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Abstract. We investigate the parameterized complexity of comput-
ing an outcome of the Kemeny rule in judgment aggregation, provid-
ing the first parameterized complexity results for this problem for
any judgment aggregation procedure. As parameters, we consider
(i) the number of issues, (ii) the maximum size of formulas used
to represent issues, (iii) the size of the integrity constraint used to
restrict the set of feasible opinions, (iv) the number of individuals,
and (v) the maximum Hamming distance between any two individ-
ual opinions, as well as all possible combinations of these parame-
ters. We provide parameterized complexity results for two judgment
aggregation frameworks: formula-based judgment aggregation and
constraint-based judgment aggregation. Whereas the classical com-
plexity of computing an outcome of the Kemeny rule in these two
frameworks coincides, the parameterized complexity results differ.

1 Introduction

The area of computational social choice places computational as-
pects of social choice procedures at a first-class level among selection
criteria for the choice between such procedures. For example, since
the seminal work of Bartholdi, Tovey and Trick [3], it has been well
known that for many voting rules the problem of computing who
won a particular election is computationally intractable. As a result,
the computational complexity of this winner determination problem
plays an important role in the selection of what voting scheme to use.
Traditionally, classical computational complexity theory has been
used to provide qualitative information about the difficulty of rele-
vant computational problems for social choice procedures. For in-
stance, completeness results for the classical complexity classes NP
and Θp

2 abound in the computational social choice literature (see,
e.g., [3, 8, 9, 21, 29, 40, 41]).

However, classical complexity theory—being a worst-case frame-
work that measures the running time of algorithms in terms of only
the bit-size of the input—is mostly blind to what aspects of the input
underlie negative complexity results. Consequently, negative com-
plexity results tend to be interpreted overly pessimistically. An illus-
trative example of this concerns the winner determination problem
for the Kemeny voting rule. This problem is Θp

2-complete in general
(which rules out algorithms that work efficiently across the board),
but efficient algorithms do exist for cases where the number of can-
didates is small [5, 6, 30, 33, 39].

The multidimensional framework of parameterized complexity
[13, 14, 23, 38] offers a mathematically rigorous theory to analyze
the computational complexity of problems on the basis of more than
just the input size in bits. Therefore, using this framework, one can
give much more informative complexity results that are sensitive to
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various aspects of the problem input—in principle, any aspect of
the input can be taken into account. In the analysis of voting pro-
cedures, parameterized complexity has been used widely, to give a
more accurate picture of the complexity of many related computa-
tional problems, including the problem of winner determination (see,
e.g., [5, 6, 33]). In the area of judgment aggregation, however, pa-
rameterized complexity has been used to analyze the computational
complexity of problems only in very few cases [4, 19]. The funda-
mental problem of computing the outcome of judgment aggregation
procedures, as of yet, remains uninvestigated from a parameterized
complexity point of view.

We hope to initiate a structured parameterized complexity inves-
tigation of the problem of computing the outcome of judgment ag-
gregation procedures. Judgment aggregation studies the process of
combining individual judgments on a set of related propositions of
the members of a group into a collective judgment reflecting the
views of the group as a whole [15, 26, 34, 35]. Seen from a classical
complexity point of view, computing the outcome of many judgment
aggregation procedures is Θp

2-complete. However, as these negative
results pertain only to the case where every possible input needs to
be considered, there is a lot of room for relativizing these negative
results by taking a parameterized complexity perspective and consid-
ering various (combinations of) reasonable restrictions on the inputs.

Contribution In this paper, we start the parameterized complexity
investigation of judgment aggregation procedures by considering one
of the most prominent procedures: the Kemeny procedure for judg-
ment aggregation (or Kemeny rule, for short).2 The unrestricted prob-
lem of computing an outcome for this rule is Θp

2-complete [17, 32].
We consider a number of natural parameters for this problem—
capturing various aspects of the problem input that can reasonably be
expected to be small in some applications—and we give a complete
parameterized complexity classification for the problem of comput-
ing the outcome of the Kemeny rule, for every combination of these
parameters. The parameters that we consider are:

• the number n of issues that the individuals (and the group) form
an opinion on;

• the maximum size m of formulas used to represent the issues;
• the size c of the integrity constraint used to limit the set of feasible

opinions;
• the number p of individuals; and
• the maximum (Hamming) distance h between any two individual

opinions.

2 This procedure has also been called “MWA” [32], “Median rule” [37], “Sim-
ple scoring rule” [11], and “Prototype-Hamming rule” [36].

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1502

1502



The results in this paper open up interesting and natural lines of fu-
ture research. A similar parameterized complexity analysis can be
performed for the problem of computing the outcome of other judg-
ment aggregation procedures. Moreover, further parameters can be
taken into account in future parameterized complexity analyses of
the problem.

We develop parameterized complexity results for two formal
frameworks for judgment aggregation: formula-based judgment ag-
gregation and constraint-based judgment aggregation (the former
is often simply called ‘judgment aggregation’ [12, 17, 32] and the
latter is also called ‘binary aggregation with integrity constraints’
[24, 25])—we define these two frameworks in detail in Section 3. In
general, the computational complexity of computing the outcome of
a judgment aggregation procedure might differ for these two frame-
works [16], but for the Kemeny rule this problem is Θp

2-complete in
both frameworks [17, 24].

Nonstandard Parameterized Complexity Tools Since the inven-
tion of parameterized complexity theory, it has been applied mostly
to problems that are in NP. As a result, the most commonly used
parameterized complexity toolbox is insufficient to perform a com-
plete parameterized complexity analysis of problems that are beyond
NP (such as the Θp

2-complete problem of computing the outcome of
the Kemeny procedure). Recently, various novel parameterized com-
plexity tools have been developed that aid in analyzing the parame-
terized complexity of problems beyond NP [19, 20, 28]. The param-
eterized complexity results in this paper feature one of these inno-
vative parameterized complexity tools: the class FPTNP[few], which
consists of problems that can be solved by a fixed-parameter tractable
that can query an NP oracle a small number of times (that is, the
number of oracle queries depends only on the parameter value). We
define this class in detail in Section 2, where we discuss relevant no-
tions from parameterized complexity.

Parameters parameterized complexity result

c, n,m in FPT (Proposition 3)
h, p in FPTNP[few] (Proposition 1)
n in FPTNP[few] (Proposition 2)

h, n,m, p FPTNP[few]-hard (Proposition 8)
c, h, n, p FPTNP[few]-hard (Proposition 9)
c, h,m, p FPTNP[few]-hard (Proposition 10)
c, h,m para-Θp

2-hard (Corollary 6)
c,m, p para-Θp

2-hard (Proposition 7)

Table 1. Parameterized complexity results for OUTCOME(KEMENY)fb.

Parameters parameterized complexity result

n in FPT (Proposition 11)
c in FPT (Proposition 12)
h in XP (Proposition 13)
h, p W[SAT]-hard (Proposition 14)
p para-Θp

2-hard (Proposition 15)

Table 2. Parameterized complexity results for OUTCOME(KEMENY)cb.

Overview of Results We provide a parameterized complexity
classification for the problem of computing an outcome of the Ke-
meny rule, for all possible combinations of the parameters that we
consider—both (1) in the framework of formula-based judgment ag-
gregation and (2) in the framework of constraint-based judgment ag-
gregation.

For the framework of formula-based judgment aggregation, we
give a tight classification for each possible case. In particular, we
show the following. When parameterized by any set of parameters
that includes c, n and m, the problem is fixed-parameter tractable
(Proposition 3). Otherwise, when parameterized by any set of pa-
rameters that includes either n or both h and p, the problem is
FPTNP[few]-complete (Propositions 1, 2, 8, 9 and 10). For all re-
maining cases, the problem is para-Θp

2-complete (Corollary 6 and
Proposition 7).

For the framework of constraint-based judgment aggregation, we
show the following results. When parameterized by any set of pa-
rameters that includes either c or n, the problem is fixed-parameter
tractable (Propositions 11 and 12). Otherwise, when parameterized
by any set of parameters that includes h, the problem is W[SAT]-
hard and is in XP (Propositions 13 and 14). For all remaining cases,
the problem is para-Θp

2-complete (Proposition 15). The results for
the formula-based judgment aggregation framework are summarized
in Table 1, and the results for the constraint-based framework are
summarized in Table 2.

Interpretation of Results From a classical complexity point of
view, the problem of computing outcomes of the Kemeny rule in
judgment aggregation is equally difficult for both the formula-based
and the constraint-based frameworks [17, 24], despite the notable dif-
ferences between the frameworks. Our results show that the use of
a parameterized complexity perspective more accurate displays the
difference between the frameworks, in terms of their computational
properties.

For instance, in the constraint-based framework, the logical rela-
tions between the issues are represented only using the integrity con-
straint, whereas in the formula-based framework, these logical rela-
tions are expressed by both the integrity constraint and the agenda
formulas. As a result, in the constraint-based framework, taking ei-
ther c or n as parameter suffices to get fixed-parameter tractability,
whereas in the formula-based framework, one needs the combination
of c, n and m as parameter for fixed-parameter tractability. In fact,
in the formula-based framework, restricting both c and m to constant
values (but leaving n unrestricted) does not decrease the parameter-
ized complexity.

Another difference between the frameworks is that in the formula-
based framework, checking whether an opinion is feasible is an NP-
complete problem, whereas this is solvable in polynomial time in the
constraint-based framework. Intuitively, this difference results in the
fact that computing outcomes for the Kemeny rule is in XP when
parameterized by h in the constraint-based framework, but in the
formula-based framework, one needs both h and p as parameters to
even get membership in FPTNP[few].

The formula-based framework has the advantage that it allows
more succinct encodings than the constraint-based framework [16].
Our results show that this advantage comes with a drawback: when
encoding judgment aggregation scenarios using the formula-based
framework, one needs to be more careful to keep various parameter
values low, in order to support more efficient algorithmic methods.

Roadmap In the remainder of Section 1, we discuss relevant re-
lated work. Then, in Section 2, we give a brief overview of the con-
cepts and tools from the theory of (parameterized) complexity that
we use in this paper. In Section 3, we introduce the two formal judg-
ment aggregation frameworks, and we formally define the computa-
tional problem of computing an outcome for the Kemeny rule, as well
as all the parameterized variants of this problem that we consider. We
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provide the parameterized complexity results for all parameterized
variants of the problem (for both judgment aggregation frameworks)
in Section 4. Finally, we conclude in Section 5.

Related Work Parameterized complexity theory has been used to
investigate the complexity of the winner determination problem in
voting (which is analogous to the problem of computing the out-
come of a judgment aggregation procedure) for several voting rules
[5, 6, 33]. Parameterized complexity has also been used to study var-
ious other problems in the area of judgment aggregation, such as
problems related to bribery [4, 19]. The complexity of computing
outcomes for the Kemeny procedure in judgment aggregation (and
other procedures) has been studied from a classical complexity point
of view [17, 18, 24, 32]. It has also been studied what influence the
choice of formal framework to model the setting of judgment aggre-
gation has on the (classical) complexity of computing outcomes for
various judgment aggregation procedures [16].

2 Parameterized Complexity

We begin by briefly introducing the relevant concepts and notation
from propositional logic and (parameterized) complexity theory. We
use the notation [n], for any n ∈ N, to denote the set {1, . . . , n}.

Propositional Logic Propositional formulas are constructed from
propositional variables using the Boolean operators ∧,∨,→, and ¬.
A propositional formula is doubly-negated if it is of the form ¬¬ψ.
For every propositional formula ϕ, we let ∼ϕ denote the complement
of ϕ, i.e., ∼ϕ = ¬ϕ if ϕ is not of the form ¬ψ, and ∼ϕ = ψ if ϕ is
of the form ¬ψ. For a propositional formula ϕ, the set Var(ϕ) denotes
the set of all variables occurring in ϕ. We use the standard notion of
(truth) assignments α : Var(ϕ) → {0, 1} for Boolean formulas and
truth of a formula under such an assignment. We define the size |ϕ|
of a propositional formula ϕ as the total number of (occurrences of)
Boolean operators and propositional variables in ϕ.

Classical Complexity We assume the reader to be familiar with
the most common concepts from complexity theory, such as the com-
plexity classes P and NP. These basic notions are explained in text-
books on the topic; see, e.g., [2]. In this paper, we will also refer to
the complexity class Θp

2, that consists of all decision problems that
can be solved by a polynomial-time algorithm that queries an NP or-
acle O(log n) times. The following problem is complete for the class
Θp

2 under polynomial-time reductions [7, 31, 44].

MAX-MODEL

Instance: A satisfiable propositional formula ϕ, and a vari-
able w ∈ Var(ϕ).
Question: Is there a model of ϕ that sets a maximal number of
variables in Var(ϕ) to true (among all models of ϕ) and that sets w
to true?

Parameterized Complexity Next, we introduce the relevant con-
cepts of parameterized complexity theory. For more details, we refer
to textbooks on the topic [10, 13, 14, 23, 38]. An instance of a pa-
rameterized problem is a pair (x, k) where x is the main part of the
instance, and k is the parameter. A parameterized problem is fixed-
parameter tractable if instances (x, k) of the problem can be solved
by a deterministic algorithm that runs in time f(k)|x|c, where f is
a computable function of k, and c is a constant (algorithms running
within such time bounds are called fpt-algorithms). FPT denotes the

class of all fixed-parameter tractable problems. It often makes sense
to consider parameterized problems with multiple parameters. When
considering multiple parameters, we take their sum as a single pa-
rameter.

Parameterized complexity also offers a completeness theory, sim-
ilar to the theory of NP-completeness, that provides a way to ob-
tain evidence that a parameterized problem is not fixed-parameter
tractable. Hardness for parameterized complexity classes is based
on fpt-reductions, which are many-one reductions where the param-
eter of one problem maps into the parameter for the other. More
specifically, a parameterized problem Q is fpt-reducible to another
parameterized problem Q′ if there is a mapping R that maps in-
stances of Q to instances of Q′ such that (i) (I, k) ∈ Q if and only
if R(I, k) = (I ′, k′) ∈ Q′, (ii) k′ ≤ g(k) for a computable func-
tion g, and (iii) R can be computed in time f(k)|I|c for a computable
function f and a constant c. Central to the completeness theory are
the classes of the Weft hierarchy, including the class W[SAT]. The
parameterized complexity class W[SAT] can be characterized as the
set of those parameterized problems that can be fpt-reduced to the
problem MONOTONE-WSAT [1]. This problem is defined as follows.

MONOTONE-WSAT

Instance: A monotone propositional formula ϕ—i.e., ϕ contains
no negations—and a positive integer k.
Parameter: k.
Question: Does there exists a truth assignment that sets exactly k
variables in Var(ϕ) true and that satisfies ϕ.

Moreover, the parameterized complexity class XP consists of all
problems that can be solved in time O(nf(k)), for some computable
function f , where n is the input size and k is the parameter value.

The following parameterized complexity classes are analogues to
classical complexity classes. Let K be a classical complexity class,
e.g., Θp

2. The parameterized complexity class para-K is then defined
as the class of all parameterized problems Q for which there exist a
computable function f and a problem Q′ ∈ K such that for all in-
stances (x, k) we have that (x, k) ∈ Q if and only if (x, f(k)) ∈ Q′.
Intuitively, the class para-K consists of all problems that are in K after
a precomputation that only involves the parameter. A parameterized
problem is para-K-hard if it is K-hard already for a constant value of
the parameter [22].

The final parameterized complexity class that we consider is
FPTNP[few], consisting of all parameterized problems that can be
solved by an fpt-algorithm that queries an NP oracle at most f(k)
many times, where f is some computable function and where k de-
notes the parameter value [19, 20, 27]. Intuitively, this class consists
of those problems that can be reduced to SAT by a Turing reduction
that runs in fixed-parameter tractable time, and queries the oracle
at most f(k) times. The following parameterized variant of MAX-
MODEL is FPTNP[few]-complete under fpt-reductions.

LOCAL-MAX-MODEL

Instance: A satisfiable propositional formula ϕ, a subset X ⊆
Var(ϕ) of variables, and a variable w ∈ X .
Parameter: |X|.
Question: Is there a model of ϕ that sets a maximal number of
variables in X to true (among all models of ϕ) and that sets w to
true?

3 Judgment Aggregation

Next, we introduce the two formal judgment aggregation frameworks
that we use in this paper: formula-based judgment aggregation (as
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used by, e.g., [12, 17, 32]) and constraint-based judgment aggrega-
tion (as used by, e.g., [24]). For both frameworks, we will also define
the computational problem OUTCOME(KEMENY) of computing an
outcome of the Kemeny procedure, and we will formally define the
parameters that we consider.

Formula-Based Judgment Aggregation An agenda is a finite,
nonempty set Φ of formulas that does not contain any doubly-
negated formulas and that is closed under complementation. More-
over, if Φ = {ϕ1, . . . , ϕn,¬ϕ1, . . . ,¬ϕn} is an agenda, then we
let [Φ] = {ϕ1, . . . , ϕn} denote the pre-agenda associated to the
agenda Φ. A judgment set J for an agenda Φ is a subset J ⊆ Φ. We
call a judgment set J complete if ϕ ∈ J or ∼ϕ ∈ J for all ϕ ∈ Φ;
and we call it consistent if there exists an assignment that makes all
formulas in J true. Intuitively, the consistent and complete judgment
sets are the opinions that individuals and the group can have.

We associate with each agenda Φ an integrity constraint Γ, that
can be used to further restrict the set of feasible opinions. Such an in-
tegrity constraint consists of a single propositional formula. We say
that a judgment set J is Γ-consistent if there exists a truth assignment
that simultaneously makes all formulas in J and Γ true. Let J (Φ,Γ)
denote the set of all complete and Γ-consistent subsets of Φ. We say
that finite sequences J ∈ J (Φ,Γ)+ of complete and Γ-consistent
judgment sets are profiles, and where convenient we equate a pro-
file J = (J1, . . . , Jp) with the (multi)set {J1, . . . , Jp}.

A judgment aggregation procedure (or rule) for the agenda Φ and
the integrity constraint Γ, is a function F that takes as input a pro-
file J ∈ J (Φ,Γ)+, and that produces a non-empty set of non-empty
judgment sets. We call a judgment aggregation procedure F reso-
lute if for any profile J it returns a singleton, i.e., |F (J)| = 1;
otherwise, we call F irresolute. An example of a resolute judg-
ment aggregation procedure is the strict majority rule Majority,
where Majority(J) = {J∗} and where ϕ ∈ J∗ if and only if ϕ
occurs in the strict majority of judgment sets in J , for all ϕ ∈ Φ
(in case of a tie between ϕ and ¬ϕ, for ϕ ∈ [Φ], we arbitrarily
let ϕ ∈ J∗). We call a judgment aggregation procedure F complete
and Γ-consistent, if J is complete and Γ-consistent, respectively, for
every J ∈ J (Φ,Γ)+ and every J ∈ F (J). The procedure Majority
is not consistent. Consider the agenda Φ with [Φ] = {p, q, p → q},
and the profile J = (J1, J2, J3), where J1 = {p, q, (p → q)}, J2 =
{p,¬q,¬(p → q)}, and J3 = {¬p,¬q, (p → q)}. The unique out-
come {p,¬q, (p → q)} in Majority(J) is inconsistent.

The Kemeny aggregation procedure is based on a notion of dis-
tance. This distance is based on the Hamming distance d(J, J ′) =
|{ϕ ∈ [Φ] : ϕ ∈ (J \ J ′) ∪ (J ′ \ J) }| between two com-
plete judgment sets J, J ′. Intuitively, the Hamming distance d(J, J ′)
counts the number of issues on which two judgment sets disagree.
Let J be a single Γ-consistent and complete judgment set, and
let (J1, . . . , Jp) = J ∈ J (Φ,Γ)+ be a profile. We define the
distance between J and J to be d(J,J) =

∑
i∈[p] d(J, Ji). Then,

we let the outcome KemenyΦ,Γ(J) of the Kemeny rule be the set
of those J∗ ∈ J (Φ,Γ) for which there is no J ∈ J (Φ,Γ) such
that d(J,J) < d(J∗,J). (If Φ and Γ are clear from the context,
we often write Kemeny(J) to denote KemenyΦ,Γ(J).) Intuitively,
the Kemeny rule selects those complete and Γ-consistent judgment
sets that minimize the cumulative Hamming distance to the judg-
ment sets in the profile. The Kemeny rule is irresolute, complete and
Γ-consistent.

We formalize the problem of computing an outcome of
the Kemeny rule—in the formula-based judgment aggregation
framework—with the following decision problem OUTCOME-

(KEMENY)fb. Any algorithm that solves OUTCOME(KEMENY)fb can
be used to construct some J∗ ∈ Kemeny(J), with polynomial over-
head, by iteratively calling the algorithm and adding formulas to the
set L. Moreover, multiple outcomes J∗

1 , J
∗
2 , . . . can be constructed

by adding previously found outcomes as the sets Li.

OUTCOME(KEMENY)fb

Instance: An agenda Φ with an integrity constraint Γ, a pro-
file J ∈ J (Φ,Γ)+ and subsets L,L1, . . . , Lu ⊆ Φ of the
agenda, with u ≥ 0.
Question: Is there a judgment set J∗ ∈ Kemeny(J) such that L ⊆
J∗ and Li �⊆ J∗ for each i ∈ [u]?

The parameters that we consider for the problem OUTCOME-
(KEMENY)fb are defined straightforwardly. For an in-
stance (Φ,Γ,J , L, L1, . . . , Lu) of OUTCOME(KEMENY)fb

with J = (J1, . . . , Jp), we let n = |[Φ]|, m = max{ |ϕ| : ϕ ∈
[Φ] }, c = |Γ|, p = |J |, and h = max{ d(Ji, Ji′) : 1 ≤ i < i′ ≤
p }.

Constraint-Based Judgment Aggregation Let I =
{x1, . . . , xn} be a finite set of issues. Intuitively, these issues
are the topics about which the individuals want to combine
their judgments. A truth assignment α : I → {0, 1} is called
a ballot, and represents an opinion that individuals and the
group can have. We will also denote ballots α by a binary vec-
tor (b1, . . . , bn) ∈ {0, 1}n, where bi = α(xi) for each i ∈ [n].
Moreover, we say that (p1, . . . , pn) ∈ {0, 1, �}n is a partial
ballot, and that (p1, . . . , pn) agrees with a ballot (b1, . . . , bn)
if pi = bi whenever pi �= �, for all i ∈ [n]. As in the case for
formula-based judgment aggregation, we introduce an integrity
constraint Γ, that can be used to restrict the set of feasible opinions
(for both the individuals and the group). The integrity constraint Γ
is a propositional formula on the variables x1, . . . , xn. We define
the set R(I,Γ) of rational ballots to be the ballots (for I) that
satisfy the integrity constraint Γ. Rational ballots in the constraint-
based judgment aggregation framework correspond to complete
and Γ-consistent judgment sets in the formula-based judgment
aggregation framework. We say that finite sequences r ∈ R(I,Γ)+
of rational ballots are profiles, and where convenient we equate a
profile r = (r1, . . . , rp) with the (multi)set {r1, . . . , rp}.

A judgment aggregation procedure (or rule), for the set I of issues
and the integrity constraint Γ, is a function F that takes as input a
profile r ∈ R(I,Γ)+, and that produces a non-empty set of ballots.
We call a judgment aggregation procedure F rational (or consistent),
if r is rational for every r ∈ R(I,Γ)+ and every r ∈ F (r).

As an example of a judgment aggregation procedure we con-
sider the strict majority rule Majority, where Majority(r) =
{(b1, . . . , bn)} and where each bi agrees with the majority of the i-th
bits in the ballots in r (in case of a tie, we arbitrarily let bi = 1). To
see that Majority is not rational, consider the set I = {x1, x2, x3}
of issues, the integrity constraint Γ = x3 ↔ (x1 → x2), and
the profile r = (r1, r2, r3), where r1 = (1, 1, 1), r2 = (1, 0, 0),
and r3 = (0, 0, 1). The unique outcome (1, 0, 1) in Majority(r) is
not rational.

The Kemeny aggregation procedure is defined for the constraint-
based judgment aggregation framework as follows. Similarly to the
case for formula-based judgment aggregation, the Kemeny rule is
based on the Hamming distance d(r, r′) = |{ i ∈ [n] : bi �= b′i }|,
between two rational ballots r = (b1, . . . , bn) and r′ = (b′1, . . . , b

′
n)

for the set I of issues and the integrity constraint Γ. Let r be a single
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ballot, and let (r1, . . . , rp) = r ∈ R(I,Γ)+ be a profile. We define
the distance between r and r to be d(r, r) =

∑
i∈[p] d(r, ri). Then,

we let the outcome KemenyI,Γ(r) of the Kemeny rule be the set of
those ballots r∗ ∈ R(I,Γ) for which there is no r ∈ R(I,Γ) such
that d(r, r) < d(r∗, r). (If I and Γ are clear from the context, we
often write Kemeny(r) to denote KemenyI,Γ(r).) The Kemeny rule
is irresolute and rational.

We formalize the problem of computing an outcome of
the Kemeny rule—in the constraint-based judgment aggrega-
tion framework—with the following decision problem OUTCOME-
(KEMENY)cb. Similarly to algorithms for OUTCOME(KEMENY)fb,
algorithms that solve OUTCOME(KEMENY)cb can be used to con-
struct multiple outcomes.

OUTCOME(KEMENY)cb

Instance: A set I of issues with an integrity constraint Γ, a
profile r ∈ R(I,Γ)+ and partial ballots l, l1, . . . , lu (for I),
with u ≥ 0.
Question: Is there a ballot r∗ ∈ Kemeny(r) such that l agrees
with r∗ and each li does not agree with r∗?

We define the parameters that we consider for OUTCOME-
(KEMENY)cb as follows. For an instance (I,Γ, r, l, l1, . . . , lu) of
OUTCOME(KEMENY)cb with r = (r1, . . . , rp), we let n = |I|, c =
|Γ|, p = |r|, and h = max{ d(ri, ri′) : 1 ≤ i < i′ ≤ p }. We
remark that the parameter m does not make sense in the constraint-
based framework, as issues are not represented by a logic formula.
When needed, the parameter m for OUTCOME(KEMENY)cb is de-
fined by letting m = 1.

4 Complexity Results

In this section, we develop the parameterized complexity results for
the different parameterized variants of OUTCOME(KEMENY)fb and
OUTCOME(KEMENY)cb that we consider.

4.1 Upper Bounds for the Formula-Based
Framework

We begin with showing upper bounds for OUTCOME(KEMENY)fb.
When parameterized either (i) by both h and p or (ii) by n, the prob-
lem is in FPTNP[few].

Proposition 1. OUTCOME(KEMENY)fb parameterized by h and p is
in FPTNP[few].

Proof. The main idea behind this proof is that with these parameters,
we can derive a suitable upper bound on the minimum distance of any
complete and Γ-consistent judgment set to the profile J , such that the
usual binary search algorithm with access to an NP oracle only needs
to make O(log h+ log p) many oracle queries.

We describe an algorithm A that solves OUTCOME-
(KEMENY)fb with the required number of oracle queries.
Let (Φ,Γ,J , L, L1, . . . , Lu) be an instance. The algorithm
needs to determine the minimum distance d(J,J) for any complete
and Γ-consistent judgment set J to the profile J . Let d∗ denote this
minimum distance. An upper bound on d∗ is given by h(p−1). This
upper bound can be derived as follows. Take an arbitrary J ∈ J .
Clearly d(J, J) = 0, and for every J ′ ∈ J with J �= J ′ we know
that d(J, J ′) ≤ h. Therefore, d(J,J) ≤ h(p− 1). Since J ∈ J , we
know that J is complete and Γ-consistent. Therefore, the minimum

distance of any complete and Γ-consistent judgment set to the
profile J is at most h(p− 1).

The algorithm A firstly computes d∗. Since d∗ ≤ h(p − 1), with
binary search this can be done using at most 
log h(p − 1)� =
O(log h + log p) many queries to an oracle—the oracle decides for
a given value d0 whether there exists a complete and Γ-consistent
judgment set J with d(J,J) ≤ d0. Then, with a single additional or-
acle query, the algorithm A determines whether there exists a com-
plete and Γ-consistent judgment set J∗ with d(J∗,J) = d∗, L ⊆
J∗, and Lj �⊆ J∗ for each j ∈ [u].

When parameterized by the number n of formulas in the pre-
agenda, the number of possible judgment sets is bounded by a func-
tion of the parameter. This allows the problem to be solved in fixed-
parameter tractable time, using a single query to an NP oracle for
each judgment set to determine whether it it Γ-consistent.

Proposition 2. OUTCOME(KEMENY)fb parameterized by n is in
FPTNP[few].

Proof. The main idea behind this proof is that the number of possible
judgment sets is bounded by the parameter, that is, there are only 2n

many possible complete judgment sets. We describe an algorithm A
that solves the problem in fixed-parameter tractable time by querying
an NP oracle at most 2n many times. Let (Φ,Γ,J , L, L1, . . . , Lu)
be an instance. Firstly, the algorithm A enumerates all possible com-
plete judgment sets J1, . . . , J2n ⊆ Φ. Then, for each such set Ji, the
algorithm uses the NP oracle to determine whether Ji is Γ-consistent.
Each judgment set Ji that is not Γ-consistent, is discarded. This can
be done straightforwardly using 2n many calls to the NP oracle—
one for each set Ji. (The number of oracle calls that are needed can
be improved to O(n) by using binary search on the number of Γ-
consistent sets Ji.)

Then, for each of the remaining (Γ-consistent) judgment
sets Ji, the algorithm A computes the cumulative Hamming dis-
tance d(Ji,J) to the profile J . This can be done in polynomial
time. Then, those Ji for which this distance is not minimal—that
is, those Ji for which there exists some Ji′ such that d(Ji′ ,J) <
d(Ji,J)—are discarded as well. The remaining judgment sets Ji

then are exactly those complete and Γ-consistent judgment sets with
a minimum distance to the profile J .

Finally, the algorithm goes over each of these remaining sets Ji,
and checks whether L ⊆ Ji and Lj �⊆ Ji for all j ∈ [u]. This
can clearly be done in polynomial time. If this check succeeds for
some Ji, the algorithm A accepts the input, and otherwise, the algo-
rithm rejects the input.

When additionally parameterizing by c and m, Γ-consistency of
the judgment sets can be decided in fixed-parameter tractable time,
and thus the whole problem becomes fixed-parameter tractable.

Proposition 3. OUTCOME(KEMENY)fb parameterized by c, n
and m is fixed-parameter tractable.

Proof. We describe an fpt-algorithm A that solves the problem.
Let (Φ,Γ,J , L, L1, . . . , Lu) be an instance. The algorithm A works
exactly in the same way as the algorithm in the proof of Proposi-
tion 2. The only difference is that in order to check whether a given
judgment set Ji is Γ-consistent, it does not need to make an oracle
query. Determining whether a given judgment set Ji is Γ-consistent
can be done in a brute-force fashion (e.g., using truth tables) in
time 2c+nm · |Ji|, since there are at most c + nm propositional
variables involved. Therefore, the algorithm runs in fixed-parameter
tractable time.
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4.2 Lower Bounds for the Formula-Based
Framework

Next, we turn to parameterized hardness results for the problem
OUTCOME(KEMENY)fb. We begin with showing that the problem
is para-Θp

2-hard even when parameterized by c, h and m. We will
use the following lemma, whose straightforward proof we omit.

Lemma 4. Let ϕ be a propositional formula on the vari-
ables x1, . . . , xn. In polynomial time we can construct a proposi-
tional formula ϕ′ with Var(ϕ′) ⊇ Var(ϕ) ∪ {z1, . . . , zn} such that
for every truth assignment α : Var(ϕ) → {0, 1} it holds that (1) ϕ[α]
is true if and only if ϕ′[α] is satisfiable, and (2) if α sets exactly i
variables to true, then ϕ′[α] |= zi.

Proposition 5. OUTCOME(KEMENY)fb parameterized by c and h is
para-Θp

2-hard.

Proof. We show that OUTCOME(KEMENY)fb is Θp
2-hard already for

a constant value of the parameters, by giving a reduction from MAX-
MODEL. Let (ϕ,w) be an instance of MAX-MODEL with Var(ϕ) =
{x1, . . . , xn} and w = x1. Without loss of generality, we may
assume that there is a model α of ϕ that sets at least two vari-
ables xi to true. By Lemma 4, we can construct a suitable for-
mula ϕ′ = c1∧· · ·∧cb with additional variables z1, . . . , zn that rep-
resent a lower bound on the number of variables among x1, . . . , xn

that are true in models of ϕ.
We construct the agenda Φ by letting [Φ] =

{zw, z¬w, z1, . . . , zn} ∪ { yw,i, y¬w,i : i ∈ [n + 1] } ∪ { yi,j : i ∈
[n], j ∈ [i] } ∪ {χ, χ′}, where zw, z¬w and all yw,i, y¬w,i, yi,j
are fresh variables. We let Y = { yw,i, y¬w,i : i ∈
[n + 1] } ∪ { yi,j : i ∈ [n], j ∈ [i] }. Moreover, we let χ be such
that χ ≡ ¬((∨Y ∧ ∨

([Φ]\Y )) ∨ ((zw ↔ w ↔ ¬z¬w) ∧ ϕ′)),
and we define χ′ such that χ′ ≡ χ (that is, we let χ′ be a syntactic
variant of χ).

Then, we construct the profile J as follows. We let J =
{ Jw,i, J¬w,i : i ∈ [n + 1] } ∪ { Ji,j : i ∈ [n], j ∈ [i] }. Each
of the judgment sets in the profile includes exactly two formulas
in [Φ]. Consequently, the maximum Hamming distance between any
two judgment sets in the profile is 4. For each i ∈ [n + 1], we
let {yw,i, zw} ⊆ Jw,i and {y¬w,i, z¬w} ⊆ J¬w,i. Moreover, for
each i ∈ [n] and each j ∈ [i], we let {yi,j , zi} ⊆ Ji,j . It is
straightforward to verify that each J ∈ J is consistent. Finally, we
let L = {zw}, Γ = �, and u = 0.

In other words, all formulas in [Φ] are excluded in a majority of
the judgment sets in the profile J . However, some formulas in [Φ]
are included in more judgment sets in the profile than others. The for-
mulas zw and z¬w are both included in n + 1 sets. Each formula zi
(for i ∈ [n]) is included in exactly i sets. All formulas in Y are in-
cluded in exactly one set. Finally, the formulas χ and χ′ are included
in none of the sets. Intuitively, the formulas that are included in more
judgment sets in the profile are cheaper to include in any candidate
outcome J∗.

The complete judgment set that minimizes the cumulative Ham-
ming distance to the profile J is the set J0 = {¬ψ : ψ ∈ [Φ] }
that includes no formulas in [Φ]. However, this set is inconsistent,
which is straightforward to verify using the definition of χ. It can
be made consistent by adding two formulas ψ1, ψ2 from [Φ] (and
removing their complements). The choice of ψ1, ψ2 that leads to
a consistent judgment set with minimum distance to the profile is
by letting ψ1 ∈ {zw, z¬w} and letting ψ2 = z�, where � is the
maximum number of variables among x1, . . . , xn set to true in any

model of ϕ. Moreover, whenever ψ1 = zw, the resulting judg-
ment set is consistent if and only if there is a model of ϕ that
sets � variables among x1, . . . , xn to true, including the variable w.
From this, we directly know that (ϕ,w) ∈ MAX-MODEL if and
only if (Φ,Γ,J , L) ∈ OUTCOME(KEMENY)fb. This concludes our
para-Θp

2-hardness proof.

This hardness result can straightforwardly be extended to the case
where all formulas in the agenda are of constant size, by using the
well-known Tseitin transformation [43], leading to the following
corollary.

Corollary 6. OUTCOME(KEMENY)fb parameterized by c, h and m
is para-Θp

2-hard.

Proof. We can modify the proof of Proposition 5 as follows. We
replace the formula ¬χ (and its syntactic variant ¬χ′) by a 3CNF
formula that has the same effect. By using the standard Tseitin trans-
formation [43], we can transform ¬χ into a 3CNF formula ψ such
that for each truth assignment α : Var(¬χ) → {0, 1} it holds
that ¬χ[α] is true if and only if ψ[α] is satisfiable. Moreover, we
can do this in such a way that the variables in Var(ψ)\Var(¬χ)
are fresh variables. Similarly, we transform ¬χ′ into a 3CNF for-
mula ψ′. Let ψ = c1 ∧ · · · ∧ cb and ψ′ = c′1 ∧ · · · ∧ c′b (we can
straightforwardly ensure that ψ and ψ′ have the same number of
clauses). Then, similarly to the proof of Proposition 5, we let [Φ] =
{zw, z¬w, z1, . . . , zn} ∪ { yw,i, y¬w,i : i ∈ [n + 1] } ∪ { yi,j : i ∈
[n], j ∈ [i] } ∪ { ci, c′i : i ∈ [b] }. That is, instead of adding χ and χ′

to the agenda, we add the clauses of ψ and ψ′ as separate formulas
to the agenda.

In the proof of Proposition 5, we had that ¬χ,¬χ′ ∈ J for all
judgment sets J ∈ J . Instead, we now ensure that for all J ∈ J ,
we have ci, c

′
i ∈ J for all i ∈ [b]. From this, it follows that the

set Kemeny(J) of outcomes is in one-to-one correspondence with
the set of outcomes in the proof of Proposition 5. Moreover, the max-
imum Hamming distance between any two judgment sets in the pro-
file J is 4.

The problem is also para-Θp
2-hard when parameterized by c, m

and p.

Proposition 7. OUTCOME(KEMENY)fb parameterized by c, m
and p is para-Θp

2-hard.

Proof. We firstly show para-Θp
2-hardness for the problem parame-

terized by c and p, by giving a reduction from MAX-MODEL that
uses constant values of c and p. This reduction can be seen as a mod-
ification of the Θp

2-hardness proof for OUTCOME(KEMENY)fb given
by Endriss and De Haan [18, Proposition 7 and Corollary 8].

Let (ϕ,w) be an instance of MAX-MODEL. We may assume with-
out loss of generality that ϕ is satisfiable by some truth assignment
that sets at least one variable in Var(ϕ) to true. We construct an
instance (Φ,Γ,J , L) of OUTCOME(KEMENY)fb as follows. Take
an integer b such that b > 3

2
|Var(ϕ)|, e.g., b = 3|Var(ϕ)| + 1.

Let [Φ] = Var(ϕ) ∪ { zi,j : i ∈ [b], j ∈ [3] } ∪ {ϕ′
i : i ∈ [b] },

where each of the formulas ϕ′
i is a syntactic variant of the follow-

ing formula ϕ′. We define ϕ′ = (
∨

j∈[3]

∧
i∈[b] zi,j)∨ϕ. Intuitively,

the formula ϕ′ is true either if (i) all variables zi,j are set to true for
some j ∈ [3], or if (ii) ϕ is satisfied. Then we let J = {J1, J2, J3},
where for each j ∈ [3], we let Jj contain the formulas zi,j for
all i ∈ [b], all formulas in Var(ϕ), all the formulas ϕ′

i, and no other
formulas from [Φ]. (For each ϕ ∈ [Φ], if ϕ �∈ Jj , we let ¬ϕ ∈ Jj .)
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Clearly, the judgment sets J1, J2 and J3 are all complete and consis-
tent. Moreover, we let Γ = �, and L = {w}. It is straightforward to
verify that the parameters c and p have constant values.

We now argue that there is some J∗ ∈ Kemeny(J) with L ⊆ J∗ if
and only if (ϕ,w) ∈ MAX-MODEL. To see this, we first observe that
the only complete and consistent judgment sets J for which it holds
that d(J,J) < d(Jj ,J) (for any j ∈ [3]) must satisfy that J |= ϕ.
Moreover, among those judgment sets J for which J |= ϕ, the
judgment sets that minimize the distance to the profile J satisfy
that zi,j �∈ J for all i ∈ [b] and all j ∈ [3], and ϕ′

i ∈ J for
all i ∈ [b]. Using these observations, we directly get that there is
some J∗ ∈ Kemeny(J) with L ⊆ J∗ if and only if there is a model
of ϕ that sets a maximal number of variables in Var(ϕ) to true and
that sets the variable w to true.

Then, to show that the problem is also para-Θp
2-hard when param-

eterized by c, m and p, we can modify the above reduction in a way
that is entirely similar to the proof of Corollary 6, replacing the for-
mulas ϕ′

i by the clauses of 3CNF formulas that have the same effect
on the consistency of judgment sets as the formulas ϕ′

i.

For all parameterizations that do not include all of the parame-
ters c, n and m, the problem OUTCOME(KEMENY)fb is FPTNP[few]-
hard. We begin with the case where c can be unbounded; this proof
can be extended straightforwardly to the other two cases.

Proposition 8. OUTCOME(KEMENY)fb parameterized by h, n, m
and p is FPTNP[few]-hard.

Proof. We show FPTNP[few]-hardness by giving an fpt-reduction
from LOCAL-MAX-MODEL. (This reduction from LOCAL-MAX-
MODEL is very similar to the reduction from MAX-MODEL used
in the proof of Proposition 7.) Let (ϕ,X,w) be an instance of
LOCAL-MAX-MODEL, with X = {x1, . . . , xk}. We construct an
instance (Φ,Γ,J , L) as follows. Take an integer b such that b >
3
2
|X|, e.g., let b = 3|X| + 1. We let [Φ] = X ∪ { zi,j : i ∈

[b], j ∈ [3] }. Moreover, we let Γ = ϕ′ = (
∨

j∈[3]

∧
i∈[b] zi,j) ∨ ϕ.

Intuitively, the formula Γ is true either if (i) all variables zi,j are
set to true for some j ∈ [3], or if (ii) ϕ is satisfied. Then we
let J = {J1, J2, J3}, where for each j ∈ [3], we let Jj contain the
formulas zi,j for all i ∈ [b], and all formulas in X , and no other for-
mulas in [Φ]. (For each ϕ ∈ [Φ], if ϕ �∈ Jj , we let ¬ϕ ∈ Jj .) Clearly,
the judgment sets J1, J2 and J3 are all complete and Γ-consistent.
Finally, we let L = {w}. It is easy to verify that h = 2b = 6k + 2
and n = 3b + k = 10k + 3, where k = |X|, and that m and p are
constant. Therefore, all parameter values are bounded by a function
of the original parameter k.

We now argue that there is some J∗ ∈ Kemeny(J) with L ⊆ J∗

if and only if (ϕ,X,w) ∈ LOCAL-MAX-MODEL. The argument
for this conclusion is similar to the argument used in the proof of
Proposition 7. We first observe that the only complete and consis-
tent judgment sets J for which it holds that d(J,J) < d(Jj ,J) (for
any j ∈ [3]) must satisfy that J |= ϕ. Moreover, among those judg-
ment sets J for which J |= ϕ, the judgment sets that minimize the
distance to the profile J satisfy that zi,j �∈ J for all i ∈ [b] and
all j ∈ [3]. Using these observations, we directly get that there is
some J∗ ∈ Kemeny(J) with L ⊆ J∗ if and only if there is a model
of ϕ that sets a maximal number of variables in X to true and that
sets the variable w to true.

Proposition 9. OUTCOME(KEMENY)fb parameterized by c, h, n
and p is FPTNP[few]-hard.

Proof (sketch). We can modify the reduction from LOCAL-MAX-
MODEL used in the proof of Proposition 8. Instead of using the for-
mula ϕ′ as the integrity constraint Γ, we let Γ = �, and we en-
force ϕ′ to be true by adding b syntactic variants ϕ′

1, . . . , ϕ
′
b of it to

the agenda and to the judgment sets.

Proposition 10. OUTCOME(KEMENY)fb parameterized by c, h, m
and p is FPTNP[few]-hard.

Proof (sketch). We modify the reduction from LOCAL-MAX-
MODEL given in the proof of Proposition 9. We use the same trick
that we used in the proof of Corollary 6—that is, we use the standard
Tseitin transformation [43] to transform each of the formulas ϕ′

i into
a 3CNF formula ϕ′′

i that forces ϕ′
i to be true. Then, we replace the

formulas ϕ′
i by the clauses of ϕ′′

i in the agenda and the judgment
sets.

4.3 Upper Bounds for the Constraint-Based
Framework

We now turn to showing upper bounds for OUTCOME(KEMENY)cb.
When parameterized by the number n of issues, the number of pos-
sible ballots is bounded by a function of the parameter. This allows
the problem to be solved in fixed-parameter tractable time.

Proposition 11. OUTCOME(KEMENY)cb parameterized by n is
fixed-parameter tractable.

Proof. The main idea behind this proof is that the number of possible
ballots is bounded by the parameter, that is, there are only 2n many
possible (rational) ballots. We describe an algorithm A that solves the
problem in fixed-parameter tractable time. Let (I,Γ, r, l, l1, . . . , lu)
be an instance. Firstly, the algorithm A enumerates all possible bal-
lots r1, . . . , r2n ∈ {0, 1}n. Then, for each such ballot ri, the algo-
rithm determines whether ri is rational, by checking whether Γ[ri]
is true. This can be done in polynomial time. Each irrational ballot is
discarded.

Then, for each of the remaining (rational) ballots ri, the algo-
rithm A computes the cumulative Hamming distance d(ri, r) to the
profile r. This can also be done in polynomial time. Then, those ri
for which this distance is not minimal—that is, those ri for which
there exists some ri′ such that d(ri′ , r) < d(ri, r)—are discarded
as well. The remaining ballots ri then are exactly those rational bal-
lots with a minimum distance to the profile r.

Finally, the algorithm goes over each of these remaining ballots ri,
and checks whether l agrees with ri and whether for all j ∈ [u], lj
does not agree with ri. If this check succeeds for some ri, the algo-
rithm A accepts the input, and otherwise, the algorithm rejects the
input.

Since the size c of the integrity constraint is an upper bound on
the number of issues that play a non-trivial role in the problem, this
fixed-parameter tractability result easily extends to the parameter c.

Proposition 12. OUTCOME(KEMENY)cb parameterized by c is
fixed-parameter tractable.

Proof. Since |Γ| = c, we know that the number of propositional
variables in Γ is also bounded by the parameter c. Take an in-
stance (I,Γ, r, l, l1, . . . , lu). Then, let I′ = Var(Γ) ⊆ I be the
subset of issues that are mentioned in the integrity constraint Γ. We
know that any outcome r∗ ∈ Kemeny(r) agrees with the majority
of ballots in r on every issue in I\I′ (in case of a tie, either choice
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works). Therefore, all that remains is to determine whether there are
suitable choices for the issues in I (to obtain some r∗ ∈ Kemeny(r)
that agrees with l and does not agree with lj for all j ∈ [u]).
By Proposition 11, we know that this is fixed-parameter tractable
in |I′|. Since |I′| ≤ c, we get fixed-parameter tractability also for
OUTCOME(KEMENY)cb parameterized by c.

Bounding the maximum Hamming distance h between any two
ballots in the profile gives us membership in XP.

Proposition 13. OUTCOME(KEMENY)cb parameterized by h is in
XP.

Proof. Let (I,Γ, r, l, l1, . . . , lu) be an instance, with r =
(r1, . . . , rp). We describe an algorithm to solve the problem in
time O(p·nh ·nc), for some constant c. The main idea behind this al-
gorithm is the fact that each ballot whose Hamming distance to every
ballot in the profile is more than h is irrelevant.

Take a ballot r such that d(r, ri) > h for each i ∈ [p]. We
show that there exists a rational ballot r′ with d(r′, r) < d(r, r).
Take any ballot in the profile, e.g., r′ = r1. Clearly, r′ is rational.
Since d(r, ri) > h for each i ∈ [p], we know that d(r, r) > hp. On
the other hand, for r′ we know that d(r′, ri) ≤ h for each i ∈ [p]
(and d(r′, r1) = 0), so d(r′, r) ≤ h(p − 1). Therefore, d(r′, r) <
d(r, r).

We thus know that every rational ballot with minimum distance to
the profile lies at Hamming distance at most h to some ballot ri in
the profile r. The algorithm works as follows. It firstly enumerates
all ballots with Hamming distance at most h to some ri ∈ r. This
can be done in time O(p ·nh). Then, similarly to the algorithm in the
proof of Proposition 11, it discards those ballots that are not rational,
and subsequently discards those ballots that do not have minimum
distance to the profile. Finally, it iterates over all remaining ratio-
nal ballots with minimum distance to determine whether there is one
among them that agrees with l and disagrees with each lj .

4.4 Lower Bounds for the Constraint-Based
Framework

Finally, we show parameterized hardness results for OUTCOME-
(KEMENY)cb. When parameterized by both h and p, the problem is
W[SAT]-hard.

Proposition 14. OUTCOME(KEMENY)cb parameterized by h and p
is W[SAT]-hard.

Proof. We give an fpt-reduction from the W[SAT]-complete prob-
lem MONOTONE-WSAT. Let (ϕ, k) be an instance of MONOTONE-
WSAT. We construct an instance (I,Γ, r, l) of OUTCOME-
(KEMENY)cb as follows. We let I = Var(ϕ) ∪ {z} ∪ { yi,j : i ∈
[3], j ∈ [3k + 3] }. Moreover, we let Γ = (z ∧ ϕ) ∨ (¬z ∧∨

i∈[3](
∧

j∈[3k+3] yi,j)). We define r = (r1, r2, r3) as follows. For
each ri, we let ri(w) = 0 for all w ∈ {z} ∪ Var(ϕ). Moreover,
for each ri and each y�,j , we let ri(y�,j) = 1 if and only if � = i.
It is readily verified that r1, r2 and r3 are all rational. Finally, we
let l be the partial assignment for which l(z) = 1, and that is un-
defined on all remaining variables. This completes our construction.
Clearly, p = 3. Moreover, h = 6k + 6.

By construction of Γ, the only ballots that are rational—and that
can have a smaller distance to the profile r than the ballots r1, r2
and r3—are those ballots r∗ that satisfy (z ∧ ϕ). The ballots r1, r2
and r3 have distance 4(3k + 3) = 12k + 12 to the profile r. Any
ballot r∗ that satisfies (z ∧ ϕ) minimizes its distance to r by setting

all variables yi,j to false. Any such ballot r∗ has distance 3(3k+3)+
3(w + 1) = 9k + 3w + 12 to the profile r, where w is the number
of variables among Var(ϕ) that it sets to true. Therefore, the distance
of such a ballot r∗ to the profile r is smaller than (or equal to) the
distance of r1, r2 and r3 to r if and only if 9k+3w+12 ≤ 12k+12,
which is the case if and only if w ≤ k. From this we can conclude
that there is some r∗ ∈ Kemeny(r) that agrees with l if and only
if (ϕ, k) ∈ MONOTONE-WSAT.

Finally, the proof of Proposition 7 can be modified to work also for
the problem OUTCOME(KEMENY)cb parameterized by p, showing
para-Θp

2-hardness for this case.

Proposition 15. OUTCOME(KEMENY)cb parameterized by p is
para-Θp

2-hard.

Proof. We modify the Θp
2-hardness reduction used in the proof of

Proposition 7 to work also for the case of OUTCOME(KEMENY)cb for
a constant value of the parameter p. Instead of adding the formulas ϕ′

i

to the agenda Φ, as done in the proof of Proposition 7, we let Γ = ϕ′.
The remaining formulas in the agenda Φ were all propositional vari-
ables, and thus we can transform the instance (Φ,Γ,J , L) that we
constructed for OUTCOME(KEMENY)fb into an instance (I,Γ, r, l),
where r and l are constructed entirely analogously to J and L.
Clearly, p = 3. Moreover, by a similar argument to the one that
is used in the proof of Proposition 7, we get that (I,Γ, r, l) ∈
OUTCOME(KEMENY)cb if and only if (ϕ,w) ∈ MAX-MODEL.

5 Conclusion

We gave the first parameterized complexity results for the funda-
mental problem of computing outcomes of judgment aggregation
procedures. We studied parameterized variants of this problem for
the Kemeny rule, for all combinations of the parameters c, h, n, m
and p. Moreover, we performed this parameterized complexity anal-
ysis for two formal frameworks for judgment aggregation: formula-
based and constraint-based judgment aggregation.

Interestingly, for many combinations of parameters, the complex-
ity of the problem differs between the two frameworks—which is
in contrast with the fact that the problem has the same complexity
in both frameworks when viewed from a classical complexity point
of view. This reflects the ability of the framework of parameterized
complexity to more accurately indicate what aspects of the problem
input contribute to the complexity of the problem. The two judgment
aggregation frameworks distribute the aspects of the problem differ-
ently over various parts of the problem input.

Future work includes extending the parameterized complexity in-
vestigation for computing outcomes of the Kemeny rule to differ-
ent parameters. For instance, in particular for the constraint-based
judgment aggregation framework, restricting the maximum degree of
variables in the integrity constraint might lead to more positive pa-
rameterized complexity results. Other natural parameters that could
be considered are width measures that capture the amount of struc-
ture in the logic formulas in the problem input. Moreover, it would
be interesting to perform a similar parameterized complexity analysis
for other judgment aggregation procedures.
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