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Abstract. We introduce a logic for temporal beliefs and intentions
based on Shoham’s database perspective and we formalize his co-
herence conditions on beliefs and intentions. In order to do this we
separate strong beliefs from weak beliefs. Strong beliefs are inde-
pendent from intentions, while weak beliefs are obtained by adding
intentions to strong beliefs and everything that follows from that. We
provide AGM-style postulates for the revision of strong beliefs and
intentions: strong belief revision may trigger intention revision, but
intention revision may only trigger revision of weak beliefs. After
revision, the strong beliefs are coherent with the intentions. We show
in a representation theorem that a revision operator satisfying our
postulates can be represented by a pre-order on interpretations of the
beliefs, together with a selection function for the intentions.

1 Introduction

Recently there has been an increase in articles studying the dynam-
ics of intentions in logic [7, 10, 15, 26, 14, 9]. Most of those papers
take as a starting point the logical frameworks derived from Cohen
and Levesque [6], which in turn formalize Bratman’s [4] planning
theory of intention. In this paper, we take a different starting point,
and study the revision of intentions from a database perspective [23].
The database perspective consists of a planner, a belief database and
an intention database. Shoham [24] describes it as “(...) a generaliza-
tion of the AGM scheme for belief revision, (...). In the AGM frame-
work, the intelligent database is responsible for storing the planner’s
beliefs and ensuring their consistency. In the enriched framework,
there are two databases, one for beliefs and one for intentions, which
are responsible for maintaining not only their individual consistency
but also their mutual consistency.” (p.48) Shoham further developed
these ideas with Jacob Banks, one of his PhD students, and behav-
ioral economist Dan Ariely in the intelligent calendar application
Timeful, which attracted over $6.8 million in funding and was ac-
quired by Google in 20151, who aim to integrate it into their Calendar
applications. As Shoham [24] says himself: “The point of the story
is there is a direct link between the original journal paper and the ul-
timate success of the company.” (p.47) Thus, it seems clear that his
philosophical proposal has lead to some success on the practical side.
In this paper, we investigate whether his proposal can lead to inter-
esting theoretical insights as well. More specifically, the aim of this
paper is to develop a suitable formal theory for the belief and inten-
tion databases in the database perspective, to formalize the cohernece
conditions that Shoham puts on the databases, and to study belief and
intention revision for this theory. Following Shoham’s proposal, our

1 http://venturebeat.com/2015/05/04/google-acquires-scheduling-app-
timeful-and-plans-to-integrate-it-into-google-apps/

methodology is to generalize AGM revision [1] for temporal beliefs
and intentions and to prove a representation theorem.

In the area of intention revision and reconsideration, Grant et
al. [9] combine intention revision with AGM-like postulates. There
have also been a number of contributions applying AGM-style revi-
sion to action logics [22, 11, 20, 21, 3]. However, these proposals
only characterize revision using a set of postulates, without proving
representation theorems. There are also approaches that focus on the
semantical level by postulating revision on a Kripke model [2].

In this paper, we first review two recent formalisations based
on Shoham’s database perspective, namely the IPS (Icard-Pacuit-
Shoham) framework [10] and our own previous work PAL
(Parameterized-time Action Logic) [30], and we discuss the short-
comings of these logics. We extend PAL in order to formalize
Shoham’s database perspective. An overview of our approach is dis-
played in Figure 1. We separate strong beliefs from weak beliefs.
Strong beliefs are beliefs that are independent of the intentions of
the agent, while weak beliefs are those beliefs that are obtained by
adding the consequences of all intended actions to the strong be-
liefs, and everything that follows from that. A planner (outside of
our agent) may add beliefs and intentions. The belief database con-
sists of strong beliefs, and can only be updated by a strong belief for-
mula. Revision of strong beliefs affects weak beliefs but, according to
Shoham’s database perspective, they may only remove intentions. In-
tention revision may in turn trigger revision of the weak beliefs. The
main result is to characterize this revision process correctly through
postulates and to prove a representation theorem.

The structure of this paper is as follows. Section 2 is preliminary
and introduces Shoham’s database perspective, the IPS framework,
and PAL. In Section 3 we formalize strong and weak beliefs, and we
formalize Shoham’s coherence condition in Section 4. In Section 5
we study revision of beliefs and intentions, and in Section 6 we dis-
cuss related work.

2 Preliminaries: The Database Perspective

We start by introducing our running example that we will use fre-
quently throughout the paper.

Example 1 (Running Example) An agent located in Luxembourg
is considering to attend the IJCAI conference in New York City, NY
(USA) in July 2016 and the ECAI conference in The Hague (the
Netherlands) in August 2016. Although it would like to attend both
events, there is insufficient budget available for traveling. The agent
thus believes that it is possible to attend IJCAI at time 0 (July 2016)
and that it is possible to attend ECAI at time 1 (August 2016), but
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Figure 1: Our formalization of the database perspective. Strong be-
liefs are denoted by ϕ, weak beliefs by ψ, and intentions by i. An
arrow indicates that a component can add (+) or remove (-) a for-
mula from another component. The dashed line represents a coher-
ence condition on strong beliefs and intentions. Weak beliefs are ob-
tained from strong beliefs by adding the consequences of all inten-
tions. The planner is considered a black box and can update strong
beliefs and intentions. Strong beliefs may update intentions, but in-
tentions may only update weak beliefs.

also believes that it is impossible to attend both conferences. If the
agent decides to attend IJCAI, then it would like to combine this with
a visit to a colleague in New York at time 2 (September 2016).

2.1 Shoham’s Database Perspective

Shoham’s database perspective [23] contains a planner (e.g., a
STRIPS-like planner) that is itself engaged in some form of prac-
tical reasoning. In the course of planning, it may add actions to be
taken at various times in the future to an intention database and add
observations to a belief database. The intentions are future-directed
intentions of the form (a, t), meaning that action a will be executed
at time t.2 The beliefs are also time-indexed, and are of the form pt ,
meaning that p is true at time t. Shoham treats the planner as a “black
box”: It provides the databases with input but its internal workings
are unknown. Shoham proposes informal revision procedures for be-
liefs and intentions based on the following coherence conditions:

1. Beliefs must be internally consistent.
2. Intentions must be internally consistent.

(a) At most one action can be intended for a given time moment.

(b) If two intended actions immediately follow one another, the
earlier cannot have postconditions that are inconsistent with the
preconditions of the latter.

3. Intentions must be consistent with beliefs.

(a) If you intend to take an action you cannot believe that its pre-
conditions do not hold.3

(b) If you intend to take an action, you believe that its postcondi-
tions hold.

Note that requirement 3a and 3b describe an asymmetry between
pre-and postconditions: The postconditions are believed to be true af-
ter an intended action, but the preconditions may not. Therefore, we

2 The notion of intention here is rather restrictive and important characteris-
tics of intentions are missing. See the conclusion for a discussion.

3 Shoham notes here that “it is important to distinguish between the time of
belief, and the time to which the belief refers. When an intention to act at
time t2 is added at time t1 (with t1 < t2), then at time t1 it is believed that
right after the action is taken at t2 its postconditions will hold.” [23, p.7]

might think of the requirements as one of “optimistic” beliefs. Ac-
cording to Shoham [23]: “It is a good fit with how planners operate.
Adopting an optimistic stance, they feel free to add intended actions
so long as they are consistent with current beliefs.” (p. 7)

Shoham then “sketches” informal revision procedures, in which
belief revision may trigger intention revision and visa versa, poten-
tially leading to a long cascade of changes. Facts that are believed
because they are postconditions of currently held intentions are an-
notated as such, because “if the intention is withdrawn then the belief
in the postcondition can be eliminated as well.” (p. 8)

2.2 Icard et al. (IPS)

Icard et al. [10] develop a “formal semantical model to capture ac-
tion, belief and intention, based on the ‘database perspective”’ (p.1).
They assume a set of atomic sentences Prop = {p,q,r, . . .} and de-
terministic primitive actions Act={a,b,c, . . .}. Entries in the belief
database are represented by a language generated from:

ϕ := pt | pre(a)t | post(a)t | Do(a)t |�ϕ | ϕ∧ϕ | ¬ϕ

with p ∈ Prop,a ∈ Act, and t ∈ Z. pt means that p is true at time t,
Do(a)t means that the agent does action a at time t, and pre(a)t and
post(a)t represent respectively the precondition and postcondition of
action a at time t.

Icard et al. use a semantics of appropriate paths. They define P =
P (Prop∪{pre(a), post(a) : a ∈ Act}), and a path π :Z→ (P×Act)
as a mapping from a time point to a set of proposition-like formulas
true at that time (denoted π(t)1) and the next action a on the path
(denoted π(t)2). They define an equivalence relation π ∼t π′, which
means that π and π′ represent the same situation up to t. Using this,
they propose a notion of appropriateness:

Definition 1 (Appropriate Set of Paths) A set of paths Π is appro-
priate iff for all π ∈ Π:

• If π(t)2 = a, then post(a) ∈ π(t +1)1,
• If pre(a) ∈ π(t)1, then there exists π′ ∼t π s.t. π′(t)2 = a.

The truth definition |=Π is defined relative to an appropriate set of
paths Π, and the modality is defined as follows:

π, t |=Π �ϕ, iff for all π′ ∈ Π, if π ∼t π′ then π′, t |= ϕ.

A model for a formula is an appropriate set of paths. They introduce
an intention database I = {(a, t), . . .} as a set of action-time pairs
(a, t) and put the following coherence condition on their logic:

Cohere∗(I) =�
∧

(a,t)∈I

pre(a)t .

This captures the intuition that an agent considers it possible to carry
out all intended actions. They state that a pair (Π, I) is coherent if and
only if there exists a path in Π in which Cohere∗(I) is true. IPS distin-
guishes intention-contingent, or weak, beliefs from non-contingent,
or strong, beliefs. Contingent beliefs BI are obtained from a belief-
intention database (B, I) as follows:

BI =Cl(B∪{Do(a)t : (a, t) ∈ I}).
In order to switch from belief bases to an appropriate set of paths,
Icard et al. introduce the functions ρ and β: “Given a set of formulas
B, we can consider the set of paths on which all formulas of B hold
at time 0, denoted ρ(B). Conversely, given a set of paths Π, we let
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β(Π) be defined as the set of formulas valid at 0 in all paths in Π.”
(p.3)

The first issue with IPS is that the definition of non-contingent
beliefs is problematic for coherence. We demonstrate this using our
running example.

Example 2 (Non-contingent beliefs in IPS) Suppose that the
agent believes it has to go to the ECAI conference at time 1
because the event will be held in The Hague, which is very close to
Luxembourg (where the agent is located) and thus is cheaper for
traveling. However, the agent has the intention to go to IJCAI. We
can formalize this in the IPS framework as a belief-intention base
(B, I) with {post(ECAI)2,¬�(do(IJCAI)0 ∧ post(ECAI)2)} ⊆ B
and (IJCAI,0) ∈ I. The coherence condition holds be-
cause Cohere∗(I) = �(pre(IJCAI)0 is consistent with B.
However, the contingent beliefs BI are inconsistent since
¬�(do(IJCAI)0 ∧ post(ECAI)2) ∧ do(IJCAI)0 implies
¬post(ECAI)2, but this is inconsistent with the initial belief
post(ECAI)2.

The example above shows that contingent beliefs may become in-
consistent if the agent has intentions that are conflicting with what it
believes non-contingently. While the agent believes that it will not go
to IJCAI, it still has the intention to do so. This is coherent according
to Cohere∗(I), since the agent doesn’t believe that it is impossible to
go to IJCAI. However, adding the consequences of the intention to
go to IJCAI results in a conflict with the fact that the agent believes it
will attend ECAI. The source of the problem is that non-contingent
beliefs in the IPS framework such as post(ECAI)2 are actually not
non-contingent, because they are contingent on the actions that occur
in the path (namely to attend ECAI in time 1). We solve this problem
in Section 3 by requiring that strong beliefs are always prefixed by
a modal operator. In this way, the beliefs are about possibility and
necessity, but they are not beliefs about a specific future.

The second issue with IPS is that the definition of ρ is circular, and
as a result it does not seem to be possible to apply it to all formulas
of their logic. The IPS definition of ρ is ρ(B) = {π | π |=Π B}. That
is, the set of paths for a belief base B is those paths in which all for-
mulas of B are true, given an appropriate set of paths Π. However,
the function ρ should construct the appropriate set of paths. There-
fore, the definition of ρ is circular. It seems that the function ρ only
works for belief bases containing no modalities. We omit details for
space constraints, but the construction of the canonical model in the
proof of their representation theorem uses the function ρ to switch
from a belief base to a set of paths (see Proof Sketch in the Appendix
of Icard et al. [10]). Therefore, the representation theorem does not
hold for all formulas of the logic, since it is not possible to apply the
function ρ to all beliefs.

Summarizing, we recognize two shortcoming of the IPS frame-
work as a formal basis for the database perspective: the definition
of contingent beliefs is problematic, and the representation theorem
does not hold for belief bases containing modalities.

2.3 Parameterized-time Action Logic

In our previous work, we develop Parameterized-time Action Logic
(PAL) [29, 30, 31] as an alternative to IPS. PAL differs syntactically
from IPS in that the �-modality is indexed by a time-point, and se-
mantically in that it uses a standard branching time logic semantics.

Definition 2 (PAL Language [31]) Let Act = {a,b,c, . . .} be a fi-
nite set of deterministic primitive actions, and Prop = {p,q,r, . . .}∪

{pre(a), post(a) | a ∈ Act} be a finite set of propositions.4 The sets
Prop and Act are disjoint. The language LPAL is inductively defined
by the following BNF grammar:

ϕ ::= χt | do(a)t |�tϕ | ϕ∧ϕ | ¬ϕ

with χ ∈ Prop,a ∈ Act, and t ∈ N. We abbreviate ¬�t¬ with �t , and
define ⊥≡ p0 ∧¬p0 and �≡ ¬⊥.

PAL uses a CTL*-like [19] tree semantics consisting of a tree T =
(S,R,v,act) where S is a set of states, R is an accessibility relation
that is serial, linearly ordered in the past and connected, v : S → 2Prop

is a valuation function from states to sets of propositions, and act :
R → Act is a function from accessibility relations to actions, such
that actions are deterministic, i.e. if act((s,s′)) = act((s,s′′)), then
s′ = s′′.

Given a tree T = (S,R,v,act), a path π = (s0,s1, . . .) in T is a se-
quence of states such that (st ,st+1) ∈ R. The formula πt refers to the
t’th state of the path π, so v(πt) and act((πt ,πt+1)) refer respectively
to the propositions true and the next action on path π at time t. For
readability, act((πt ,πt+1)) is abbreviated with act(πt).

Similarly to IPS, we define an equivalence relation on paths: two
paths π and π′ are equivalent up to time t, denoted π ∼t π′, if and
only if they contain the same states up to and including time t.

Definition 3 (Model [31]) A model is a pair (T,π) where T =
(S,R,v,act) is a tree and π is a path in T , and for all π ∈ T the
following conditions hold:
1. If act(πt) = a, then post(a) ∈ v(πt+1),
2. If pre(a) ∈ v(πt), then there is some π′ in T with π ∼t π′ and

act(π′
t) = a.

Definition 4 (Truth definitions) Let (T,π) be a model with T =
(S,R,v,act):

T,π |= χt iff χ ∈ v(πt) with χ ∈ Prop
T,π |= do(a)t iff act(πt) = a
T,π |= ¬ϕ iff T,π 
|= ϕ
T,π |= ϕ∧ϕ′ iff T,π |= ϕ and T,π |= ϕ′
T,π |=�tϕ iff for all π′ in T : if π′ ∼t π, then T,π′ |= ϕ

We axiomatize PAL and show that it is sound and strongly com-
plete, i.e. T � ϕ iff T |= ϕ.

Furthermore, we characterize AGM belief revision in this logic by
bounding all inputs and output of the revision process up to some
time t. Using these constraints, we are able to represent a belief set B
as a propositional formula ψ such that B = {ϕ | ψ � ϕ} and we prove
the Katsuno and Mendelzon (KM) [12] representation theorem.

We now formalize the beliefs of our agent in the running example
in PAL.

Example 3 (PAL model) A possible partial PAL model (T,π2) of
the beliefs of our conference planning agent is shown in Figure 2,
where the thick path represents the actual path. In the actual path,
the agent believes it attends IJCAI at time 0 and visit a colleague at
time 1. It also considers it possible to do nothing at time 0 and attend
ECAI at time 1 in an alternative path. However, it does not consider
it to be possible to attend both conferences.5 Some formulas that are
true in Figure 2 are:

T,π3 |= ¬do(visit)1

4 Throughout this paper we denote atomic propositions with χ.
5 Note that pre(nop) ≡ post(nop) ≡ �. They have been omitted from the

figure for readability.
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T,π2 |= post(visit)2 →¬do(ECAI)1
T,π1 |=�0(do(IJCAI)0 ∧¬do(visit)1)
T,π2 |=�0�1do(ECAI)1
T,π1 |= ¬�0(do(IJCAI)0 ∧do(ECAI)1)

t = 0 t = 1 t = 2

s0

{pre(IJCAI)}
s1

{pre(ECAI)}
s2 {post(ECAI)}

s3

{pre(visit),
post(IJCAI)}

s4 {post(visit)}

s5

π1

π2

π3

nop

ECAI

IJCAI

visit

nop

Figure 2: Example PAL Model (T,π2) from t = 0 to t = 2.

In our previous work, we only consider the revision of PAL formu-
las. However, in the current approach we distinguish between strong
and weak beliefs, and define the belief database as a set of strong
beliefs (Figure 1). This means that our previous approach cannot be
applied directly. We cannot apply it to strong beliefs, because it is
not ensured that after revision we end up with strong beliefs again.
We can also not apply it to the beliefs that result as consequence
of intentions (weak beliefs), because revision of these beliefs should
not affect strong beliefs. We explain the details of strong and weak
beliefs in more detail in the next section.

3 Formalizing Strong and Weak Beliefs

Suppose the conference planning agent of our running example
adopts the intention to attend IJCAI at time 0. When adopting this
intentions, the agent will form new beliefs based on the success of
this intentions, e.g., that it will be in New York at time 1. These fur-
ther beliefs can be used in the course of further planning, for instance
it may adopt the intention to visit a colleague in New York at time
1. If the agent then learns that its flight from Luxembourg to New
York is canceled, it should drop the intention to attend IJCAI. Yet,
by dropping this intention that was based on the now-dropped be-
lief, other beliefs, including the belief that it will be in New York
at time 1, should also be dropped, which may in turn force the in-
tention to visit a colleague to be dropped. And so on. Thus, belief
revision may trigger intention revision, which again can trigger be-
lief revision, etc. However, intention revision should not change the
“basic” beliefs of an agent. For instance, if the agent adopts the in-
tention to attend IJCAI at time 0, and it does not annotate the beliefs
based on this intention in any way, then the planner may believe that
it is no longer necessary to attend IJCAI in order to be in New York
at time 1, and thus decide to retract the intention. This is the so-
called Little Nell paradox, and has been discussed extensively in the
literature [16, 5, 27]. Shoham proposed as well to annotate postcon-
ditions of intentions in coherence condition 3b in order to separate
them from ordinary beliefs (see Section 2.1).

In order to deal with these nuances, we separate strong and weak
beliefs (this is the terminology used by van der Hoek et al. [27] as

well). The idea behind strong beliefs is that they represent the agent’s
ideas about what is inevitable, no matter how it would act in the
world. They thus represent the agent’s view on the current situation
and the future within which it can plan its action. Formally, strong
beliefs at some time t are formulas that start either with �t or �t .

Definition 5 (Strong Beliefs) The set of all strong beliefs Bt in time
t for LPAL is inductively defined by the following BNF grammar:

ϕ ::= �tψ | ϕ∧ϕ | ¬ϕ,

where ψ ∈ LPAL and t ∈ N. A strong belief set Bt is a set of strong
beliefs closed under consequence, i.e. Bt =Cn(B′) where B′ ⊆ Bt . In
the remainder of this paper, we assume t = 0 and we simply write B

and B to abbreviate B0 and B0.

The weak beliefs WB(B, I) are obtained from strong beliefs B by
adding beliefs that are contingent on the intentions I. In other words,
weak beliefs are all the strong beliefs and moreover the consequences
of all intentions, and everything that follows from this.

Definition 6 (Weak Beliefs) Given a pair (B, I), the weak beliefs
are defined as:

WB(B, I) =Cn(B∪{do(a)t | (a, t) ∈ I}).

Let us formalize these notions in our running example.

Example 4 (Strong and weak beliefs) Let (B, I) be such that the
beliefs up to time 2 are represented by the model in Figure 26, and
let I = {(IJCAI,0),(visit,1)}. Some examples of strong beliefs are
�0do(IJCAI)0 (“it is possible at time 0 to attend IJCAI at time
0”), �0do(ECAI)1 (“it is possible at time 0 to attend ECAI at time
1), and ¬�0(post(ECAI)2 ∧ post(IJCAI)1) (“It is not possible that
the postconditions of attending ECAI and IJCAI are both true, re-
spectively at time 2 and 1”). Some examples of weak beliefs are
do(IJCAI)1, post(i jcai)2, and post(visit)2 → do(IJCAI)0.

The reader may already have noted that, semantically, strong be-
liefs are independent of the specific path on which they are true.
For instance, returning to Example 3, the belief ¬�0(do(IJCAI)0 ∧
do(ECAI)1) is true in path π1, but it is also true in all other paths of
the model. This seems to indicate that the models of a set of strong
beliefs are rather sets of trees instead of sets of tree-path pairs. It cap-
tures the intuition that strong beliefs are not dependent on a specific
future, but are about possibility and necessity. In Section 5, we will
make this property more precise and use it in order to characterize
revision of strong beliefs.

4 Formalizing Shoham’s Coherence Conditions

In this section we formalize Shoham’s coherence condition in our
framework. We first demonstrate that Cohere∗(I) of IPS (Section 2.2)
is too permissive because it allows models in which intentions are not
jointly executable.

Example 5 (Coherence in IPS) Suppose the agent of the running
example has two intentions: I = {(IJCAI,0),(ECAI,1)}. Intuitively,

6 In other words, all models are the same up to t = 2. This single model
property simplifies the exposition of our framework and we assume this
throughout the paper.
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the agent’s intentions do not cohere with its beliefs, because it be-
lieves it cannot execute them both due to insufficient budget. How-
ever, according to Cohere∗(I) the agent is coherent because the pre-
conditions of all intentions hold on some path (namely the actual
path of Figure 2). This is because while the precondition to attend
IJCAI is true at time 0, the agent only executes this action in a path
different from the path in which it attends ECAI as well.

Thus, Cohere∗(I) does not fulfill Shoham’s coherence condition
2b (Section 2.1). Although the preconditions of the intended actions
are true on a path, the intentions are not jointly executable because
the postcondition of the first action is inconsistent with the precon-
dition of the second. More specifically, the problem is that it is not
possible to define the precondition of a set of actions in terms of pre-
conditions of individual actions, because it cannot be ensured that
all the intentions are fulfilled on the same path as well. Therefore, in
order to formalize a coherence condition in PAL, we extend the lan-
guage with preconditions of finite action sequences, which ensures
that after executing the first action, the precondition for the remain-
ing actions are still true. We modify the language, the definition of
a model, the axiomatization, and we show that the new axiomatiza-
tion is sound and strongly complete. We call the new logic PAL-P
(Parameterized-time Action Logic with extended Preconditions).

Definition 7 (PAL-P Language) The language L is obtained from
LPAL by adding {pre(a,b, . . .)t | {a,b, . . .} ⊆ Act, t ∈N} to the set of
propositions.

We also extend the definition of a model accordingly.

Definition 8 (PAL-P Model) A model is a pair (T,π) with T =
(S,R,v,act) such that for all π ∈ T the following holds:

1. If act(πt) = a, then post(a) ∈ v(πt+1),
2. If pre(a) ∈ v(πt), then there is some π′ in T with π ∼t π′ and

act(π′
t) = a,

3. If pre(. . . ,a,b)t ∈ v(πt), then pre(. . . ,a)t ∈ v(πt),
4. If pre(a,b, . . .)t ∈ v(πt), then there is some π′ in T with π ∼t π′,

act(π′
t) = a, and pre(b, . . .)t+1 ∈ v(π′

t+1).

We refer to models of PAL-P with m1,m2, . . ., we refer to sets of
models with M1,M2, . . ., and we refer to the set of all models with M.

Definition 9 The logic PAL-P consists of the all the axiom schemas
and rules of PAL [31] (Def. 7), and the following two:

pre(. . . ,a,b)t → pre(. . . ,a)t (A11)
(pre(a,b, . . .)t ∧do(a)t)→ pre(b, . . .)t+1 (A12)

The relation � is defined in the usual way with the restriction that
necessitation can be applied to theorems only.

Theorem 1 (Completeness Theorem) The logic PAL-P is sound
and strongly complete, i.e. T � ϕ iff T |= ϕ.

Note that it is not directly possible in PAL-P to express precon-
ditions for actions that do not occur directly after each other. In
order to do so, we simply make a disjunction over all possible ac-
tion combinations in the time points in between the actions. Thus, if
for instance Act = {a,b} and I = {(a,1),(b,3)}, then Cohere(I) =
�0

∨
x∈Act pre(a,x,b)1 =�0(pre(a,a,b)1 ∨ pre(a,b,b)1).7

7 Our construction of preconditions over action sequences may lead to a co-
herence condition involving a big disjunction. This is a drawback in terms
of computational complexity. Alternatively, one may explicitly denote the
time of each precondition, e.g. pre(a,b)(t1 ,t2). We chose the former since
it is conceptually closer to the original syntax, but the latter can be imple-
mented straightforwardly.

Definition 10 (Coherence) Given an intention database I =
{(bt1 , t1), . . . ,(btn , tn)} with t1 < .. . < tn, let

Cohere(I) =�0
∨

ak∈Act:k 
∈{t1,...,tn}
ak=bk :k∈{t1,...,tn}

pre(at1 ,at1+1, . . . ,atn)t1 .

For a given set of models M, we say that (M, I) is coherent iff there
exists some m ∈ M with m |=Cohere(I). For a given agent A = (B, I),
we say that the A is coherent iff B is consistent with Cohere(I), i.e.,
B 
� ¬Cohere(I).

Naturally, if a set of intentions is coherent with a set of strong
beliefs, then its subset is coherent as well.

Lemma 1 if I′ ⊆ I, then Cohere(I) �Cohere(I′).

The following proposition was originally proposed by Icard et al.,
and holds in our framework.

Proposition 1 If (B, I) is coherent, then WB(B, I) is consistent.

Let us demonstrate the difference between Cohere∗(I) of IPS and
our Cohere∗(I) using the running example. It turns out the above
proposition does not hold for IPS.

Example 6 (Comparing the coherence conditions) Recall from
Example 5 that the model of Figure 2 is coherent with intentions
I = {(IJCAI,0),(ECAI,1)} according to Cohere∗(I) of the IPS
framework. However, the weak beliefs of this agent are inconsistent
because the agent believes it is impossible to execute both intentions.
Thus, Proposition 1 does not hold here.

On the other hand, the model is not coherent according to
Cohere(I), because the agent does not have the possibility to
jointly execute both intentions (i.e. the preconditions for both
actions together is false). Thus, none of the models satisfy
�0 pre(IJCAI,ECAI)0, even though they satisfy �0 pre(IJCAI)0 ∧
�0 pre(ECAI)1. Thus, we see that in this case Proposition 1 holds.

We now discuss Shoham’s coherence conditions. Condition 1 is
a direct consequence of Proposition 1. Condition 2a follows from
our notion of coherence: if a 
= b,{(a, t),(b, t)} ⊆ I, and B is some
set of strong beliefs, then WB(B, I) � do(a)t ∧ do(b)t . On the other
hand, do(a)t →¬do(b)t is an of PAL-P (Axiom A7, Def. 7 [30]), so
the weak beliefs are inconsistent. By Proposition 1, B is not coherent
with I. We show that condition 2b holds in the following proposition.

Proposition 2 (Coherence Condition 2b) If {(a, t),(b, t + 1)} ⊆ I
and B is a set of strong beliefs such that (B, I) coherent, then
{pre(b)t+1, post(a)t+1} is consistent with B.

Condition 3a follows from our coherence condition: If (B, I) is
coherent, i.e. B 
� ¬Cohere(I), then it follows by Lemma 1 that for
all (a, t) ∈ I,B 
� ¬�0 pre(a)t (since Cohere({(a, t)}) =�0 pre(a)t ).
Finally, condition 3b is formalized using our notion of weak beliefs
and axiom A9 of PAL-P: do(a)t → post(a)t (Def. 7 [30]).

5 Belief and Intention Revision

In this section we formalize the revision procedures on an agent. That
is, we formalize all the arrows from Figure 1. Recall that we distin-
guish between the revision of strong beliefs, the revision of inten-
tions, and the revision of weak beliefs, which is a consequence of
both. The revision of strong beliefs may trigger intention revision,
while intention revision only triggers the revision of weak beliefs.
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5.1 Revision Postulates

Following KM, we fix a way of representing a belief set B consisting
of strong beliefs by a propositional formula ψ such that B = {ϕ | ψ �
ϕ}. Since intentions and beliefs that have been added by a planner
are naturally bounded up to some time point t, we define a bounded
revision function and we restrict the syntax and semantics of PAL-P
up to a specific time point. As a consequence, it is then possible to
obtain the single formula ψ for a set of strong beliefs B (Corollary 1).
The difficulty of obtaining this result is that when revising a belief
database that is bounded up to some time t with a strong belief, we
have to ensure that the resulting belief database is also bounded up
to t, and that it remains a strong belief. We first define some notation
that we use in the rest of this paper.

Definition 11 An agent is a pair (ψ, I) consisting of a belief formula
ψ, and an intention base I. A denotes the set of all agents, B denotes
the set of all strong beliefs, I denotes the set of all intentions, and
D denotes the set of all intention databases. We denote A,B,I, and
D bounded up to t with respectively A|t ,B|t ,I|t , and D

|t . However,
if the restriction is clear from context, we may omit the superscript
notation. We define ε as a special “empty” intention.

We now define a bounded revision function ∗t revising an agent
(ψ, I) with a tuple (ϕ, i) consisting of a strong belief ϕ and an in-
tention i, denoted (ψ, I) ∗t (ϕ, i), where t is the maximal time point
occurring in ψ, I,ϕ, and i.

Definition 12 (Agent Revision Function) An Agent revision func-
tion ∗t : A× (B× I) → A maps an agent, a strong belief formula,
and an intention— all bounded up to t— to an agent bounded up to t
such that if,
(ψ, I)∗t (ϕ, i) = (ψ′, I′),
(ψ2, I2)∗t (ϕ2, i2) = (ψ′

2, I
′
2),

then following postulates hold:
(P1) ψ′ implies ϕ.
(P2) If ψ∧ϕ is satisfiable, then ψ′ ≡ ψ∧ϕ.
(P3) If ϕ is satisfiable, then ψ′ is also satisfiable.
(P4) If ψ ≡ ψ2 and ϕ ≡ ϕ2 then ψ′ ≡ ψ′

2.
(P5) If ψ ≡ ψ2 and ϕ2 ≡ ϕ∧ϕ′ then ψ′ ∧ϕ′ implies ψ′

2.
(P6) If ψ ≡ ψ2, ϕ2 ≡ ϕ∧ϕ′, and ψ′ ∧ϕ′ is satisfiable,

then ψ′
2 implies ψ′ ∧ϕ′.

(P7) (ψ′, I′) is coherent.
(P8) If (ψ′,{i}) is coherent, then i ∈ I′.
(P9) If (ψ′, I ∪{i}) is coherent, then I ∪{i} ⊆ I′.
(P10) I′ ⊆ I ∪{i}.
(P11) If I = I2, i = i2, and ψ′ ≡ ψ′

2, then I′ = I′2.
(P12) For all I′′ with I′ ⊂ I′′ ⊆ I ∪{i}:(ψ′, I′′) is not coherent.

Postulates (P1)-(P6) are simply the KM postulates in our setting,
which are equivalent to the AGM postulates [12]. They also state
that the revision of strong beliefs does not depend on the intentions.
Postulates (P7)-(P10) also appear in IPS. Postulate (P7) states that the
outcome of a revision should be coherent. Postulate (P8) states that
the new intention i take precedence over all other current intentions;
if possible, it should be added, even if all current intentions have to be
discarded. Postulate (P9) and (P10) together state that if it is possible
to simply add the intention, then this is the only change that is made.
Postulate (P11) states that if we revise with the same i but with a
different belief, and we end up with the same belief in both cases,
then we also end up with the same intentions. Finally, (P12) states
that we do not discard intentions unnecessarily. This last postulate

is comparable to the parsimony requirement introduced by Grant et
al. [9].

We now discuss our revision function in some more detail, starting
with a simple example.

Example 7 (Adding an intention) Suppose we have an agent A =
(ψ, I) such that all models of the strong beliefs B are the same as
the partial model in Figure 2 up to t = 2, and suppose that I =
{(IJCAI,0),(visit,1)}. That is, that agent has the intention to attend
IJCAI at time 0 and then visit a colleague at time 1. Suppose now that
the agent changes its intention to attend ECAI at time 1. Formally:
(ψ, I)∗2 (�, i) = (ψ, I′) with i= (ECAI,1). Since (ψ,{i}) is coherent
but (ψ, I′) is not, from (P8) and (P9) we obtain i ∈ I′. Furthermore,
from (P10) we have that I′ ⊆ {(IJCAI,0),(visit,1),(ECAI,1)}.
Combining this gives I′ = {(ECAI,1)} as the only coherent outcome.
Thus, the agent no longer intends to attend IJCAI and to visit the
colleague. Note that, although the strong beliefs didn’t change af-
ter revising with the new intention, the weak beliefs did change. For
example, post(IJCAI)1 ∈WB(ψ, I)\WB(ψ, I′) and post(ECAI)2 ∈
WB(ψ, I′)\WB(ψ, I).

The revision function ∗t takes a tuple (ϕ, i) as input, and the pos-
tulates (P1)-(P7) ensure that revision of strong beliefs occurs prior
to the revision of intentions. Therefore, it may seem plausible that
revising with (ϕ, i) is the same as first revising with (ϕ,ε) and then
with (�, ı). In other words, the following postulate seems to follow:

If (ψ, I)∗t (ϕ, i) = (ψ′, I′)
and ((ψ, I)∗t (ϕ,ε))∗t (�, i) = (ψ′′, I′′), (P13*)

then ψ′ ≡ ψ′′ and I′ = I′′.

However, this property does not follow from (P1)-(P12), and we
show in the following example that adding the postulate would in
fact conflict with the maximality postulate (P12).

Example 8 (Joint vs separate revision) Suppose some agent A =
(ψ, I) with beliefs up to t = 2 corresponding to the model on the left
of Figure 3. The agent has the possible actions to go to the dentist (d)
or to stay at work (w), and then go eating (e) or go to the movies (m).
Before revision, the agent has intentions I = {(d,0),(e,1)} (left im-
age of Figure 3, intentions shown as bold lines). It then revises with
the belief that it cannot go eating after going to the dentist (ϕ) and
as a result with the intention to go to the movie at time 1 (i = (m,1)).
The resulting strong beliefs after revising with ϕ are shown on the
right of Figure 3.

Let us first analyze joint revision. That is, (ψ, I)∗2 (ϕ, i) = (ψ′, I′).
Both (ψ′,{(d,0),(m,1)}) and (ψ′,{(m,1)}) are coherent, so by the
maximality postulate (P12), I′ = {(d,0),(m,1)}. Hence, the agent
intends to go to the dentist and go to the movie.

For separate revision, let (ψ, I) ∗2 (ϕ,ε) = (ψ′, I) and (ψ′, I) ∗2
(�, i) = (ψ′, I′) (note that ψ′ is the same as for joint revision, by
(P4)). Now, since (ψ′,{(d,0)}) and (ψ′,{(e,1)}) are both coherent,
we either have I = {(d,0)} or I = {(e,1)}. Suppose that I = {(e,1)}.
In that case, since (ψ′,{(e,1),(m,1)} is incoherent, we obtain I′ =
{(m,1)} by the postulates (P8) and (P10). Thus, (P13*) doesn’t hold.

In separate revision, the agent has to choose whether to go eating
or to go to the dentist after revising beliefs. When it chooses to go
eating, it has to drop this intention again when deciding to go to the
movies, since these two intentions conflict. In joint revision, this is
not the case since the agent can compare going to the movies with
both possibilities and choose the biggest set of intentions.
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Figure 3: Left: Partial model of strong beliefs ψ of agent (ψ, I) with
I = {(d,0),(e,1)} (bold lines). Right: Revised strong beliefs of agent
after learning its no possible to eat (e) after the dentist (d).

The following proposition states that revising with nothing doesn’t
change a coherent agent. That is, the new beliefs are equivalent to the
one prior to revision and the intention database is unchanged.

Proposition 3 Suppose an agent (ψ, I) is coherent, and (ψ, I) ∗t
(�,ε) = (ψ′, I′). Then ψ ≡ ψ′ and I = I′.

5.2 Representation Theorem

We next characterize all revision schemes satisfying (P1)-(P12) in
terms of minimal change with respect to an ordering among inter-
pretations and a selection function accommodating new intentions
while restoring coherence. We bound models of strong beliefs up to
t, which means that all the paths in the model are “cut off” at t. This
ensures finitely many non-equivalent formulas for some belief set B.
A t-bounded model m|t = (T |t ,π|t) is a model containing a tree T in
which all paths, including π, have length t. Strong beliefs are about
possibility and necessity, and they are independent of a specific path.
Therefore, if a single path in a tree is a model of a strong belief, then
all paths in this tree are models of this strong belief. Formally, a set
of models of a strong belief MSB satisfies the following condition:

If (T,π) ∈ MSB, then (T,π′) ∈ MSB for all π′ ∈ T.

A set of t-bounded models of a strong belief M|t
SB contains only t

restricted models of a strong belief. We write M
|t
SB to denote the set

of all sets of t-bounded models of strong beliefs. We now show that
we can represent a set of models of strong beliefs by a single formula.

Lemma 2 Let Ext(M|t
SB) be the set of all possible extensions of a set

of bounded model of strong beliefs M|t
SB to models, i.e. Ext(M|t

SB) =

{m ∈ M | m|t ∈ M|t
SB}. Given a set of t-bounded models of strong

beliefs M|t
SB, there exists a strong belief formula f orm(M|t

SB) such

that Mod( f orm(M|t
SB)) = Ext(M|t

SB).

Corollary 1 Given a t-bounded strong belief set B, there exists a
formula ψ such that B = {ϕ | ψ � ϕ}.

Proof Sketch. For a given belief set B, we can show that there exists
a set of t-bounded models of a strong belief M|t

SB s.t. Ext(M|t
SB) =

Mod(B). If ψ = f orm(M|t
SB), then Mod(ψ) = Mod(B), and by the

completeness theorem, B =Cl(ψ).

Given an intention database I, we define a selection function γt
I

that tries to accommodate a new intention based on strong beliefs.
The selection function specifies preferences on which intention an
agent would like to keep in the presence of the new beliefs.

Definition 13 (Selection Function) Given an intention database I,
a selection function γt

I : MSB × I → D maps a set of models of a
strong belief and an intention to an updated intention database—all
bounded up to t— such that if γt

I(M
|t ,{i}) = I′, then:

1. (M|t , I′) is coherent.
2. If (M|t ,{i}) is coherent, then i ∈ I′.
3. If (M|t , I ∪{i}) is coherent, then I ∪{i} ⊆ I′.
4. I′ ⊆ I ∪{i}.
5. For all I′′ with I′ ⊂ I′′ ⊆ I ∪{i}:(M|t , I′′) is not coherent.

The five conditions on the selection function are in direct corre-
spondence with postulates (P7)-(P10), (P12) of the agent revision
function ∗t . Note that postulate (P11) doesn’t have a corresponding
condition in the definition above but is represented by the fact that the
selection function takes the revised beliefs as input. That is, intention
revision occurs after belief revision.

The following proposition states that a selection function does not
change intentions unnecessarily. That is, if an intention is already in
the intention database, or if it’s empty, the intention database remains
unchanged.

Proposition 4 Given some coherent pair (M, I), if i= ε or i∈ I, then
γt

I(M, i) = I.

KM define a faithful assignment from a belief formula to a pre-
order over models. Since we are also considering intentions, we ex-
tend this definition such that it also maps intentions databases to se-
lection functions.

Definition 14 (Faithful assignment) A faithful assignment is a
function that assigns to each strong belief formula ψ ∈ B

|t a total
pre-order ≤t

ψ over M and to each intention database I ∈D
|t a selec-

tion function γt
I and satisfies the following conditions:

1. If m1,m2 ∈ Mod(ψ), then m1 ≤t
ψ m2 and m2 ≤t

ψ m1.
2. If m1 ∈ Mod(ψ) and m2 
∈ Mod(ψ), then m1 < m2.
3. If ψ ≡ φ, then ≤t

ψ=≤t
φ.

4. If T |t = T |t
2 , then (T,π)≤t

ψ (T2,π2) and (T2,π2)≤t
ψ (T,π).

Conditions 1 to 3 on the faithful assignment are the same as those
of KM. Condition 4 ensures that we do not distinguish between mod-
els in the total pre-order ≤t

ψ whose trees are the same up to time t.
This is essentially what is represented in the revision function by
bounding the all input of the revision function ∗t up to t. Moreover,
≤t

ψ does not distinguish between models obtained by selecting two
different paths from the same tree. This corresponds to the fact that
we are using strong belief formulas in the revision, which do not dis-
tinguish between different paths in the same tree as well.

Theorem 2 (Representation Theorem) An agent revision operator
∗t satisfies postulates (P1)-(P12) iff there exists a faithful assignment
that maps each ψ to a total pre-order ≤t

ψ and each I to a selection
function γt

I such that if (ψ, I)∗t (ϕ, i) = (ψ′, I′), then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

Finally, it turns out to be straightforward to formulate the DP pos-
tulates for iterated revision in our framework for the strong beliefs
and to prove their representation theorem. Due to space constraints
we have omitted these results.
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6 Related Work

Grant et al. [9] develop AGM-style postulates for belief, intention,
and goal revision. They provide a detailed analysis and propose dif-
ferent reconsideration strategies, but restrict themselves to a syntactic
analysis. Much effort in combining AGM revision with action log-
ics (e.g., the Event Calculus [17], Temporal Action Logics [13], ex-
tensions to the Fluent Calculus [25], and extensions to the Situation
Calculus (see [18, Ch.2] for an overview)) concentrates on extending
these action theories to incorporate sensing or knowledge-producing
actions. Shapiro et al. [22] extend the Situation Calculus to reason
about beliefs rather than knowledge by introducing a modality B and
shows that both the AGM postulates and the DP postulates are sat-
isfied in this framework. A similar approach concerning the Fluent
Calculus has been formalized by Jin and Thielscher [11], and is fur-
ther developed by Scherl [20] and Scherl and Levesque [21] by tak-
ing into account the frame problem as well. However, none of these
approaches prove representations theorems linking revision to a total
pre-order on models. Baral and Zhang [2] model belief updates on
the basis of semantics of modal logic S5 and show that their knowl-
edge update operator satisfies all the KM postulates. Bonanno [3]
combines temporal logic with AGM belief revision by extending a
temporal logic with a belief operator and an information operator.
Both these approaches do not take action or time into account and
do not prove representation theorems. The concept of strong beliefs
has been discussed extensively in the literature, for instance in the
story of Little Nell [16] or a paradox found in knowledge-based pro-
grams [8] (see van der Hoek et al. [27] for a detailed discussion).

7 Conclusion

We develop a logical theory for reasoning about temporal beliefs and
intentions based on Shoham’s database perspective. We propose pos-
tulates for revision of strong beliefs and intentions, and prove a rep-
resentation theorem relating the postulates to our formal model.

For future work, we aim to make the role of the planner more ex-
plicit. Currently, our agent only receives updates from the planner,
but allowing the agent to do planning tasks itself would allow it to,
for instance, replace intentions instead of merely discarding them.
This paves the road to develop a richer notion of intentions. If the
databases take over part of the planning, then well-known problems
such as the frame problem become more stringent: Once a fact is es-
tablished (for example, as a postcondition of an intention), it persists
until it explicitly contradicts postconditions established by future in-
tentions. Existing action logics (e.g., the Event Calculus or the Flu-
ent Calculus) have dealt with these problems in detail, so comparing
and possibly enriching them with our formalism seems both useful
and relevant future work. Finally, it is our long-term goal to apply
Shoham’s database perspective to decision making in large-scale en-
terprises [28, 29, 32], in a similar way Timeful applied it to decision
making for individuals.
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Proof Sketches

Proposition 5 (Coherence Condition 2b) If {(a, t),(b, t + 1)} ⊆ I
and B is a set of strong beliefs such that (B, I) coherent, then
{pre(b)t+1, post(a)t+1} is consistent with B.

Proof Sketch. Let I = {(a, t),(b, t + 1)} and let B be a set of strong
beliefs whose set of models is M. We need to show that consis-
tency of {pre(b)t+1, post(a)t+1} with B follows from our coher-
ence condition. Note that the coherence formula is Cohere(I) =
�0 pre(a,b)t . By the axiom (A12) (Definition 4) and the Deduction
theorem we have pre(a,b)t ∧ do(a)t � pre(b)t+1. Using the axiom
(A9): do(a)t → post(a)t+1 from PAL (Def. 7 [30]) and Deduction
theorem we obtain do(a)t � post(a)t+1. Consequently,

pre(a,b)t ∧do(a)t � pre(b)t+1 ∧ post(a)t+1.

Thus, in order to prove that {pre(b)t+1, post(a)t+1} is consistent
with B, it is sufficient to show that pre(a,b)t ∧ do(a)t is consistent
with B. If (B, I) is coherent, then there is a model m=(T,π)∈M such
that m |=Cohere(I), so there is π′ ∈ T such that (T,π′) |= pre(a,b)t .
By Definition 3.2, then there exist π′′ ∈ T such that π′ ∼t π′′ and
act(π′′

t ) = a. Then (T,π′′) |= pre(a,b)t ∧ do(a)t . Since M is a set
of models of strong beliefs, we obtain (T,π′′) ∈ M, i.e., (T,π′′) is
also a model of B. Then B is consistent with pre(a,b)t ∧ do(a)t , by
Completeness theorem.

Proposition 6 If an agent A = (B, I) is coherent, then WB(B, I) is
consistent.

Proof Sketch. Using axioms A8, A11, and A12, one can show that
{pre(a0, . . . ,am)t} � �t(do(a0)t ∧ �t+1(do(a1)t+1 ∧ �t+2(. . .))).
By taking the contrapositive of A3, pre(a0, . . . ,am)t implies
�t

∧m
k=0 do(ak)t+k. Therefore, Cohere(I) (Def. 10) implies

�0
∨

ak∈Act:k 
∈{t1,...,tk}
ak=bk :k∈{t1,...,tn}

�t1(do(at1)t1 ∧do(at1+1)t1+1 ∧ . . .∧do(atn)tn

Consequently, Cohere(I) implies �0�t1
∧n

k=1 do(btk )tk , and by (A3)
this implies �0

∧
(a,t)∈I do(a)t . Therefore, if (B, I) is coherent, then

the set B∪{�0
∧
(a,t)∈I do(a)t} is consistent. By the fact that B is a

strong belief set, B∪{∧(a,t)∈I do(a)t} is consistent, i.e. WB(B, I) is
consistent.

Theorem 3 (Representation Theorem) An agent revision operator
∗t satisfies postulates (P1)-(P12) iff there exists a faithful assignment
that maps each ψ to a total pre-order ≤t

ψ and each I to a selection
function γt

I such that if (ψ, I)∗t (ϕ, i) = (ψ′, I′), then:

1. Mod(ψ′) = min(Mod(ϕ),≤t
ψ)

2. I′ = γt
I(Mod(ψ′), i)

Proof Sketch. We only sketch the proof of “ ⇒′′: Suppose that some
agent revision operator ∗t satisfies postulates (P1)-(P12). Given mod-
els m1 and m2, let (ψ, /0)∗t ( f orm(m|t

1 )∨ f orm(m|t
2 ),ε) = (ψ′, /0). We

define ≤t
ψ by m1 ≤t

ψ m2 iff m1 |= ψ or m1 |= ψ′. We also define γt
I

by γt
I(M

|t
SB, i) = I′, where ( f orm(M|t

SB), I)∗t (�, i) = (ψ2, I′) (note
that ψ2 ≡ f orm(M|t

SB)).
Let us prove condition 4 of Definition 9. For m1 = (T,π) and m2 =

(T2,π2), let ψ′ be as above. Since ψ,ψ′ ∈ B
|t and T |t = T |t

2 , we have
m1 |= ψ iff m2 |= ψ and m1 |= ψ′ iff m2 |= ψ′, so m1 ≤t

ψ m2 and
m2 ≤t

ψ m1.
Following KM, one can show that conditions 1 to 3 from Defini-

tion 9 hold, and furthermore that Mod(ψ′) = min(Mod(ϕ),≤t
ψ). We

now prove I′ = γt
I(Mod(ψ′), i). By our definition of γt

I we have that
(ψ′, I) ∗t (�, i) = (ψ2,γt

I(Mod(ψ′), i)) (recall that ψ′ ≡ ψ2). Since
(ψ, I)∗t (ϕ, i) = (ψ′, I′), by (P11) we obtain that I′ = γt

I(Mod(ψ′), i).
Using postulate (P7)-(P10) and (P12) we can prove that γt

I is a selec-
tion function.
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