show that at least the agent ¢ € N with a peripheral
judgment for P has a possible move in P.

Case a. There exists a peripheral judgment in P with degree 1, be-

longing to ¢ € .
Let P[j] be an antipodal of P[j]. Since d(P[i], P[j]) > 1 and P
is 1-connected, there must exist exactly one judgment J € Ja,r,
such that d(P[i],J) = 1 and that is between judgments P3|
and P[j]. For every r € N, r # 4 it holds that d(J, P[r]) =
d(P[i], P[r]) — 1. Thus J is a move for P[i].

Case b. All peripheral judgments in P are with degree 2. Consider

the antipodal judgments P[i] and P[j]. There are exactly two
shortest paths connecting them: p1 and p2. All other profile judg-
ments P[r] are: either on p1, or on pz, or have a shortest path to
P[j] that intersects either p1 or pz, possibly both. We can apply
the same reasoning as in the proof of Lemma 7.
Consider J € CH(P) adjacent to P[i] on p1 and J' € CH(P)
adjacent to P[] on p2. We have that d(J, P[r]) = d(P[i], P[r])—
1 for every P[r] on p1 or whose shortest path to P[j] intersects
p1. while d(J, P[s]) = d(P[i], P[s]) + 1 for every P[s] on pz or
whose shortest path to P[j] intersects pz, but does not intersect
p1. If there are more agents r than agents s, then J € MOVES,
otherwise J' € MOVES. If there are exactly as many agents r
as agents s, then both J € MOVES and J’ € MOVES because
in that case d(J, P[j]) = d(J', P[j]) = d(P[i], P[j]) — 1 and
consequently D(i, J, P) = D(i, J', P) < D(i, P[i], P).

Observe that if the CH(PP)-induced subgraph on G4 r is such
that every vertex in it is of degree at most two, then for every subse-
quently constructed P in Algorithm 1, it will hold that the CH(P)-
induced subgraph on G 4,r is such that every vertex in it is of degree

at most two. This is due to the fact that, at each step of Algorithm 1,
the agents can only chose judgments from the CH(P?).

From Observation 2 we know that a { P}-induced subgraph of G”;
and G4  does not have 3-cycles. If the CH(P?)-induced subgraph

of G, respectively G} r contains no k-cycles for £ > 3, then this
induced subgraph contains no cycles and it is by definition a tree.
From the Case a. of the proof of Lemma 8§, we immediately obtain
the following corollary.

Corollary 9 Let P be a profile produced in Algorithm 1 at step t >
0 and let P’ be profile produced in Algorithm 1 at step t + 1. Assume
that P is 1-connected on G o r. If the CH(P)-induced subgraph of
Gar is a tree, and mx4(P) > 1, then P # P’

Proof The proof follows from the Case a. of the proof of Lemma 8
and the observation that: all the subgraphs of a tree are trees, and the
peripheral vertices of a tree have a degree 1. |

We now need to show that not only the profile changes in each
iteration, it also changes towards a consensus.

From Proposition 1 we have that ma4(CH(P)) does not increase
with each step of the Algorithm 1. It is possible that mz4(CH(P)) =
maq(CH(P')) for P’ being constructed immediately after P in Al-
gorithm 1. From the proof of Lemma 8 we have the following corol-
lary.

Corollary 10 Let P € Jj r be a profile produced in Algorithm 1
at stept > 0and let P' € J 4 r be profile produced in Algorithm 1
at step t + 1. If {P} = {P'}, then the { P}-induced graph of G 4,r
has at least one k-cycle, where 2m + 2 > k > 2m.

Clearly if the agents whose judgments are antipodal in P can
choose to move towards each other via two different shortest paths
between their judgments causing { P} = {P’}. These agents how-
ever, also have the possibility to chose to move towards each other
on the same shortest path between their judgments. As soon as two
agents use the same shortest path, the k-cycle will be broken in the
next step of the algorithm and { P} # {P'}.

Let us consider the case when mxq(P) = 1.

Lemma 11 Let P be a 1-connected profile for n > 3 agents at step
t with mzq(P) = 1 and let P’ be a profile obtain from it by Algo-
rithm I at step t + 1. If nis odd then { P} # {P'}.

Proof In this case the Algorithm 1 behaves as on the G% - graph, see
Theorems 4 and 5, except the P-induced subgraf of G 4,r will have
no 3-cycles (or any size cycles since maxq(P) = 1). Namely, if there
is one plurality judgment J in P, all the agents can reach it, because
mzq(P) = 1 and P is l-connected. Consequently {P'} = 1. If
more than one plurality judgment exists, the agents whose judgment
is this plurality judgment will not have a move, while and all the
other agents will move to their choice of a plurality judgment. If n is
odd P’ will have exactly one plurality judgment and the profile P”
constructed by Algorithm 1 in step ¢ + 1 is a consensus. If however
n is even, as with G% p, P can be such that half of the agents have
a judgment J, while the other half have an adjacent judgments J'.
Namely {P} = {J,J'} and d(J,J') = 1.If such P is reached the
Algorithm 1 forces the agents to infinitely “swap” between J and J'.
|

Lemma 12 Assume an odd number of agents n > 3. that in the P-
induced subgraph on G 4,r each vertex has a degree at most 2. Let
P € Jir be s.t. CH(P) has at least one k-cycle for k > 3. Let
pi(J) > 0 be the probability that an agent © will choose a possible
move J from the set MOVES at a step t1 in the Algorithm 1. Then the
algorithm will reach a point t2 > t1 where P' € J}  is obtained
s.t. CH(P) C CH(P") with probability 1.
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Proof If a profile P is reached such that all antipodal judgments
have degree two, it is sufficient that only one antipodal pair “breaks”
the cycle for a profile P’ to be reached. To do so, two agents with
antipodal judgments have to chose to move along the same path to-
wards each other. Consider a pair of antipodal judgments in P, P[i]
and P[j]. Assume that at the non-deterministic step of the algorithm
there exists a probability 1 > p;(J) > 0 that the agent 4 selects
J € MOVES that is on a shortest path p between P[i] and P[j] and
probability p;(J’) = 1 — p;(J) that she selects J' € MOVES that
is on a different path q between P[i] and P[j]. Similarly, let those
probabilities be 1 > p; (J”') > O that agent 5 selects to move to J”
on path p and p; (J""") = 1 —p;(J") for the probability that j moves
to J”' on some other path q’ (q and q’ may not be the same). Since
the agents decide on their moves independently, the probability that
agent i will chose the same path as j is p;(J) - p;(J”) > 0. Since
the two peripheral judgments J[i] and J[j] are no longer part of the
new profile P’, { P’} C CH(P) and from Corollary 10 we get that
CH(P) C CH(P') is reached after a finite time with probability 1.
[ |

Let us call Class A for G 4 r the set of all CH(P)-induced sub-
graphs of G 4 r that are tree graphs. Let us call Class B for G 4 r the
set of all CH(P)-induced subgraphs of G 4,r whose vertices have a
degree of at most 2. For instance, the doctrinal paradox profile from
Example 1 is in Class B for G’} 1, see Graph b in Figure 2. On the
other hand, it is neither in Class B nor in Class A for G}j‘, see Exam-
ple 2 and Figure 3.

We can now state the following theorem whose proof follows from
Lemma 8, Corollary 10, Corollary 9, Lemma 11 and Lemma 12.

Theorem 13 Let P° ¢ JAr be a 1-connected profile belonging

to Class A or to Class B for G% or G'{ . If n > 3 is odd, and
each element of MOVES has a non-null probability of being selected
in the non-deterministic choice step, then the Algorithm I reaches
consensus with probability 1 on G, respectively G r-

6 Properties of Consensus

In this section, we compare the output and performance of our iter-
ation procedure to those of standard distance-based judgment aggre-
gation rules. We first discuss the “quality” of the consensual decision.
Then, we look at the computational complexity of the procedure.

6.1 Consensus Quality

Distance-based judgment aggregation [28, 39, 21, 19] combines an
algebraic aggregation function * with a distance function d (not
necessarily a path distance in some agenda graph) in order to se-
lect the collective opinion that is closest to the given profile. Given
P € J4 r, the distance-based aggregation function F& o Jhp —
2741\ () is defined as

F**(P) = ?E%min * (d(P[1],J),...,d(P[n],J)).

Natural questions to ask are:

e How does Algorithm 1 perform in comparison to F'* when d is
a path distance in an agenda graph?

e How do the collective judgments F'%*(P°) compare to the con-
sensus judgment reached by Algorithm 1 for a given starting pro-
file P°?

The questions cannot be fully explored within the scope of this paper.
However, we establish some initial properties below.

A property generally deemed desirable in judgment aggregation is
that of propositional unanimity [21, 39, 16]. Propositional unanimity
requires that, if every agent in profile P has the same value for some

issue ¢ € A, then the same value for ¢ € A shows up either in at
least one of the judgments in F** (weak unanimity) or in all of the
judgments in F'%* (strong unanimity). It is interesting to note that the
most popular distance based judgment aggregation rule F%» does
not satisfy even the weak version of the property [38] and the same
applies to F¥% and F¥-¥ [22]. In this respect, iterative consensus
building behaves better.

Proposition 14 [f Algorithm 1 terminates with a consensus on Giﬁ,
then the consensus satisfies strong unanimity with respect to the ini-
tial profile P°.

Proof Note that, for G*, judgment J’ is between judgments J and
J" iff vertex J' is on the shortest path between vertices J and J”
in the graph. Consequently, if all the agents in P° give the same
truth-value on an issue, then CH(P°) cannot contain judgments that
assign different truth-value to this issue.

The same is not the case for G’} .

Proposition 15 There is an initial profile P° such that Algorithm 1
terminates with a consensus on G%F, and the consensus does not

satisfy weak unanimity with respect to P°.

Proof As a counter-example consider Example 1 and Graph b in Fig-
ure 2. The vertex (1,1, 1) is between vertices (0, 1,0) and (1,0, 0),
but the judgment (1,1,1) is not between judgments (0,1,0) and
(1,0,0). Thus the agents can move from (0,1,0) and (1,0,0) to
(1,1, 1) thus violating propositional unanimity on the last issue. W

A big advantage of one-shot distance-based aggregation F®% is
that it produces output (a winner or winners) on any profile P, while
our Algorithm 1 is more restricted in this respect. As we have seen, a
necessary condition for successful termination of Algorithm 1 is that
PY is 1-connected. Sufficient conditions are even more restrictive.
Still, Proposition 14 demonstrates that, when Algorithm 1 reaches a
consensus, it is structurally “better behaved” then a distance-based
judgment aggregation rule for the most popular approach based on
the sum of Hamming distances. In the next subsection we show that
Algorithm 1 is also “better behaved” in the sense of computational
complexity.

6.2 Complexity of Reaching Consensus

An important drawback of distance-based judgment aggregation is
the computational complexity of producing the output, i.e., the win-
ning judgment or judgments. The winner determination problem for
F= is known to be ©%-complete [14], and the result extends to
most other distances d and aggregation functions x [19]. The com-
putational complexity of determining the collective judgment sets by
Fdm:2 {5 actually not known. How does it work for the iteration pro-
cedure formalized with Algorithm 1?

We have shown that the algorithm reaches consensus for an odd
number n > 3 of agents on 1-connected, not equidistant profiles.
How costly is it to reach the consensus? On G r, it is evident that
Algorithm 1 performs well, but the resulting consensus is not very
exciting. For the G} r graph, the consensus-friendly attitude may
not earn much in terms of computational complexity, when compared
to F4m->_For each PJi], we need to find every J € Ja,r s.t. there is
no rational judgment between P[¢] and J. It is not difficult to show,
by a reduction to coSAT, that checking whether there is no rational
judgment between two given rational judgments is in general coNP-
complete. This has to be repeated for multiple candidate judgments
to compute the set MOVES, and on top of that with every iteration of
the algorithm. As a consequence, we get the following.

Theorem 16 For G’} r, determining MOVES of a single iteration of
Algorithm I coNP-hard.
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Note that the hardness result is not really due to the iteration pro-
cedure, but rather due to the inherent complexity of computing d,,
which requires to determine nonexistence of particular rational judg-
ments, i.e., to solve the Boolean co-satisfiability problem.

In contrast, the Hamming distance d;, can be always computed
efficiently. Consequently, when Algorithm 1 reaches a consensus on
Gfi\, it is also “better behaved” computationally than the distance-
based judgment aggregation rule F¢»'*. We demonstrate it formally.

Proposition 17 For Gfﬁ\, a single iteration of Algorithm 1 runs in
deterministic polynomial time.

Proof Follows from the fact that the set MOVES can be constructed
by checking at most |.A| candidate judgments. |

By Corollary 10, if the CH(P°) induced subgraph of G has no
cycles, then the diameter of CH(P) is strictly shrinking with each
non-terminating step ¢. In consequence, if Algorithm 1 reaches con-
sensus for such PP, then it does so in polynomially many steps. How-
ever, in case of cycles in the CH(P°) induced graph in G",, the algo-
rithm may run into such a cycle and take some time until the agents
“stray” from the loop. When it happens, any judgment occurring on
the loop can be the consensus. Using this observation, we propose
the following modification of Algorithm 1.

Algorithm 2: Same as Algorithm 1, only it stops the iteration when
{P;} = {Py} for some ¢t > t’, and non-deterministically chooses
one J € {P} as the consensus, producing in the next step P,y with
{Peya} ={J}.

Unlike Algorithm 1, Algorithm 2 avoids looping and waiting until
two or more agents “move” in the same direction. It also avoids in-
finite loops in the case of profiles with evenly many agents. On the
other hand, Algorithm 2 is no longer decentralised, which is a clear
disadvantage. We suggest that it can be treated as a technical variant
of Algorithm 1 that potentially reduces its running time by employ-
ing a trusted third party which simulates probabilistic convergence
of the profile in Algorithm 1 by one-step non-deterministic choice in
Algorithm 2. The following formal results, which are straightforward
consequences of our analysis above, justify the suggestion.

Theorem 18 Consider G* and N such that |N| is odd and larger
than 3. If Algorithm I can reach consensus with J then also Algo-
rithm 2 can reach consensus with J.

Theorem 19 Consider G and N such that |N| is odd and larger
than 3. Moreover, let P° € jﬂ,r be 1-connected and not equidis-

tant. Algorithm 2 reaches consensus from P° on Gfﬁl in deterministic
polynomial time.

Lastly, let us observe that checking whether P? is equidistant can
be done in linear time of the number of agents. For a graph G, deter-
mining if it has a simple cycle of size k, for k fixed, is a polynomial
time problem over the size of G, see [1], however we do not generate
the full G 4,r when (or before) we run the iteration algorithm.

7 Related Work

List [25] considered judgment transformation functions 7 : Jx r —

({0,1}*)™ as means to building iteration procedures for judgment
aggregation problems. He showed that for a set of desirable prop-
erties no transformation functions exists. Such impossibility re-
sults exist for judgment aggregation functions, however, by relax-
ing some of the properties, specific judgment aggregation operators
have been constructed: quota-based rules [6], distance-based rules
[37, 28, 14, 11], generalisations of Condorcet-consistent voting rules
[30, 29, 21], and rules based on the maximisation of some scoring
function [21, 5, 42]. To the best of our knowledge, specific iteration

procedures for judgment aggregation problems have not been pro-
posed in the literature.

List [25] argues that the desirable conditions for judgment trans-
formation functions should satisfy the following properties: univer-
sal domain, rational co-domain, consensus preservation, minimal rel-
evance, and independence. Universal domain is satisfied when the
transformation function accepts as admissible input any possible pro-
file of rational judgments. Rational co-domain is satisfied when the
function always outputs a profile of rational judgments. Consensus
preservation is satisfied when 7 always maps unanimous profiles into
themselves. Minimal relevance is a weak property. It is satisfied when
for each P[i] there exists a profile P’ to which P can be transformed
such that P[i] = P'[4]. In other words, the transformation function
should be such that it does not allow one agent to never change her
judgment regardless of what the other profile judgments are. Lastly
independence is satisfied when for each agenda issue, J; () depends
only on J(¢), and not on J(¢) for some other ¢ € A; J; = P'[i],
J; = P[i], P' = 7(P).

Each step of Algorithm 1 can be seen as a (distributed) function
that transforms an input profile into an output profile, namely as a
List judgment transformation function. Given a profile P € J4.r, let
Ty(P)={P'| P € Jir,d(Pli],P'[:]) <1,i € [1,n]}. We can
define the transformation function 74 that maps a profile P € J}
to a profile P’ € T,(P). Although Algorithm 1 does not terminate
for each profile, 74 does satisfy universal domain in the case of G% -
and G7) r, because each step of the algorithm transforms the profile

(possibly into itself). Universal domain is not satisfied on G* be-
cause profiles on this graph do not always satisfy the necessary con-
ditions for termination with a consensus. The rational co-domain and
the consensus preservation properties are also trivially satisfied. It is
not difficult to show that the minimal relevance property is also sat-
isfied. Independence is the desirable property that is violated, and in
fact List [25] argues that relaxing independence is the most plausible
path towards avoiding the impossibility result.

In voting, deliberation and iterative consensus have been studied,
although perhaps not axiomatically. As most similar with our work
we distinguish [18] and [15]. Voting problems can be represented
as judgment aggregation problems, see e.g., [6, 23], therefore it is
possible to compare these works with ours. First we show how voting
problems are represented in judgment aggregation.

A voting problem is specified with a set of agents /N and a set of
candidate options O = {z1,z2,...,Zm}. Let O be the set of all
total, transitive, and antisymmetric orders over the elements of O. A
vote > is an element of O and a voting profile is a collection of votes,
one for each agent in N. The preference agenda A, is constructed by
representing each pair of options x; and x;, where ¢ < j with an is-
sue x; Px;. The constraint I'; is the transitivity constraint defined as
I'e = ((CL’—LPZ']) A (:c]Pwk) — (CEZPCL'k))

ziPxj,xjPry,x;Prp€A,
For each vote ¢ € O we obtain a rational judgment J, such that
Jo (x;Pxj) = 1iff x; = x; and Jy (z;Px;) = 0iff z; > ;.

A Condorcet winner for a voting profile, when it exists, is the op-
tion that wins the majority of pairwise comparison for every other
option in O, see e.g., [32]. The corresponding concept in the judg-
ment aggregation representation of a voting problem is called ma-
Jority consistency. A judgment profile is majority-consistent if the
judgment obtained by taking the value for each issue assigned by
a strict majority of agents in the profile is rational. The doctrinal
paradox profile from Example 1 is not majority-consistent. It was
shown [23, 31] that if a judgment profile on the preference agenda is
majority-consistent, then the corresponding voting profile has a Con-
dorcet winner.

Hassanzadeh ez al. [18] consider an iterative consensus algorithm
for voting profiles. In their algorithm, each agent is allowed to (si-
multaneously with other agents) move from vote >; to vote > if she
can flip the order of two adjacent options without violating transitiv-
ity. This corresponds to the agents moving to an adjacent judgment
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in the agenda graph Gfﬁmru. Hassanzadeh ef al consider the ma-
jority graph for a voting profile (for an odd number of agents): the
vertices in this directed graph are the elements of O and there is an
edge from x; to x; if there are more agents in the profile who pre-
fer x; to x; than agents who prefer z; to x;. The majority graph
corresponds to a judgment J € Ja,,r, for which J(z;Px;) = v,
v € {0,1} if there is a strict majority of agents r € N for which
Jr(z;Px;) = v, J» = Plr|. Hassanzadeh ef al show that their al-
gorithm terminates with a consensus on the Condorcet winner when
the majoritarian graph has no cycles. If the majority graph of a voting
profile has no cycles, then the voting profile has a Condorcet winner.

Goel and Lee [15] consider an iteration procedure in which the
agents “move” along adjacent vertices along (what corresponds to)
the graph G’} 1-. They do not commit to the nature of their vertices,
so they are not exactly judgments or alternatives, just allowed op-
tions for iteration. In their algorithm not all agents move individu-
ally, but three agents at a time first reach a consensus and then all
three move to the consensus option in the graph. Goel and Lee con-
sider line graphs, graphs in which two vertices have degree 1 and all
other vertices have degree 2, and show that the consensus produced
by their algorithm is the generalised median. Namely, if the options
in their algorithms were judgments from J4,r the consensus their
algorithm reaches for these graphs is an approximation of Fém,

Both [18] and [15] offer interesting directions for future study in
context of our algorithm: to consider the profiles that have a Con-
dorcet winner (see e.g., [23] for the concept of Condorcet winner
in judgment aggregation) and to consider triadic iteration, allowing
three agents to coordinate their moves with respect to each other and
then see when a consensus emerges.

It is an open question of how our algorithm would perform on the
special case of voting problems represented in judgment aggrega-
tion. The Gﬁto 1, Zraph on the preference agenda has a more regular
topology in comparison to general judgment aggregation problems,
it is a permutahedron. For example, for an agenda of three options,
the graph Gfﬁoyr" is a cycle of length 6. For every J,J' € Ja, 1y
dn(J,J') = dm(J,J'), thus the necessary conditions for reaching
consensus for Algorithm 1 would be satisfied even on G because
every profile on the preference agenda and judgments rational for the
transitivity constraint is 1-connected in Gf&o,r‘[r. The graph G'%, r,
always has 7‘0“(‘3 I=1) vertices and each of these vertices has a de-
gree |O| — 1. We leave for future work the study of whether our
algorithm terminates for voting profiles. In particular, we conjecture
that the Algorithm 1 for an odd number of agents will converge on
the Condorcet winner in the case of voting profiles from the single
crossing domain [4], also studied in judgment aggregation [8]. This
is because profiles in this domain would have a hull whose induced
graph is a line on G}fqn,r‘[r.

Lastly, we must mention [33]. Obraztsova et al [33] consider a
graph similar to our Hamming agenda graph. They work with pref-
erences, not judgments, but most importantly, the vertices of their
graph are elements of (what would correspond to) J r, i.e., the ver-
tices are profiles of votes. There exists a connection between two
profiles if one profile can be obtained from the other by making ex-
actly one swap between adjacent options in one vote. Obraztsova et
al [33] study the properties of voting rules with respect to the “ge-
ometry” of the profiles in their graph.

8 Conclusions

In this paper, we propose a decentralised algorithm for iterative con-
sensus building in judgment aggregation problems. We study the ter-
mination conditions for this algorithm, some of its structural proper-
ties, and its computational complexity.

In order to reach a consensus, our algorithm exploits the topology
of a graph. All the available judgments that the agents can chose from
are vertices in the graph. The algorithm models an agent’s change of

mind as a move between adjacent judgments in the graph. We define
three natural graphs that can be constructed for a set of rational judg-
ments J.4,r: the complete graph G -, the Hamming graph G, and
the model agenda graph G’} . We prove that our algorithm always
terminates for an odd number of agents on the graph G r, but it
necessarily selects one of the judgments proposed in the first round
of iterations. For the graphs G’ and G4 r we show a class of pro-
files for which the algorithm terminates with a consensus and a class
of profiles for which it does not terminate with a consensus.

If the agents initially chose judgments such that the convex hull of
the profile of these judgments induces a subgraph of G, or GAir
in which each vertex has a degree of at most 2, then our algorithm
probabilistically terminates with a consensus for an odd number of
(more than 3) agents.

The list of profiles we give here, for which Algorithm 1 terminates
with a consensus, is clearly not exhaustive. For example, it is easy
to show that, for an odd number of agents, Algorithm 1 terminates
with a consensus if the CH(P°) induced subgraph of G%, or AT
is such that it contains only k-cycles, where k = 2 - maq(P°) +
1. This is because for such profiles there exists at least one pair of
antipodal judgments with degree no more than 2 who will have a
nonempty set MOVES. An immediate direction for future work is to
strengthen our results with other classes of consensus terminating
agenda graph topologies, particularly those corresponding to profiles
on the preference agenda (and transitivity constraints).

A step of our algorithm implements a judgment profile transforma-
tion function of the type defined in [25]. List [25] gives an impossi-
bility characterisation of such functions. Our function “escapes” this
impossibility result by not satisfying the independence property on
all agenda graphs and the universal domain on G%.

While G r, and G} 1 satisfy the necessary conditions for termi-

nation of Algorithm 1 for any A and T, this is not the case with G%,
which is why the transformation function fails to satisfy universal
domain on Gﬁ‘. On Gi’;‘, sometimes all the adjacent judgments to a
rational judgment J are not rational and thus not allowed to move to.
In our future work we aim to explore modifications of the algorithm
allowing the agents to make “longer” moves, i.e., to “jump over” a
vertex that is not a rational judgment.

In Section 6 we gave two results with respect to the quality of the
consensus reached by Algorithm 1 with respect to the widely used
distance-based aggregation function F¥'*. This function F@* is
also known as the median aggregation rule and it is widely used in
many domains, e.g., generalises the Kemeny voting rule, see [23],
and for measuring dissimilarity between concepts in ontologies [10].
We merely scratched the surface of this consensus quality analysis
and this line of research merits further attention.

Lastly, a more long-term goal for our future work is to explore
versions of iteration on an agenda graph where the agents do not try
to move to reduce the path distance to all of the other agents, but
only to their neighbours in a given social network, or as in [15], to
two randomly selected two agents.
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