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Abstract. We study path auction mechanisms for buying path be-
tween two given nodes in a social network, where edges are owned
by strategic agents. The well known VCG mechanism is the unique
solution that guarantees both truthfulness and efficiency. However, in
social network environments, the mechanism is vulnerable to false-
name manipulations where agents can profit from placing multiple
bids under fictitious names. Moreover, the VCG mechanism often
leads to high overpayment. In this paper, we present core-selecting
path mechanisms that are robust against false-name bids and address
the overpayment problem. Specifically, we provide a new formula-
tion for the core, which greatly reduces the number of core con-
straints. Based on the new formulation, we present a Vickery-nearest
pricing rule, which finds the core payment profile that minimizes
the L∞ distance to the VCG payment profile. We prove that the
Vickery-nearest core payments can be computed in polynomial time
by solving linear programs. Our experiment results on real network
datasets and reported cost dataset show that our Vickery-nearest core-
selecting path mechanism can reduce VCG’s overpayment by about
20%.

1 Introduction

We consider the problem of buying shortest paths between two given
nodes in a social network. For example, in professional networks
like LinkedIn, job seekers might want to buy short paths to poten-
tial employers; in social media networks, advertisers might want to
buy short paths to target customers. In these examples, edges in the
networks are owned by strategic agents, and each agent i has a pri-
vate cost ci of being included in the path. The goal is to design a path
auction mechanism to determine which path to buy, and how much
each agent is paid.

The problem is hard because agents may lie about their costs if ly-
ing could increase their utilities. Previous work on path auctions have
focused on the well known Vickery-Clark-Groves (VCG) Mecha-
nism [24]. The mechanism pays each agent on the shortest path an
amount equal to the highest bid with which the agent could have won.
It can be shown that the VCG mechanism is the unique efficient and
dominant-strategy truthful path mechanism.

However, the VCG mechanism suffers from two economic prob-
lems that make it rarely used in practice. The first is that it can lead to
significant overpayment. For example, in Figure 1, VCG selects the
bottom path and pays 24, while the cost of the shortest path is only 3.
Previous work shows that all truthful path mechanisms can be forced
to make arbitrarily high overpayment in the worst case [14].
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Figure 1: Problems with the VCG path mechanism. Top: VCG pays
8 to agent b, c and d, and the total payment is 24; Bottom: VCG pays
10 to agent b for his three edges, but if agent b places three bids under
three different names, he will get 3 ∗ 8 = 24.

The second economic problem is that the VCG mechanism is vul-
nerable to false name manipulations [31]. In real world networks, an
agent may own multiple edges or even a whole sub-network. Mean-
while, it is also very easy for agents to create fake accounts in social
network environments. Then those agents that own many edges can
profit from false name manipulations where they place multiple bids
under these fictitious names. For example, in Figure 1, VCG pays 10
to agent b for the three edges in the bottom path, however, if agent b
submits three separate bids under three different names, he will get
a total payment of 24. Therefore, the VCG mechanism is not false-
name proof.

In this paper, we are interested in designing efficient path mech-
anisms to address the economic problems of the VCG mechanism.
Based on the framework of core-selecting auctions, we present core-
selecting path mechanisms which relax dominant-strategy truthful-
ness and use the core as the solution concept. We prove that core-
selecting path mechanisms are more frugal than the VCG mecha-
nism and are robust against false-name bids. We then give a new
core formulation that greatly reduces the number of core constraints,
which allows us to compute Vickrey-nearest core payments use linear
programming techniques. We further show that the Vickrey-nearest
core payments can be computed in polynomial time. We then eval-
uate core-selecting path mechanisms on real network data and show
that the Vickrey-nearest core-selecting path mechanism can greatly
reduce VCG’s overpayment under realistic bid (reported cost) distri-
butions.

Our main contributions in this work are: (1) We present a new core
formulation that reduces the number of core constraints to 2k, where
k is the network diameter. (2) We give a linear program to compute
the Vickery-nearest core payments which minimize the L∞ distance
to the VCG payments.
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2 Related Work

The problem of designing mechanisms for path auctions was first
studied in [24], where edges in a network are owned by strategic
agents, and the cost of the edges is private information of the agent
owning the edges. The VCG mechanism is applied to find the short-
est paths. The mechanism is shown to be dominant strategy truth-
ful, which means all agents reporting their true costs is a dominant
strategy equilibrium. It is also shown that the VCG payments can be
computed using n runs of Dijkstras algorithm in O(nm+ n2 log n)
time. It is later shown that if the graph is undirected then the VCG
payments can be computed in only O(m+ n log n) time [17].

Although the VCG mechanism for path auction is efficient and
truthful, it is found that the VCG mechanism has some undesirable
properties. Previous work has found that VCG path mechanism can
be forced to make arbitrarily high overpayment in the worst case, in
fact the result can be generalized to include all truthful path mecha-
nisms [14, 20]. This led to the study of frugal path mechanisms [2].

Previous work have also studied the VCG overpayment in the In-
ternet inter-domain routing graph [15] and large random graphs [19].
The results show that the VCG overpayment can be intriguingly low
when these graphs have unit edge costs. It is also noted the VCG
payments can be reduced by removing edges in the graph, but it is
NP-hard to determine the optimal set of edges to remove in order to
get the lowest VCG payments [13].

False-name manipulations have been studied in a number of
anonymous environments, including combinatorial auctions [30, 29,
26, 1], voting [28, 4, 3], matching [25] and social networks [7, 5].
Previous work have also studied first-price path auction mechanism
which can be shown to be false-name proof [12, 18].

In addition to the literature on mentioned above, our work is also
related to the literature on core-selecting auctions [22, 9, 11, 10, 8].
In particular, we use techniques from [8] to prove that core-selecting
path mechanisms are robust against false-name bids.

3 Preliminary

We consider a setting where there is a social network represented by a
graph G = (V,E), with |E| = n. Each edge in the graph represents
a strategic agent e that has a cost c(e) ∈ R≥0 of being included in
the path, and this cost is the private information of agent e. Given a
start node s and a goal node g, the goal is to buy the shortest (least-
cost) path from s to g. A solution to this problem is a subset of edges
and a payment profile that describes the payments to the agents in the
subset.

Since the costs c is private information, we set this up as a mech-
anism design problem. Each agent e who is a candidate for the path
will make a bid be > 0 and the path mechanism will use an alloca-
tion rule xe(b) ∈ {0, 1} and a payment rule te(b) ≥ 0 to determine
whether or not agent e is selected, and the payment to agent e, re-
spectively.

We assume agents are rational and strategic, they will choose bids
to maximize their own utilities and may lie about their cost if ly-
ing can increase their utilities. Let allocation x = (x1, · · · , xn)
and payment profile t = (t1, · · · , tn) denote the outcome of a path
mechanism. The utility of agent e is defined through the following
quasi-linear function,

πe =

{
te − ce if agent e is selected,
0 otherwise.

Note that agents are individual rational, which means that they are
willing to participate in a path mechanism only if they are guaranteed
a non-negative utility, so we have ∀e ∈ E, te ≥ be.

Denote the auctioneer by 0, its utility π0 = −∑
e∈E te. The so-

cial welfare of N = E ∪ {0} is then the cost of the chosen path,

w(N) = π0 +
∑
e∈E

πe = −
∑
e∈E

xece (1)

A path auction mechanism is efficient if it selects a minimum cost
path from s to g. The minimum cost is denoted as d(s, g,G).
Then the social welfare of an efficient mechanism is: w∗(N) =
−d(s, g,G).

3.1 The VCG Mechanism for Path Auctions

One appealing mechanism for the path auction problem is the VCG
mechanism [27, 6, 16]. The VCG mechanism is efficient, it chooses
a shortest path so that the social welfare is maximized. Bidders that
are not included in the chosen path are paid 0. For bidder e in the
chosen path, its utility is given by,

πVCG,e = w∗(N)− w∗(N − {e}) (2)

where w∗(N − e) is the social welfare if bidder e’s bid is ignored.
By the definition of πe, the VCG payment to agent e can be com-

puted as follows,

tVCG,e =πVCG,e + be

=w∗(N)− w∗(N − {e}) + be

=− d(s, g,G) + d(s, g,G− {e}) + be (3)

where G − {e} stands for the graph G with edge e removed and
d(s, g,G−{e}) is the cost of the shortest path from s to g in G−{e}.
Alternatively, d(s, g,G− {e}) can also be considered as the cost of
shortest path from s to g in the graph G if we set ce = ∞.

The VCG mechanism is dominant strategy truthful. Note that in
Equation 3, as bidder e is in the chosen path, its bid be also appears
in d(s, g,G), so it can be cancelled with the last term. The VCG pay-
ment te is thus not dependent on bidder e’s reported cost be. There-
fore, it is a weakly dominant strategy for bidders to report their true
costs: ∀e ∈ E, be = ce.

3.2 Problems with the VCG Mechanism

The VCG mechanism is appealing because it is the only auction
mechanism that is both truthful and efficient. However, it suffers
from two problems that make it rarely used in practice.

The first is its overpayment problem. Consider a graph with two
disjoint paths from s to g, the shortest path p1 with cost 0 and the
second shortest path p2 with cost 1. The VCG mechanism pays 1 to
each agent in p1. If there is n − 1 edges in p1, then VCG will pay
n−1 for p1, which is a Θ(n) factor more than the cost of the second
cheapest path.

In fact, using results from single-parameter mechanism design
[23], it can be shown that such a worst-case overpayment is an in-
trinsic property of any truthful path mechanism [14].

The second problem of the VCG mechanism is that it is vulnera-
ble to false-name bidding or shill bidding, where bidders create fake
names and submit multiple bids under these names [31, 12]. This
kind of strategic bidding is easy to implement in path auctions on
social networks because it is hard to verify all the bidders’ identities.
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4 Core-Selecting Path Mechanisms

In this section, we propose core-selecting path mechanisms to ad-
dress the overpayment problem in the VCG mechanism and provide
robustness against false-name bids. Since VCG is the unique mech-
anism to guarantee both allocation efficiency and dominant strategy
truthfulness, we have to relax dominant-strategy truthfulness and use
alternative solution concepts. The idea is to model path auction as a
cooperative game (N,W ) and use the core as our solution concept.

The set of agents in the cooperative game is N = E ∪ {0}, which
includes all bidders in E and the buyer 0. For a coalition L ⊆ N , its
coalition value function W (L) is defined as,

W (L) =

{
−d(s, g, L) if 0 ∈ L,

0 otherwise.
(4)

where d(s, g, L) is the cost of the optimal s−g path in the graph
formed by L. Note that if a coalition does not include the buyer, then
its coalition value equals 0.

We can now define the concept of the core. An outcome is in the
core when the total utility of N equals W (N), and the total utility to
every coalition L of agents is at least W (L).

Definition 1 (Core outcome). A core outcome in a path auction
mechanism is an allocation and payment profile such that the util-
ity profile π = (π1, · · · , πn) satisfies:

(C0) : W (N) =
∑
i∈N

πi (5)

(C1) : W (L) ≤
∑
i∈L

πi ∀L ⊆ N (6)

The first core constraint (C0) requires that the total utility of N
equals −d(s, g,N), which means that the optimal path is always se-
lected. For any coalition L, the second core constraint set (C1) re-
quires that the total utility to L is no less than the value it could
obtain, which equals −d(s, g, L).
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Figure 2: The core of a path auction. Left: There are four bidders
with cost 1, 1, 3, 5. Right: Core payments for bidders with cost 1.
The VCG payment profile (3, 4, 0, 0) is not in the core.

Given a bid profile b, let Core(b) be the set of payment profiles
in the core when the bidders’ cost profile c equals b. It can be veri-
fied that b is always in the core: b ∈ Core(b), so the set Core(b)
is always non-empty. This means that the first-price path auction is
core-selecting. We can now define the concept of core-selecting path
mechanisms.

Definition 2 (Core-selecting path mechanism). A path auction
mechanism is core-selecting if (1) it selects the optimal path; and
(2) the payment profile t is computed so that t ∈ Core(b).

Example 1. A path auction is shown in Figure 2. There are
four agents, the cost profile c = (1, 1, 3, 5). The optimal
path with cost 2 is selected in both the VCG mechanism and
core-selecting mechanisms. The VCG payment profile tVCG =
(3, 4, 0, 0). The core payments Core(b) is the convex hull of the set
{(1, 1, 0, 0), (1, 4, 0, 0), (3, 1, 0, 0), (3, 2, 0, 0)}. We can see that the
VCG payment profile tVCG 
∈ Core(b), therefore the VCG mecha-
nism is not a core-selecting path mechanism.

5 Theoretical Results

In this section, we give several theoretical results for core-selecting
path mechanisms. The first is that they are always more frugal than
the VCG mechanism, specifically, core payments are never higher
than VCG payments.

Theorem 1. The VCG payment to bidder i equals its highest core
payment over all payment profiles in the core. That is,

∀i ∈ E, max{ti|t ∈ Core(b)} = tVCG,i (7)

Proof. First, note that there is a core outcome in which bidder i gets
its VCG payment tVCG,i = W (N) − W (N − i) + bi, while other
bidders are paid their cost and get a utility of 0. The buyer’s utility
π0 = W (N − i). We can verify that this utility profile is in the core.
Therefore, we have

max{ti|t ∈ Core} ≥ tVCG,i (8)

Meanwhile, suppose that in some core outcome bidder i is paid
strictly more than its VCG payment, then its utility πi > tVCG,i − bi.
For coalition N − i, we have∑

k∈N−i

πk = W (N)− πi < W (N − i) + bi ≤ W (N − i) (9)

The core constraint corresponding to coalition N − i is violated, so
we have

max{ti|t ∈ Core} ≤ tVCG,i (10)

The proof is completed by combining (8) and (10).

The second result is that core-selecting path mechanisms are ro-
bust against false-name bidding. In fact, we show that they are the
only type of efficient path mechanisms that are robust against false-
name bidding.

Theorem 2. An efficient path auction mechanism has the property
that no bidder can earn more than its VCG payment by bidding with
false names if and only if it is a core-selecting mechanism.

Proof. Let L ⊆ N be a coalition of bidders, it’s possible that these
bidders are false-name bidders. The condition requires that these bid-
ders can not get more payment than if they were to submit their
merged bid in a VCG mechanism, which means

∑
i∈L ti ≤ tVCG,L.

In the VCG mechanism, the payment for coalition L is,

tVCG,L = W (N)−W (N − L) +
∑
i∈L

bi (11)

The condition is therefore∑
i∈L

ti ≤ tVCG,L = W (N)−W (N − L) +
∑
i∈L

bi (12)
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Since the path auction mechanism is efficient, we have W (N) =
π0 +

∑
i∈N πi. The condition can be written as,∑

i∈(N−L)∪{0}
πi ≥ W (N − L) (13)

Since L is an arbitrary coalition of bidders, we have that for any
coalition T = N − L, ∑

i∈T∪{0}
πi ≥ W (T ) (14)

Therefore all core constraints in C1 are satisfied. Combining this
with efficiency, we have t ∈ Core(b).

5.1 Core constraint set formulation

The core of a path auction is defined in terms of coalitions. For a
network with n edges, the number of core constraints in C1 is 2n.
However, many constraints are redundant, for example, if a coalition
L doesn’t contain s−g path, then W (L) = −∞, the corresponding
constraint is redundant and can be removed. We now formulate the
core constraint set C1 in terms of paths.

(C2) :
∑

e∈p−p∗
c(e) ≥

∑
e∈p∗−p

t(e) ∀p ∈ P (15)

where P is the set of all paths from s to g, p∗ is the optimal path, and
p− p∗ = {e ∈ p|e 
∈ p∗}, p∗ − p = {e ∈ p∗|e 
∈ p}.

The following proposition shows that constraint set C1 and C2
describe the same set of core payments.

Proposition 1. The two sets of constraints C1 and C2 describe the
same core.

Proof. Let L ⊆ N be a coalition of bidders. By C1, we have

W (L ∪ {0}) ≤ π0 +
∑
i∈L

πi (16)

Assume that the optimal s−g path in the sub-graph formed by L is
p. Since all bidders not in p∗ are not selected and have utility 0, the
constraint can be rewritten as

−
∑
e∈p

c(e) ≤ −
∑
e∈p∗

t(e) +
∑

e∈p∩p∗
[t(e)− c(e)] (17)

After rearranging the terms, we get∑
e∈p∗

t(e)−
∑

e∈p∩p∗
t(e) ≤

∑
e∈p

c(e)−
∑

e∈p∩p∗
c(e)

which is equivalent to the constraint in C2.

The size of core constraint set is reduced to the number of s−g
paths. However, there exists graphs with exponentially many s−g
paths, so there might still be an exponential number of core con-
straints in C2 in the worst case. In fact, it is #P-complete to count the
number of s−g paths in a general graph.

Note that p∗−p is a subset of p∗, we can enumerate all p∗−p and
create a new formulation for the core constraint set in terms of p∗’s
subsets.

(C3) : d(s, g,G− x)− d(s, g,G) +
∑
e∈x

c(e) ≥
∑
e∈x

t(e) ∀x ⊆ p∗

(18)
where d(s, g,G−x) is the cost of the optimal s−g path in the graph
G with edges in x removed. Theorem 3 shows that C3 still describes
the same set of core payments as C1 and C2.

Theorem 3. The two sets of constraints C2 and C3 describe the
same core.

Proof. We will show that for each constraint in one set, there is a
constraint in the other set that implies it. Therefore, the two sets de-
scribe the same core.

(C3) =⇒ (C2): Every constraint in (C2) corresponds to a
path p. For every such path p, there exists a subset x of p∗ such that
x = p∗ − p. By (C3), we have

∑
e∈p∗−p

t(e) ≤ d(s, g,G−(p∗−p))−d(s, g,G)+
∑

e∈p∗−p

c(e) (19)

As p∗ − p = p∗ − (p∗ ∩ p), we get

−d(s, g,G) +
∑

e∈p∗−p

c(e) = −
∑

e∈p∗∩p

c(e) (20)

Since p ⊂ (G− (p∗ − p)), p is a valid path in G− (p∗ − p), we get

d(s, g,G− (p∗ − p)) ≤
∑
e∈p

c(e) (21)

Combining (19), (20), and (21), we have

∑
e∈p∗−p

t(e) ≤
∑
e∈p

c(e)−
∑

e∈p∗∩p

c(e) =
∑

e∈p−p∗
c(e) (22)

which is p’s corresponding constraint in (C2). Therefore every con-
straint in (C2) also exists in (C3).

(C2) =⇒ (C3): Every constraint in (C3) corresponds to a
subset x of the optimal path p∗. For every such subset x, there exists
a path p such that p is the optimal path in the graph G − x, so we
have

∑
e∈p c(e) = d(s, g,G− x).

As x ⊆ p∗ and x ∩ p = ∅, we get

∑
e∈p∗−p

t(e) =
∑
e∈x

t(e) +
∑

e∈(p∗−p)−x

t(e) (23)

By C2, we have

∑
e∈x

t(e) +
∑

e∈(p∗−p)−x

t(e) ≤
∑
e∈p

c(e)−
∑

e∈p∩p∗
c(e) (24)

For each e ∈ p∗, we have c(e) ≤ t(e),

∑
e∈x

t(e) ≤
∑
e∈p

c(e)−
∑

e∈p∩p∗
c(e)−

∑
e∈(p∗−p)−x

c(e) (25)

=
∑
e∈p

c(e)−
∑
e∈p∗

c(e) +
∑

e∈p∗−p

c(e)−
∑

e∈(p∗−p)−x

c(e)

(26)

= d(s, g,G− x)− d(s, g,G) +
∑
e∈x

c(e) (27)

Therefore, the constraint corresponding to p in C2 implies the con-
straint corresponding to x in C3.

The theorem indicates that for a shortest path with k edges, the
number of core constraints in (C3) is 2k. Real social networks often
have small diameter (longest shortest path length k), which allows
us to compute core payments efficiently using linear programming
techniques.
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6 Pricing Algorithms

As core-selecting path mechanisms are not dominant-strategy truth-
ful, it is important to provide incentives for bidders to bid truthfully.
In this section, we present Vickrey-nearest pricing rule for core-
selecting path mechanisms, which is shown to have good incentive
properties. The idea is to find core payments that maximize the total
payment and are as close to the VCG payments as possible.

6.1 Maximum Payment

We employ a two-step optimization algorithm to determine core pay-
ments. First, we maximize the total payment over the core. Recall the
core constraint set C3, for each subset x of the optimal path p∗, we
have ∑

e∈x

t(e) ≤ d(s, g,G− x)− d(s, g,G) +
∑
e∈x

c(e) (28)

Let βx = d(s, g,G− x)− d(s, g,G) +
∑

e∈x c(e), and denote the
vector of all βx values as β, we have

At ≤ β (29)

where A is a 2k × k matrix, k is the number of edges in p∗. Aij

equals 1 if bidder j is in the i-th subset and equals 0 otherwise. The
maximum total payment α can then be found using the following
linear program (LP-0):

(LP-0) : α =max t · 1
subject to: At ≤ β

t ≥ c

(30)

The linear program LP-0 has 2k+k constraints, which is exponen-
tial in the number of variables in LP-0, however, we can still prove
that LP-0 can be solved in polynomial time.

Proposition 2. The maximum core payment α can be computed in
time polynomial in k by solving the linear program LP-0.

Proof. We first show that there is a polynomial time separation or-
acle, which given a core payment profile t, answers that t satisfies
At ≤ β and t ≥ c, or returns an inequality that is not satisfied by t.

The second set of constraints t ≥ c is easy to verify. To check
that whether t satisfied the first set of constraints At ≤ β, we set
the cost of edges in the original optimal path p∗ to be t and then
compute a new optimal path p′. If the optimal path stays the same,
p∗ = p′, then the first set of constraints is satisfied; otherwise assume
that pp = p∗ − p′, then the following constraint corresponding to pp
is not satisfied:

∑
e∈pp t(e) ≤ βpp.

Since the separation oracle runs in polynomial time, the ellipsoid
method can give solutions to LP-0 in time polynomial in k.

6.2 VCG-Nearest Payments

In the second step, we find core payments to minimize the L∞ dis-
tance to the VCG payments. The L∞ between two payment vectors
x and y is defined as

L∞(x,y) = max{|x1 − y1|, |x2 − y2|, · · · , |xk − yk|}

Besides the core constraints in (LP-0), we add one more constraint
that the sum of payments should equal the maximum total payment:

t ·1 = α. Then we can find the Vickrey-nearest payments by solving
the following problem:

(NLP-1): r =min ‖t− tVCG‖∞
subject to: At ≤ β

t ≥ c

t · 1 = α

(31)

It is hard to optimize (31) directly. We reformulate it as a linear
program by adding a new variable y. Meanwhile, for each edge i in
the optimal path, we add a new constraint: |tVCG,i − ti| ≤ y. y can
be understood as the the maximum difference between tVCG

i and ti.
As ti ≤ tVCG,i, the new constraints can be rewritten as: t + y1 ≥
tVCG. Then we can find the Vickrey-nearest payments t by solving
the following linear program:

(LP-2): r =min y

subject to: At ≤ β

t ≥ c

t · 1 = α

t+ y1 ≥ tVCG

(32)

For an optimal path with k edges, the linear program (LP-2) has k
decision variables and 2k + 2k + 1 constraints.

Theorem 4. The Vickrey-nearest core payments can be computed in
polynomial time by solving linear program LP-2.

Proof. Given a core payment profile t and y, we already give a poly-
nomial time separation oracle for At ≤ β and t ≥ c in Proposition
2. The third set of constraints t ·1 = α is trivial to check. The last set
of constraints can also be sequentially verified in O(k) time. There-
fore, we can also solve LP-2 in polynomial time using the ellipsoid
method.

For the path auction in Figure 2, the maximum total payment α is
5, and the Vickerey-nearest core payments is (2, 3, 0, 0).

To analyze the incentive property of the Vickerey-nearest pricing
rule, we assume bidders know each others’ costs and analyze the
Nash equilibrium. Denote b̂−i as the bids of bidders other than i.
Given any b̂−i, let t̂VCG,i be the VCG payment to bidder i when i is
truthful. Then we have the following result,

Proposition 3. t̂VCG,i is a best response by bidder i to the bids b̂−i

of others.

Proposition 3 holds because if i’s bid is more than t̂VCG,i, then the
core constraint corresponding to coalition N−{i} is violated. Define
the regret of a bidder as the difference between his utility submitting
a best-response bid to the bids of others and his utility when bidding
truthfully. We can prove the following result,

Theorem 5. The Vickerey-nearest core-selecting path mechanism
minimizes the maximum regret for bidders across all core-selecting
path mechanisms.

Proof. Assume that all bidders are truthful. Fixing bids b−i of others,
the best response of bidder i is to bid his VCG payment tVCG,i. Then
bidder i’s regret is tVCG,i − ti, where ti is the VCG-nearest core
payment for bidder i. As the Vickerey-nearest payments t minimizes
the L∞ distance to the VCG payments tVCG, the maximum regret for
all bidders is minimized.

L. Zhang et al. / False-Name-Proof Mechanisms for Path Auctions in Social Networks 1489



7 Experiment Results

In this section, we evaluate the performance of false-name proof path
mechanisms.

7.1 Datasets and Problem Generation

First we describe the network and cost(bidding) datasets used in the
following experiments. The network datasets we used are from the
SNAP datasets [21], which consist of four social networks:

• Facebook network. The dataset consists of friends lists from Face-
book. The data was collected from survey participants using Face-
book app 3.

• Google+ network. This dataset consists of circles (friends lists)
from Google. The data was collected from users who had manu-
ally shared their circles.

• Twitter network. This dataset consists of friend list from Twitter.
The data was crawled from public sources.

• Wikipedia voting network. The network contains voting data for
Wikipedia administrators elections . Nodes in the network repre-
sent wikipedia users and a directed edge from node i to node j
represents that user i voted on user j.

The detailed network statistics are given in table 1.

Networks Nodes Edges dmax 90-percentile dmax
Facbook 4,039 88,234 8 4.7
Google+ 107,614 13,673,453 6 3.0
Twitter 81,306 1,768,149 7 4.5
Wiki-Vote 7,115 103,689 7 3.8

Table 1: Network statistics, dmax is the network diameter, or the max-
imum shortest path length, the last column is the 90-th percentile of
shortest path length distribution.
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Figure 3: Reported costs plotted against number of friends. The red
line shows average reported costs.

Compared with network data, the true costs of bidders are diffi-
cult to obtain. In our experiments, we use reported cost data from a
microblog advertising platform weiboyi 4, where microbloggers are
asked to report their costs to make recommendations to friends in
their social network. Figure 3 shows reported costs and the number

3 https://www.facebook.com/apps/application.php?id=201704403232744
4 http://www.weiboyi.com

of friends for 15082 microbloggers. As the correlation between re-
ported costs and the number of friends is rather small (-0.005), we
use a simulation approach to generate realistic bids. Each time we
take a cost at random from the microblogger bidding data and as-
sign it to an edge from our networks. We also use another unit cost
distribution where all costs are set to 1.

The compared path mechanisms include the VCG mechanism
(VCG) and the Vickrey-nearest core-selecting mechanism (VNC).
For each network and each path mechanism, we generate 3000 prob-
lem instances where the start node s and goal node g are selected
uniformly at random from all nodes. All problem instances are exe-
cuted using CPLEX 12.6 on a 3.1 GHz Intel Core i5 processor.

Networks Avg. shortest
path cost

Avg. VCG
payments

Avg. VNC
payments

Avg. maximum
regret

Facebook 3.63 5.66 5.03 0.26
Wikipedia 2.99 3.78 3.43 0.18
Google+ 3.19 3.79 3.52 0.08
Twitter 4.81 6.07 5.46 0.18

Table 2: Average payment and average maximum regret under unit
cost distribution.

Networks Avg. shortest
path cost

Avg. VCG
payments

Avg. VNC
payments

Avg. maximum
regret

Facebook 871.07 2113.19 1697.70 81.50
Wikipedia 1038.11 2982.92 2599.35 106.56
Google+ 673.71 1607.24 1479.95 35.16
Twitter 1380.82 3584.91 2982.22 162.17

Table 3: Average payment and average maximum regret under re-
ported cost distribution.

7.2 Payment Performance

We first study the payment performance of path mechanisms. In Ta-
ble 2 and 3, we show average payments for the unit cost distribution
and the reported cost distribution respectively. We can see that VNC
payments are always less than VCG payments. Under the unit cost
distribution, average overpayment is not very high for both mech-
anisms. However, under the reported cost distribution, VCG over-
payments become significant in all four networks. In particular, the
VCG mechanism overpays by 2304 in the twitter network when the
shortest paths cost only 1380.

The performance measure we used is the overpayment factors. The
overpayment factor of a path mechanism M is defined as the ratio
between its total payment and the true cost of the shortest path p∗.

OF =

∑
e∈p∗ tM (e)

cost(p∗)
(33)

We give detailed average overpayment factor results in Figure 4,
where average overpayment factors are plotted against the number of
edges in p∗. We can see that under the reported distribution, the VCG
mechanism overpays by a factor of 2.5 in the Facebook, Google+ and
Twitter networks, and overpays by a factor of 3 in the Wikipedia vot-
ing network. Meanwhile, the VNC mechanism only overpays by a
factor of 2 in these networks. Meanwhile, under unit cost distribu-
tion, there is little difference between the overpayment factors for
VCG and VNC mechanisms, this is because the overpayments are
already very low. Note that when the shortest path contains only one
edge (k = 1), the VNC payment is equal to the VCG payment, so
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Figure 4: Comparison of average overpayment factors under different cost distributions.
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Figure 5: Comparison of worst case overpayment factors under different cost distributions.

the overpayment factors are the same, this is confirmed by Figure 4.
We also plot worst case overpayment factor results in Figure 5. We
can see that under reported cost distributions, VNC’s overpayment
factors and VCG’s overpayment factors are very close in the worst
case.

We next evaluate bidders’ maximum regrets under the two cost
distributions. Define the maximum regret ratio as the ratio between
the maximum regret and the shortest path cost. Under the unit cost
distribution, the maximum regret ratio is less than 3% in the Google+
network and around 6% in the others. Under the reported cost distri-
bution, the maximum regret ratio is around 5% in the Google+ net-
work and around 10% in the others.

Networks first-price VCG maxpay VNC
Facbook 0.004 0.050 0.102 0.104
Google+ 0.156 5.382 6.921 6.922
Twitter 0.026 0.790 1.309 1.310
Wiki-Vote 0.001 0.042 0.055 0.056

Table 4: Average time performance (in seconds) under unit
cost for first-price mechanism (first-price), the VCG mechanism
(VCG), maximum payments (maxpay) and Vickrey-nearest pay-
ments (VNC).

7.3 Time Performance

In the next, we evaluate the time performance of path mechanisms.
Table 4 shows the average time performance of four different path
mechanisms under unit cost. We can see that the time performance
of the maximum core payment and the Vickrey-nearest payment is
very close. Moreover, in the Facebook network and the Twitter net-
work, core-selecting path mechanisms have comparable time per-
formance with the first-price mechanism and the VCG mechanism.

In the Google+ network and the Wikipedia voting network, core-
selecting path mechanisms use about twice the time compared with
the VCG mechanism, however, note that all mechanisms use less
than 1 seconds.

Networks first-price VCG maxpay VNC
Facbook 0.005 0.073 12.892 27.530
Google+ 0.220 6.220 29.420 29.431
Twitter 0.040 1.001 151.043 175.300
Wiki-Vote 0.001 0.054 0.330 0.382

Table 5: Average time performance (in seconds) under reported
cost for first-price mechanism (first-price), the VCG mechanism
(VCG), maximum payments (maxpay) and Vickrey-nearest pay-
ments (VNC).

Table 5 shows the average time performance of four different
path mechanisms under the reported cost distribution. We can see
from the table that the first-price path mechanism and the VCG path
mechanism only need less than 1 seconds in all networks except
the Google+ network, where it take 6 seconds on average to com-
pute the payments. Meanwhile, the maximum core payments and
VCG-nearest core payments need much more time to compute, in
the Wikipdia voting network the time performance is comparable
with that of the first-price mechanism and the VCG mechanism. In
the Twitter network, the core-selecting mechanisms have a very bad
time performance, where it takes more than 2 minutes on average to
compute the core payments. We believe the reason is that some agent
reported a very high cost, which make the linear program LP-0 very
hard to solve by CPLEX. This indicates one possible future research
direction that we may need to find more efficient algorithms for com-
puting the maximum core payments when very high cost (bids) can
be reported.
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8 Conclusions

In this paper, we propose false-name-proof path mechanisms to ad-
dress the overpayment problem of the VCG path mechanism and
provide robustness against false-name manipulations. Based on a
novel core constraint formulation, we give a polynomial time core-
selecting path mechanism which finds the core payment profile that
minimizes the L∞ distance to the VCG payment profile. We show
that the Vickrey-nearest core-selecting path mechanism has good in-
centive properties. Experiment results on real network and reported
cost data show that the overpayment of the VCG mechanism can be
very high, while the Vickrey-nearest core-selecting path mechanism
can reduce VCG’s overpayment by about 20%. Therefore, Vickrey-
nearest core-selecting path mechanism can be considered as an ap-
pealing candidate mechanism for path auctions in social network en-
vironments where false-name manipulations are too common to ig-
nore.

In this paper, we assume that all possible subsets of agents can
form coalitions, however, in real world applications it is reasonable
to assume that only connected agents can form coalitions. It is an
interesting direction to devise efficient payment algorithms for this
kind of environment.
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