
Complexity Results for Probabilistic Datalog±

İsmail İlkan Ceylan1 Thomas Lukasiewicz2 Rafael Peñaloza3

Abstract. We study the query evaluation problem in probabilistic
databases in the presence of probabilistic existential rules. Our fo-
cus is on the Datalog± family of languages for which we define the
probabilistic counterpart using a flexible and compact encoding of
probabilities. This formalism can be viewed as a generalization of
probabilistic databases, as it allows to generate new facts from the
given ones, using so-called tuple-generating dependencies, or exis-
tential rules. We study the computational cost of this additional ex-
pressiveness under two different semantics. First, we use a conven-
tional approach and assume that the probabilistic knowledge base is
consistent and employ the standard possible world semantics. There-
after, we introduce a probabilistic inconsistency-tolerant semantics,
which we call inconsistency-tolerant possible world semantics. For
both of these cases, we provide a thorough complexity analysis rel-
ative to different languages, drawing a complete picture of the com-
plexity of probabilistic query answering in this family.

1 INTRODUCTION

Recent years have lead to a significant increase in the number of
application domains that generate large volumes of uncertain data.
This has paved the way for a number of systems tailored towards
such domains; most notably for large knowledge bases: Yago [22],
Nell [31], DeepDive [36], Google’s Knowledge Vault [17], and Mi-
crosoft’s Probase [42] are systems containing a large amount of un-
certain data. These systems are substantially based on the founda-
tions of probabilistic databases (PDBs) [37]. Arguably, PDBs pro-
vide the state-of-the-art means for modeling, storing, and processing
data in the presence of uncertainty.

Enriching databases with ontological knowledge is a common
paradigm [33], as it allows one to deduce facts that are not explic-
itly specified in the database. The most widely studied languages
for achieving such sophisticated data access are based on descrip-
tion logics (DLs) [2] and existential rules [9, 8]. Following this tradi-
tion, we study probabilistic query entailment under existential rules
(tuple-generating dependencies) relative to a database. We focus on a
particular family of existential rule languages, which is also referred
to as Datalog± [9, 8].

Our framework is rather general: We assume a set of probabilistic
events and annotate the facts and the rules with a Boolean expression
formed over these events, which we call contexts. This context-based
abstraction allows a compact specification of a probability distribu-
tion over the knowledge base. Similar approaches have been used
in knowledge representation [32] and are also related to data prove-
nance and lineage [23, 32, 37] in PDBs.

1 TU Dresden, Germany, email: ceylan@tcs.inf.tu-dresden.de
2 University of Oxford, UK, email: thomas.lukasiewicz@cs.ox.ac.uk
3 Free University Bozen-Bolzano, Italy, email: rafael.penaloza@unibz.it

The most common semantics for PDBs is the possible world se-
mantics: a PDB factorizes into a set of possible worlds, i.e., classical
databases, each of which is then associated with a probability. This
semantics is also used in probabilistic logic programming (see, e.g.,
ProbLog [16]) and is closely related to Poole’s independent choice
logic [34]. We first study probabilistic query entailment in Datalog±

under this semantics with a conventional assumption, i.e., the as-
sumption that the probabilistic knowledge base is consistent.

Datalog± programs can clearly lead to inconsistencies, as neg-
ative constraints, such as ∀x P(x) ∧ R(x) → ⊥, are part of these
programs. The obvious question is, of course, whether forcing the
consistency assumption is always feasible? We answer this question
negatively: PDBs are typically constructed in an automated manner;
therewith, it is not easy to control which tuple is to be added to the
database next. Suppose, e.g., that both atoms P(u) and R(u) are ob-
tained with a positive probability. Clearly, adding both atoms would
lead to an inconsistency, as the disjointness imposed by the rule will
then be invalidated; i.e., we either throw away one of these atoms, or
the whole knowledge base becomes inconsistent.

One way of tackling this problem is to simply ignore the inconsis-
tent worlds imposed by the knowledge base, and as such, to slightly
change the possible world semantics to only consider consistent
worlds. We argue that this is not a solution to the problem, but rather
a patch, and show that considering only consistent worlds could lead
to loss of valuable information. In other words, inconsistent worlds
may produce meaningful answers that are lost, as they can not be
captured with an adequate semantics. Thus, to retrieve as much valu-
able information as possible, we base ourselves on the foundations
of inconsistency-tolerant reasoning, which is well-understood both
in the context of DLs [26, 5, 6] and Datalog± [28, 29, 27]. A well-
known approach in inconsistency-tolerant reasoning is based on re-
pairing the knowledge base by minimally removing some facts. As
there can be many different minimal repairs (see the example above),
the safe consequences are considered to be those that follow from
every possible repair. In this paper, we adopt the generalized repair
(GR) semantics from a recent work [18], which allows repairs both
on the database and on the program. Based on the GR semantics, we
define the inconsistency tolerant possible world semantics.

For both semantic approaches, we provide a through complexity
analysis relative to different existential rule languages, drawing a
complete picture of the complexity of probabilistic query entailment
in Datalog±. The most central class for our complexity analysis is
the class PP [20], which we describe in detail. Briefly stated, our re-
sults show an analogous behavior to the classical case, i.e., moving to
inconsistency-tolerant semantics can put the complexity of reasoning
one level higher in the respective hierarchy.

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1414

1414

2 MOTIVATION AND BACKGROUND

We enrich databases with ontological knowledge allowing to access
probabilistic data over a logical abstraction. We concentrate on exis-
tential rule languages, also known as tuple-generating dependencies.

2.1 Existential Rules and Datalog±

We recall some basics on existential rules from the context of
Datalog± [9, 8] and briefly introduce conjunctive query answering
under existential rules.
General. Consider (possibly infinite) mutually disjoint sets R of
predicates, C of constants, V of variables, and N of nulls. A term
t is a constant, a null, or a variable. An atom is an expression of
the form P(t1, . . . , tn), where P is an n-ary predicate, and t1, . . . , tn
are terms. A variable-free atom does not contain any variables as
terms, and a ground atom is an atom that contains only constants as
terms. An instance I is a (possibly infinite) set of variable-free atoms.
A database D is a finite set of ground atoms.
Programs. A tuple-generating dependency (TGD) (or existential
rule) σ is a first-order formula ∀xϕ(x) → ∃y P(x,y), where
x ∪ y ⊂ V, ϕ(x) is a conjunction of atoms, and P(x,y) is an atom;
ϕ(x) is the body of σ, denoted body(σ), while P(x,y) is the head
of σ, denoted head(σ).4

A negative constraint (NC) ν is a first-order formula of the form
∀xϕ(x) → ⊥, where x ⊂ V, ϕ(x) is a conjunction of atoms, called
the body of ν, denoted body(ν), and ⊥ denotes the truth constant
false; i.e., a contradiction. A Datalog± program is a finite set Σ of
TGDs and NCs. For brevity, we often omit the universal quantifiers in
front of TGDs and NCs, and write simply, e.g., ϕ(x) → ∃y P(x,y).
Moreover, we often speak simply of programs when referring to
Datalog± programs.
Semantics. The semantics of programs is defined via homomor-
phisms. Briefly, a homomorphism is a substitution h : C∪N∪V →
C ∪ N ∪ V that behaves as the identity over C. For a homomor-
phism h and a set of variables x, we denote by h|x the restriction of h
to x. The instance I satisfies the TGD σ, written I |= σ, if for ev-
ery homomorphism h such that h(ϕ(x)) ⊆ I , there exists h′ ⊇ h|x
such that h′(P(x,y)) ∈ I . The instance I satisfies the NC ν, writ-
ten I |= ν, if there is no homomorphism h such that h(ϕ(x)) ⊆ I .
Given a program Σ, I satisfies Σ, written I |= Σ, if I satisfies each
TGD and NC of Σ. I is a model of the program Σ relative to the
database D, if D ⊆ I and I |= Σ. We denote the set of all models
of Σ relative to D as mods(D,Σ).
Unions of Conjunctive Queries. A conjunctive query (CQ) is an
existentially quantified formula ∃xψ(x), where ψ is a conjunction
of atoms. Consider, e.g., the query

q1(x) = ∃y StarredIn(x, y) ∧ Mov(y) ,

which asks for individuals that starred in a movie. Notice that x is a
free variable in q1, also called an answer variable. A Boolean con-
junctive query (BQ) is a CQ without any free variables. An example
is the query

q2 = ∃x, y StarredIn(x, y) ∧ Mov(y) ,

which asks whether there exists an individual that starred in a movie.

4 Notice that our definition of TGDs requires the head to contain only one
atom. This restriction is made w.l.o.g., as a TGD with a conjunction of
atoms in the head can be equivalently represented by a set of single-atom-
headed TGDs [8].

A union of Boolean conjunctive queries (UCQ) Q is a disjunction
of BQs. For notational convenience, we write Q to represent UCQs
and q to represent BQs. If we consider queries with free variables,
we make this explicit and write Q(x), or q(x), respectively.
Query Semantics. The answers to a CQ q(x) over an instance I ,
denoted q(I), is the set of all mappings Θ from x to the constants in
I such that q(Θ(x)) ∈ I . A Boolean query q has a positive answer
over I , denoted I |= q, if q(I) �= ∅. Given a database D and a pro-
gram Σ, the answers we consider are those that are true in all models
of Σ relative to D. Formally, the answer to a CQ q w.r.t. D and Σ is
the set of tuples ans(q,D,Σ) =

⋂
I∈mods(D,Σ){t | t ∈ q(I)}. The

answer to a BQ q is positive, denoted D∪Σ |= q, if ans(q, D,Σ) �=
∅. These notions are generalized to the class of UCQs in the obvious
way. Consider a database

D = {Actor(alPacino), StarredIn(pMiller, cw), Mov(cw)},

which asserts that Al Pacino is an actor, and that Penelope Miller has
starred in a movie. The query q1(x) produces only pMiller as an
answer on D. In the presence of the program

Σ = {〈 Actor(x) → ∃y StarredIn(x, y), Mov(y)〉},

a new tuple (alPacino) is generated, and thus both alPacino and
pMiller become answers to q1(x).

2.2 Computational Properties of Existential Rules

In general, it is undecidable whether a BQ has an answer or not w.r.t.
a database D and a program Σ [4]. To regain decidability, many
different restrictions on the class of allowed TGDs have been pro-
posed. The most important (syntactic) restrictions studied in the lit-
erature are guardedness [8], stickiness [9], and acyclicity, along with
their “weak” counterparts, namely weak guardedness [8], weak stick-
iness [9], and weak acyclicity [19], respectively.

A TGD σ is guarded, if there exists an atom a ∈ body(σ) that con-
tains (or “guards”) all the body variables of σ. The class of guarded
TGDs, denoted G, is defined as the family of all possible sets of
guarded TGDs. A key subclass of guarded TGDs are the so-called
linear TGDs with just one body atom, which is automatically the
guard. The class of linear TGDs is denoted by L. Weakly guarded
TGDs extend guarded TGDs by requiring only the body variables
that are considered “harmful” to appear in the guard (see [8] for full
details). The associated class of TGDs is denoted WG. It is easy to
verify that L ⊂ G ⊂ WG, in terms of the sets of TGDs they contain.

Stickiness is inherently different from guardedness, and its cen-
tral property can be described as follows: variables that appear more
than once in a body (i.e., join variables) must always be propagated
(or “stuck”) to the inferred atoms. A TGDs that enjoys this prop-
erty is called sticky, and the class of sticky TGDs is denoted by S.
Weak stickiness generalizes stickiness by considering only “harm-
ful” variables, and defines the class WS of weakly sticky TGDs. Ob-
serve that S ⊂ WS.

A set Σ of TGDs is acyclic (and belongs to the class A), if its
predicate graph is acyclic. Equivalently, an acyclic set of TGDs can
be seen as a non-recursive set of TGDs. We say Σ is weakly-acyclic,
if its dependency graph enjoys a certain acyclicity condition, which
guarantees the existence of a finite canonical model; the associated
class is denoted WA. Clearly, A ⊂ WA. Interestingly, it also holds
that WA ⊂ WS [9].

Another key fragment of TGDs, which deserves our attention, are
the so-called full TGDs, i.e., TGDs without existentially quantified

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog± 1415

variables. Their corresponding class is denoted as F. Restricting full
TGDs to satisfy linearity, guardedness, stickiness, or acyclicity yields
the classes LF, GF, SF, and AF, respectively. A known relation be-
tween these classes is that F ⊂ WA [19] and F ⊂ WG [8]. We extend
all these notions to programs Σ in the obvious way: by considering
the properties satisfied by the TGDs in Σ. Thus, for instance, Σ is
guarded, if all the TGDs in Σ are guarded.

When analysing the complexity of query answering, we consider
all these classes of programs unless explicitly mentioned otherwise.
To obtain a fine-grained analysis of the computational complexity,
we follow Vardi’s taxonomy [40], as described next. The combined
complexity of UCQ answering is calculated by considering all the
components, i.e., the database, the program, and the query, as part
of the input. The bounded-arity combined complexity (or simply
ba-combined complexity) assumes that the arity of the underlying
schema (i.e., the maximum arity of the predicates in R) is bounded
by an integer constant. In the context of description logics (DLs),
the combined complexity in fact refers to the ba-combined com-
plexity, since, by definition, the arity of the underlying schema is
at most two. The fixed-program combined complexity (or simply fp-
combined complexity) is calculated by considering the program (i.e.,
the set of TGDs and NCs) as fixed, while the data complexity addi-
tionally assumes that the query is fixed.

Table 1 summarizes the known complexity results for query en-
tailment in the different classes of programs that we consider. These
results will provide the basis for analysing the complexity of proba-
bilistic Datalog± programs in the following sections.

Data Comb. ba-comb. fp-comb.

L, LF, AF in AC0 PSPACE NP NP
G P 2EXP EXP NP
WG EXP 2EXP EXP EXP
S, SF in AC0 EXP NP NP
F, GF P EXP NP NP
A in AC0 NEXP NEXP NP

WS, WA P 2EXP 2EXP NP

Table 1: Complexity of BQ answering [27]. All entries except for “in
AC0” are completeness ones, where hardness in all entries but the
fp-combined ones holds even for ground atomic BQs.

2.3 Complexity of Standard Probabilistic Inference

Our approach is based on annotating the facts in the database and the
rules in the Datalog± program with Boolean events, which we call
contexts. Here, we briefly introduce the basic notions, our assump-
tions, and the complexity of probabilistic Boolean inferences.

Consider a finite set of elementary events E = {e1, ..., en}. A
world is a conjunction w = s1∧...∧sn where si, 1 ≤ i ≤ n, is either
the event ei or its negation ¬ei. A context is a Boolean combination
of elementary events, i.e., if κ1 and κ2 are contexts, then so is ¬κ1

and κ1 ∧ κ2.
Contexts encompass the probabilistic component of our formal-

ism. For representing the probability distribution of events and con-
texts, we do not restrict to any specific probabilistic model, but rather
consider any representation for which deciding whether P(κ) > p
for some value p ∈ [0, 1) is PP-complete. Further details on the
complexity class PP and its relation to other complexity classes can
be found in Section 3.1.

3 PROBABILISTIC DATALOG±

To define our probabilistic extension of Datalog±, we annotate all
the rules and negative constraints with contexts, which will be inter-
preted through the probability distribution. Similarly, all the atoms in
a probabilistic database are associated with a context as well.

Definition 1 (Probabilistic Datalog±) A probabilistic TGD is an
expression of the form 〈σ : κ〉, where σ is a TGD, and κ is a context.
Analogously, a probabilistic negative contraint is of the form 〈ν : κ〉,
where ν is a negative constraint, and κ is a context. A probabilistic
program Γ is a finite set of probabilistic TGDs and probabilistic neg-
ative contraints.

A probabilistic atom is of the form 〈� : κ〉, where � is an atom,
and κ is a context. A probabilistic database P is a finite set of prob-
abilistic atoms. A probabilistic knowledge base is a pair K = (Γ,P)
that represents a probabilistic program Γ relative to a probabilistic
database P .

We extend the special cases of Datalog± programs defined in the
previous section to probabilistic programs in the obvious way. That
is, the probabilistic program Γ is guarded if the Datalog± program
{λ | 〈λ : κ〉 ∈ Γ} is guarded, and analogously for linear, sticky,
acyclic, and full programs, and their weak versions. For a class L of
Datalog± programs, we denote by ΥL its associated class of prob-
abilistic programs. Thus, for instance ΥG is the class of all guarded
probabilistic programs. Consider the probabilistic program Γm rela-
tive to the PDB Pm given in Figure 1. It asserts that actors star in at
least one movie and that actors and movies are disjoint entities. Both
expressions hold in the global context �. To ease reading, we usually
omit the global context from the expressions.

Intuitively, a probabilistic program relative to a PDB compactly
encodes a finite number of classical programs relative a classical
database, each of which associated with a different context, and
therefore a number of worlds. This semantics is commonly referred
to as the possible world semantics.

Definition 2 (Possible Worlds) Let K = (Γ,P) be a probabilistic
knowledge base. Every world w induces a classical knowledge base
K|w = (Γ|w,P|w) where

Γ|w = {λ | 〈λ : κ〉 ∈ Γ, w |= κ},
P|w = {� | 〈� : κ〉 ∈ P, w |= κ}.

A probabilisitic knowledge base K is consistent, if all the worlds
induced by K (with positive probability) are consistent.

The probabilistic program Γm relative to Pm encodes exponentialy
many worlds on the size of the context variables. For instance, given
the world w1 (see Figure 1), P|w1

contains all tuples from Actors

and Movies, but none from StarredIn. Similarly, as the rules in Γm

are global (i.e., they hold in every world), Γ|w1
contains both rules.

Observe also that tuple-independent probability models are a spe-
cial case of our abstraction, where every annotation is independent
from others. In this case, one can directly write probability values,
instead of the contexts with their independent probabilities.

Definition 3 (Query Semantics) Let K = (Γ,P) be a probabilistic
knowledge base, the probability of a UCQ Q is given by:

PK(Q) =
∑

K|w|=Q

P(w),

Given a query Q and p ∈ (0, 1], probabilistic query entailment is the
problem of deciding whether PK(Q) ≥ p.

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog±1416

Actor Pr

alPacino a1
rDeNiro a2
mPfeiffer a3

Movies Pr

carlitosWay m1
godfather m2
taxiDriver m3

StarredIn Pr

alPacino carlitosWay ¬s1 ∧ s2
alPacino godfather s3 ∧ ¬s4
rDeNiro godfather ¬s5 ∧ s6
pMiller carlitosWay ¬s7 ∧ s1

Γm

R1 : 〈 Actor(x) → ∃y StarIn(x, y), Mov(y)〉
R2 : 〈 Actor(x), Mov(x) → ⊥〉

Worlds Pr
w1 { a1, a2, a3, m1, m2, m3, s1, ..., s7 } .73
w2 { ¬a1, a2, a3, m1, m2, m3, s1, ..., s7 } .11
w312
w425
...
wn { ¬a1, ¬a2 , ¬a3, ¬m1, ¬m2, ¬m3, ¬s1, ..., ¬s7} .01

Figure 1: The probabilistic database Pm (depicted using tables) and the probabilistic program Γm = {R1, R2} composed of a TGD (R1) and
an NC (R2). The contexts are defined over the elementary events E = {a1, a2, a3, m1, m2, m3, s1, . . . , s7}.

Briefly, a UCQ describes a desired pattern for a given knowledge
base, and query entailment is then the task of deciding whether the
specified pattern holds in this KB. Probabilistic query entailment fac-
torizes this decision over different KBs, and we are interested in
learning how likely it is for a UCQ to be entailed. Consider, for in-
stance, the probabilistic KB Km = (Γm,P ′

m), where

P ′
m = { 〈Actor(alPacino, godfather : 0.5)〉 ,

〈Actor(rDeNiro, godfather) : 0.5〉},

and Γm given as before. The query q2 would return the probability
0.75 on the program Γm relative to the PDB P ′

m. Notice that the
only world that does not satisfy the query is {Movie(gf)}∪Γm, and
this world has the probability 0.25. It is easy to see that q2 would
evaluate to 0, if it is posed only on P ′

m.

3.1 Complexity Classes and Assumptions

For the sake of readability, we briefly recall some of the non-standard
complexity classes that we consider, and their relation to other clas-
sical complexity classes. The most typical counting complexity class

PPΣ
p
2

PPNPΣp
3 Πp

3

Πp
2Σp

2 PP

coNPNP

P

Figure 2: A portion of the counting polynomial-time hierarchy.

is #P [39], which is a functional complexity class originally intro-
duced in the context of counting problems. The corresponding de-
cision class PP [20] defines the set of languages recognized by a
polynomially bounded non-deterministic Turing machine (TM) that
accepts an input if and only if more than half of the computation
paths are accepting [38]; such machines are usually called PP TMs.
We also consider PPNP (resp., PPΣ

p
2 , PPNEXP), which as usual corre-

sponds to languages that can be recognized by a PP TM, with an NP
(resp., Σp

2 , NEXP) oracle. Most of these classes belong to the count-
ing polynomial-time hierarchy [41], which is partially illustrated in

Figure 2 along with the first levels of the polynomial hierarchy. The
following relations between complexity classes are a consequence of
the relationships depicted in Figure 2 and will also be useful through-
out the rest of this paper:

PPΣ
p
2⊆ PSPACE ⊆ EXP ⊆ NEXP ⊆ PNEXP ⊆ PPNEXP ⊆ 2EXP

3.2 Complexity Results

We will consider the complexity of query answering w.r.t. the differ-
ent classes of probabilistic programs relative to different languages.

Data Comb. ba-comb. fp-comb.

L, LF, AF PP PSPACE PPNP PPNP

G PP 2EXP EXP PPNP

WG EXP 2EXP EXP EXP
S, SF PP EXP PPNP PPNP

F, GF PP EXP PPNP PPNP

A PP NEXP NEXP PPNP

WS, WA PP 2EXP 2EXP PPNP

Table 2: Complexity of probabilistic entailment

We start with a general result that provides some bounds for the
complexity of query entailment in probabilistic KBs parameterized
on the complexity of its classical counterpart.

Theorem 4 Let L be a class of Datalog± programs, and k be
the complexity of query entailment in L relative to databases.
Then, probabilistic query entailment in ΥL relative to probabilistic
databases is (i) k-hard, (ii) PP-hard, and (iii) in PPk.

PP-hardness follows from the hardness of standard probabilistic
inference. The full proof shows a construction of a probabilistic KB
upon which standard query entailment can be decided, which proves
k-hardness. 5 Membership to PPk follows mainly from the observa-
tion that a probabilistic knowledge base is a factorized representation
of exponentially many classical knowledge bases. Thus, it is possi-
ble to solve the problem (after properly adjusting the probabilities of
the worlds) by deciding whether the majority of the oracle calls that
decide classical query entailment return true.

We analyze the consequences of Theorem 4. Observe first that if k
is a deterministic class that contains PP, then PPk = k and thus The-
orem 4 directly provides tight complexity bounds. Notice that this is
the case w.r.t. the combined complexities for all the classes except
A. In the case of the class A, the complexity of query entailment

5 For ease of presentation, we excluded the proofs from the main text; for the
interested reader, we refer to the appendix of this paper.

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog± 1417

is complete w.r.t. to the class NEXP, and it is not known whether
PPNEXP ⊆ NEXP. We observe that the non-determinism in the oracle
NEXP calls are used in a restricted fashion; this allows us to encode
the problem into exponentially many NEXP TMs, which can be sim-
ulated with a NEXP TM.

Lemma 5 Probabilistic query entailment in ΥA relative to a proba-
bilistic database is in NEXP w.r.t. the combined complexity.

With the help of Lemma 5 and Theorem 4, we conclude that for
all the rule languages, the complexity of probabilistic entailment re-
mains the same w.r.t. the combined complexity (see the second col-
umn in Table 2). Clearly, this result transfers to the case where all
events are assumed to be independent. Notice, however, that the im-
plication of Theorem 4 is stronger, as it also yields tight complexity
bounds for the languages G, WG, WS, and WA w.r.t. ba-combined
complexity, as well as for the language WG w.r.t. fp-combined com-
plexity. For the remaining languages, where k = NP, we prove The-
orem 6.

Theorem 6 If query entailment in L relative to databases w.r.t.
ba-combined (resp., fp-combined) complexity is NP-complete, then
probabilistic query entailment in ΥL relative to probabilistic
databases is PPNP-complete w.r.t. ba-combined (resp., fp-combined)
complexity.

Membership in PPNP is shown by a setting appropriate thresh-
old values and iterating over nondeterministic oracle calls until this
threshold value is exceeded. To show hardness for this class, we re-
quire more involved technical constructions. For these constructions,
we use the M-∃QBF problem [41].

Definition 7 (M-∃QBF) Given an integer constant c and a partially
quantified Boolean formula of the form

Φ= ∃y1 . . . ym φ1 ∧ φ2 ∧ · · · ∧ φk,

where every φi is a clause over {x1, . . . , xl, y1, . . . , ym} and
k, l,m≥ 1; M-∃QBF (Φ,c) is to decide whether for at least c of
the truth assignments τ to x1, . . . , xl, the formula τ(Φ) is true.

Note that M-∃QBF is different from majority satisfiability, as
here the threshold is set by an integer (not necessarily majority).
M-∃QBF is an PPNP-complete problem even if the clauses φi are
restricted to 3CNF [3].

The full proof constructs a probabilistic knowledge base
KΦ = (∅,PΦ) and a special query QΦ based on Φ. KΦ and QΦ to-
gether simulate the satisfiability conditions for the formula Φ. More-
over, the atoms in PΦ are associated with partial assignments over
the variables {x1 . . . x�}. Notice that these are precisely the variables
upon which we want to decide whether the number of assignments
are at least c. This construction allows us to factorize the satisfiability
problem over the variables {x1 . . . x�} and thus to obtain the result.
As KΦ uses an empty program, and all atoms are bounded in the arity
by 3, we obtain tight complexity bounds for all entries in Table 2.

We have analyzed the complexity of probabilistic query entailment
under the standard possible world semantics. Using novel construc-
tions, we have provided tight complexity bounds for all languages
under consideration. Table 2 shows our results. Next, we provide
concrete examples on how the possible world semantics can be in-
competent under certain conditions, and concentrate on a different
semantics.

4 INCONSISTENCY HANDLING

Due to the presence of negative constraints, knowledge bases may
contain contradictory knowledge. In fact, this has lead to a quest of
finding alternative semantics to be able deal with inconsistent knowl-
edge in ontologies. Consider for example the knowledge base

Σinc = {P(x), R(x) → ⊥} and Dinc = {P(u), R(u), P(v)}.

The NC requires the predicates P and R to be disjoint, but the
database states that u belongs to both of them. Thus, the program
has no model relative to the database. The fact that a knowledge base
contains an inconsistency makes standard reasoning very problem-
atic, as anything can be entailed from an inconsistent knowledge base
(“ex falso quodlibet”) under the standard semantics. Consequently,
one loses the ability of distinguishing between queries. From a tech-
nical perspective, the inconsistency problem immediately propagates
to probabilistic extensions. Consider a probabilistic variant of our ex-
ample; i.e., the KB Kinc = (Γinc,Pinc), where

Γinc = {〈P(x), R(x) → ⊥ : 0.5〉} and

Pinc = {〈P(u) : 0.5〉 , 〈R(u) : 0.5〉 , 〈P(v) : 0.5〉}.

Observe that Kinc factorizes into worlds with positive probabil-
ity that contain inconsistent knowledge. More concretely, it imposes
16 worlds, two of which are inconsistent, i.e., the ones that contain
the NC together with both 〈P(u) : 0.5〉 and 〈R(u) : 0.5〉. Notice that,
even though a vast majority of the worlds are consistent, the knowl-
edge base as a whole is inconsistent, as it assigns a positive proba-
bility to an inconsistent world. It is possible to slightly change the
possible world semantics to only consider consistent worlds by set-
ting the probabilities of inconsistent worlds to 0 and renormalizing
the probability distribution over the set of worlds accordingly. More
precisely, assuming

∑
w|=⊥ PK(w) < 1, we obtain the distribution:

P(w) =
{ 0 if w |= ⊥

PK(w)/(1−∑
w′|=⊥ PK(w′)) otherwise.

Notice that this semantics assumes that the error is in the probability
distribution; accordingly, it modifies the distribution. For our exam-
ple, it yields a probability less than 0.5 for P(v). Moreover, in the
same example, P(u) and R(u) evaluate to the same probability value
w.r.t. this semantics. This is not in line with the intuition; particularly,
because it puts as much responsibility on P(v) as much as it puts on
the other tuples. On the other hand, assuming that the error is on
the logical side, it is easy to see that responsibility needs to be shared
only by the NC 〈P(x), R(x) → ⊥〉 and the tuples {P(u), R(u)}, since
they serve as the source of inconsistency. Thus, it is more intuitive to
expect the probability of P(v) to remain 0.5, as it does not contribute
to inconsistency in the logical sense.

The main question is then, how to identify the meaningful answers
in inconsistent worlds. We base ourselves on the recent advances on
inconsistency-tolerant reasoning developed for Datalog± [28, 29, 27]
and provide an inconsistency-tolerant possible world semantics. We
also show that under this semantics, P(v) evaluates to exactly 0.5.

Several inconsistency-tolerant semantics have been proposed in
the literature. One of the central semantics is first developed for
relational databases [1] and then generalized as the AR semantics
for several DLs [26]. The AR semantics is based on the key notion
of a repair, which is a ⊆-maximal consistent subset of the given
database D. Here, it is assumed that errors leading to inconsisten-
cies are only contained in the data, but not in the program. In recent

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog±1418

work [18], authors allow errors also in the programs and introduce
the generalized repair (GR) semantics, which allows to separate the
program and the database into hard and soft parts, where the hard part
is assumed to be fixed, and the soft part can be subject to repairs.

Data Comb. ba-comb. fp-comb.

L⊥, LF⊥, AF⊥ coNP PSPACE Πp
2 Πp

2

G⊥ coNP 2EXP EXP Πp
2

WG⊥ EXP 2EXP EXP EXP

S⊥, SF⊥ , F⊥, GF⊥ coNP EXP Πp
2 Πp

2

A⊥ coNP PNEXP PNEXP Πp
2

WS⊥, WA⊥ coNP 2EXP 2EXP Πp
2

Table 3: Complexity of GR-BQ entailment under existential rules
[18]; all entries are completeness results. Hardness holds even in the
case where the whole database is soft, and the whole program is hard.

Table 3 illustrates the complexity of query answering under this
semantics, denoted GR-UCQ. For further details, we refer to [18].
We now extend the generalized repair (GR) semantics to probabilis-
tic Datalog±.

Definition 8 (Flexible programs and databases) A flexible PDB is
a pair P = (Ph;Ps) of two PDBs Ph and Ps, denoted hard and soft
PDB, respectively, while a flexible (probabilistic) program is a pair
Γ = (Γh; Γs) consisting of a finite set Γh of TGDs and NCs and a
finite set Γs of TGDs, denoted hard and soft program, respectively.

Consider again the probabilistic KB Kinc = (Γinc,Pinc), where we
would like to fix the whole program, and let the whole database be a
soft PDB. This can be achieved by setting Γinc = (Γh, ∅) and Pinc =
(∅,Ps), where Γh = Γinc and Pinc = Ps. This partition fixes the
program and views the whole PDB as a soft database. The notion of
generalized repair (GR) for flexible PDBs under flexible probabilistic
programs is then given as follows.

Definition 9 (Generalized repair) A generalized repair of a flexi-
ble PDB (Ph;Ps) and a flexible program (Γh; Γs) is a probabilis-
tic KB K = ((Γh; Γ

′
s), (Ph;P ′

s)), where Γ′
s ⊆ Γs and P ′

s ⊆ P
such that (i) (Γh ∪ Γ′

s ∪ Ph ∪ P ′
s) is consistent, and (ii) there is no

t ∈ (Γs ∪ Ps)/(Γ
′
s ∪ P ′

s) such that (Γh ∪ Γ′
s ∪ Ph ∪ P ′

s ∪ {t}) is
consistent. The set of all such repairs is denoted by rep(K).

Clearly, there may be many ⊂-maximal repairs for every world:
Observe that Kw = Σinc ∪ Dinc is a world over Kinc. Here, both
Kw/{〈P(u)〉} and Kw/{〈R(u)〉} are ⊂-maximal repairs. In this
case, these are all possible repairs. The query semantics then consid-
ers the consequences that are entailed from every ⊂-maximal repair,
i.e., the safe consequences.

Definition 10 (Inconsistency tolerant query semantics) Let K be
a probabilistic KB, the probability of a UCQ Q is given by:

PK(Q) =
∑

K|w|=GRQ

P(w),

where K|w |=GR Q holds iff for all repairs r ∈ rep(K|w), it holds
that r |= Q. Given a query Q and p ∈ (0, 1], probabilistic GR-UCQ
entailment is to decide whether PK(Q) ≥ p.

The implication of this semantics is clear. Consider again Kinc: It
is easy to verify that P(v) is entailed from all repairs of all worlds.
Therefore, it yields the probability 0.5 for P(v), as desired.

Data Comb. ba-comb. fp-comb.

L⊥, LF⊥, AF⊥ PPNP PSPACE PPΣ
p
2 PPΣ

p
2

G⊥ PPNP 2EXP EXP PPΣ
p
2

WG⊥ EXP 2EXP EXP EXP

S⊥, SF⊥, F⊥, GF⊥ PPNP EXP PPΣ
p
2 PPΣ

p
2

A⊥ PPNP in PPNEXP in PPNEXP PPΣ
p
2

WS⊥, WA⊥ PPNP 2EXP 2EXP PPΣ
p
2

Table 4: Complexity of probabilistic GR-UCQ entailment under ex-
istential rules; all entries but the “in” ones are completeness results.
Hardness holds even in the case where the whole database is soft and
the whole program is hard.

4.1 Complexity Results

As before, we will consider the complexity of query answering w.r.t.
the different classes of probabilistic programs relative to different
languages. Observe first that Theorem 4 is rather general, and thus,
all the results can be transferred to this semantics.

Corollary 11 Let k be the complexity of GR-UCQ entailment in L
relative to a databases; then probabilistic GR-UCQ entailment in ΥL
relative to probabilistic databases is k-hard, PP-hard, and in PPk.

As before, this yields tight complexity bounds for languages where
k is a deterministic class that contains PP. The language A⊥ re-
quires a special attention, as the complexity of GR-UCQ entailment
in A⊥ is PNEXP-complete. We provide an upper bound for probabilis-
tic GR-UCQ entailment.

Lemma 12 Probabilistic GR-UCQ entailment in ΥA relative to
probabilistic databases is in PPNEXP w.r.t. the combined and
ba-combined complexity.

Although we expect this problem to be complete for the class
PPNEXP, it is yet open whether this problem is PPNEXP-hard. The re-
sults for ba-combined and fa-combined cases require a much more
detailed analysis. We prove the following Theorem.

Theorem 13 Let k = Πp
2 be the complexity of GR-UCQ entail-

ment in the rule language L relative to databases w.r.t. ba-combined
(resp., fp-combined) complexity. Then, probabilistic GR-UCQ entail-
ment in ΥL relative to a probabilistic databases is complete in the
class PPΣ

p
2 w.r.t. ba-combined (resp., fp-combined) complexity.

While upper bounds can be shown using analogous arguments as
in the standard semantics, to be able to show hardness, we first define
a problem that is complete for the class PPΣ

p
2 , adopted from [41].

Definition 14 (M-∀∃QBF) Given an integer constant c and a par-
tially quantified Boolean formula of the form

Φ= ∀y1 . . . ym∃z1 . . . zn φ1 ∧ φ2 ∧ · · · ∧ φk ,

where every φi is a clause over {x1, . . . , xl, y1, . . . , ym, z1, . . . , zn}
and k, l,m, n≥ 1; M-∀∃QBF(Φ,c) is to decide whether for at least
c of the truth assignments τ to x1, . . . , xl, the formula τ(Φ) is true.

For an arbitrary instance of M-∀∃QBF, where the clauses are re-
stricted to 3CNF, we construct a probabilistic knowledge base that
consists of a program that contains a single negative constraint. The
reduction is correct and of polynomial size. As the KB provided is

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog± 1419

in the intersection of the class of languages considered, we obtain
hardness for all of these languages.

Our last result is about data complexities, for which GR-UCQ en-
tailment is coNP-complete (except for the class WG⊥, which has
exponential data complexity). We prove the following Theorem.

Theorem 15 If GR-UCQ entailment in L relative to databases is
coNP-complete (or NP-complete) in data complexity, then the data
complexity of probabilistic GR-UCQ entailment in ΥL relative to
probabilistic databases is PPNP-complete.

We use the canonical problem M-∃QBF to show hardness. Ob-
serve, however, that this requires a very different construction than
the one in Theorem 6, as here the query is fixed. This result con-
cludes our complexity analysis for inconsistency-tolerant semantics;
all of the results are summarized in Table 4.

5 RELATED WORK

Our work is closely related to probabilistic databases [37, 12]. In fact,
probabilistic Datalog± can be seen as a generalization of PDBs. As in
PDBs, query answering in probabilistic Datalog± is PP-hard. Notice
the novel dichotomy result in tuple-independent PDBs that classifies
the unions of conjunctive queries as either being safe (P), or unsafe
(#P-hard) [13]. Identifying special cases (as in [24]) of probabilistic
Datalog± that allows similar dichotomies is part of the future work.
We also note the recent work on Open-World PDBs [10], which al-
lows a more flexible representation for PDBs by providing default
probability intervals for unknown facts; significantly, this extended
setting preserves the full dichotomy result for UCQs.

The possible world semantics is widely employed in probabilis-
tic logic programming [34, 25, 35], and probabilistic query answer-
ing has been studied in light-weight probabilistic ontology languages
[11, 14, 24] before; see especially [30] for an overview of probabilis-
tic ontology languages. Our approach differs in several aspects: First,
we consider a family of existential rule languages that is known to be
well-behaved and provide tight complexity bounds for reasoning in
these languages for all of the cases except one. Second, our assump-
tions are rather flexible, as we do not require a specific probabilistic
model. Lastly, we propose an inconsistency-tolerant semantics, based
on [18], and study query evaluation under this semantics. Note that
inconsistency-tolerant semantics have been studied in Datalog± [21]
before, which we find closely related. Differently, we adopt a more
general repair semantics, as we allow repairs both on the data and on
the program, and it is possible to partition the knowledge base into
hard and soft components. Finally, we consider the full Datalog±

family (not only guarded rules), providing a complete picture of the
complexity of query evaluation.

6 SUMMARY AND OUTLOOK

We have studied probabilistic query entailment in Datalog± under
the standard possible world semantics and under an inconsistency-
tolerant variant of it. We have shown that the inconsistency-tolerant
semantics provides more information, while pushing the computa-
tional complexity of probabilistic query entailment higher in the
counting polynomial-time hierarchy in many cases. The differences
between these two semantic considerations represent yet another
trade-off between retrieving more information on the one side and
the increasing computational cost on the other side. Our analysis is
purely complexity-theoretical, and it is an open research problem to

find special cases where efficient algorithms can be developed. Such
algorithms can take the advantage of existing methods in knowl-
edge compilation [15, 7], as performing operations on a pre-compiled
structure is known to be very efficient.

ACKNOWLEDGEMENTS

This work was supported by the German Research Foundation
(DFG) within RoSI (GRK 1907) and by the UK EPSRC grants
EP/J008346/1, EP/L012138/1, and EP/M025268/1.

A PROOF SKETCH FOR THEOREM 4

We prove the result only w.r.t. the data complexity; the result w.r.t.
the ba-combined, fa-combined, and combined complexity can be ob-
tained using analogous arguments.

(Hardness) Let k be the data complexity of query entailment in L.
Probabilistic query entailment w.r.t. the data complexity is PP-hard,
as it is already so in PDBs w.r.t. data complexity. Thus, we only
need to show k-hardness w.r.t. data complexity. Suppose that prob-
abilistic query entailment is not k-hard in ΥL w.r.t. the data com-
plexity. Let Σ be an arbitrary program relative to an arbitrary
database D = {li | 1 ≤ i ≤ n} and construct the probabilistic KB
K′ = (Γ′,P ′) where

Γ′ = {λ | λ ∈ Σ}, P ′ = {〈li : 0.5〉 | li ∈ D, 1 ≤ i ≤ n} .
Clearly, this construction is polynomial, and given a query Q′, it is
easy to see that

(Σ,D) |= Q′ holds iff P(Q′) > 0.5n,

which implies that query answering in L is not k-hard in the data
complexity, which leads to a contradiction.

(Membership) We assume that the probability of each world is com-
putable in polynomial time, that it is a rational number, and that the
rational numbers of the probabilities of all worlds have the same de-
nominator. As for membership in PPk, intuitively, we first create mul-
tiples of each world (which then correspond to the nondeterministic
branches of a Turing machine), so that the probability distribution
over all thus generated worlds is the uniform distribution. Then, for
thresholds properly below (resp., above) 0.5, we introduce artificial
success (resp., failure) worlds (which correspond to other nondeter-
ministic success (resp., failure) branches of a Turing machine), so
that satisfying the resulting threshold corresponds to having a major-
ity of success worlds. We thus only have to verify whether for the
majority of the worlds, the query evaluates to true. As query evalua-
tion is in k, the computation is overall in PPk. �

B PROOF SKETCH FOR LEMMA 5

Let Q be a UCQ, and K = (Γ,P) be an arbitrary probabilistic
knowledge base where Γ is defined over ΥA. By Definition 3, it suf-
fices to decide whether

∑
K|w|=Q P(w) ≥ p. Let W be the set of all

worlds w. Guess a subset {w1, . . . , wn} ⊆ W and verify whether

(1)
∑
K|wi

|= Q for all {wi | 1 ≤ i ≤ n} and (2)
n∑
1

P(wi) ≥ p.

It is easy to see that this procedure yields the correct decision.
We only need to show that this procedure is in NEXP. First, observe

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog±1420

that the guess is of size exponential and can be produced by a non-
deterministic Turing machine that runs in exponential time. Second,
the verification of (1) can be done in (EXP × NEXP) = NEXP, as
there are exponentially many worlds and k = NEXP. Finally, the
verification of (2) can be done by traversing over exponentially many
worlds and computing their probabilities. As the latter can be done
in polynomial time, this verification is clearly in EXP. �

C PROOF SKETCH FOR THEOREM 6

(Membership) This result is a consequence of Theorem 4, where k is
set to NP.

(Hardness) To show hardness, we provide a reduction from the
M-∃QBF problem (Definition 7). Let the formula in 3CNF

Φ= ∃y1 . . . ym φ1 ∧ φ2 ∧ · · · ∧ φk,

be a partially quantified Boolean formula defined over V = {x1, . . . ,
xl, y1, . . . , ym}, where every φi is a disjunction of three literals,
and c is an integer constant. For every clause φi = ◦ui ∨ ◦vi ∨ ◦wi,
define ground atoms Mi(νi(ui), νi(vi), νi(wi)), where νi is a truth
assignment to the variables ui, vi, wi that satisfies φi. Observe
that, for every clause, the number of such assignments is bounded
by 23. The partial assignment ν|s1...sn denotes the restriction of ν
to the variables {s1, . . . , sn}. We construct the probabilistic KB
KΦ = (∅,PΦ), where

PΦ ={〈Mi(νi(ui), νi(vi), νi(wi)) : ν|{x1,...,xl}∩{ui,vi,wi}
〉 |

νi |= φi, 1 ≤ i ≤ k} .

Let the event space be defined over the x-variables such that every
world has the probability 0.5l. For the query

QΦ = ∃ x1 . . . xl, y1 . . . ym

k∧
i=1

Mi(ui, vi, wi),

we obtain the following reduction:

PKΦ(Q) ≥ c · 0.5l iff M-∃QBF(Φ, c) answers yes.

Observe that the above reduction can clearly be done in polyno-
mial time in the size of Φ, and that the resulting probabilistic program
is empty, and the arity of all predicates in the PDB is 3. �

D PROOF SKETCH FOR THEOREM 13

(Membership) This result is a consequence of Theorem 4 and Corol-
lary 11, where k is set to Πp

2 , and the fact that PPΣ
p
2 = PPΠ

p
2 .

(Hardness) We provide a reduction from an arbitrary instance of
M-∀∃QBF given in Definition 14. Let

Φ= ∀y1 . . . ym∃z1 . . . zn φ1 ∧ φ2 ∧ · · · ∧ φk,

be a partially quantified Boolean formula in 3CNF over V =
{x1, . . . , xl, y1, . . . , ym, z1, . . . , zn}, where every clause φi is
a disjunction of three literals, and c is an integer constant.
For every clause φi = ◦ui ∨ ◦vi ∨ ◦wi, define ground atoms
Mi(νi(ui), νi(vi), νi(wi)), where νi is a truth assignment to the
variables ui, vi, wi that satisfies φi. Observe that, for every clause,
the number of such assignments is bounded by 23. The partial

assignment ν|s1...sn denotes the restriction of ν to the variables
{s1, . . . , sn}. Construct the probabilistic KB KΦ = (ΓΦ,PΦ) where

PΦ = {〈Mi(νi(ui), νi(vi), νi(wi)) : ν|{x1,...,xl}∩{ui,vi,wi}
〉 |

νi |= φi, 1 ≤ i ≤ k}
∪ {〈S(0, 1, i)〉 , 〈S(1, 0, i)〉 | 1 ≤ i ≤ m},

ΓΦ = {S(x, y, z) ∧ S(y, x, z) → ⊥}.
Here, all probabilistic facts are soft, and the NC is hard. Let the

event space be defined over the x-variables such that every world has
the probability 0.5l. Then, for the query

QΦ = ∃ x1 . . . xl, y1 . . . ym z1 . . . zl

k∧
i=1

Mi(ui, vi, wi) ∧
m∧
i=1

S(yi, y
′
i, i),

we obtain the reduction:

PKΦ(Q) ≥ c · 0.5l iff M-∃QBF(Φ, c) answers yes.

Observe that the above reduction can be done in polynomial time
in the size of Φ, that the resulting probabilistic program is fixed and
consists only of one NC, and the arity of all predicates is at most 3. �

E PROOF SKETCH FOR THEOREM 15

(Membership) This result is a consequence of Theorem 4 and Corol-
lary 11, where k is set to coNP, and the fact that PPcoNP = PPNP

(Hardness) We provide a reduction from the PPNP-complete problem
of, given a partially quantified Boolean formula

Φ= ∀y1 . . . ym φ1 ∨ φ2 ∨ · · · ∨ φk,

over V = {x1, . . . , xl, y1, . . . , ym}, where every φi is a conjunction
of three literals, and an integer constant c, deciding whether for at
least c truth assignments τ to x1 . . . xl, the formula

∀y1 . . . ym τ(φ1) ∨ τ(φ2) ∨ · · · ∨ τ(φk)

is true. Let φi = ◦ui,1 ∧ ◦ui,2 ∧ ◦ui,3. We define the PDB PΦ that
contains the deterministic tuples

〈
M(ui,1, u

′
i,1, ui,2, u

′
i,2, ui,3, u

′
i,3, i)

〉

such that u′
i,j = 1 (resp., u′

i,j = 0), if ui,j occurs positively (resp.,
negatively) in φi, 1 ≤ i ≤ k, 1 ≤ j ≤ 3. Furthermore, we add the
soft probabilistic facts 〈S(0, 1, xi) : ¬xi〉 and 〈S(1, 0, xi) : xi〉 such
that i ∈ {1, . . . , l}, and the soft probabilistic facts 〈S(0, 1, yi)〉 and
〈S(1, 0, yi)〉 such that i ∈ {1, . . . ,m}.

We define the program ΓΦ = {S(x, y, z) ∧ S(y, x, z) → ⊥},
consisting of one hard NC, and therewith the probabilistic KB
KΦ = (ΓΦ,PΦ). The event space is defined over the x-variables
such that every world has the probability 0.5l. Then, for the query Φ

∃ . . . M(ui, ai, vi, bi, wi, ci, i) ∧
S(ai, a

′
i, ui) ∧ S(bi, b

′
i, vi) ∧ S(ci, c

′
i, wi),

we obtain that PKΦ(Q) ≥ c·0.5l iff for at least c truth assignments τ
to x1 . . . xl, the formula

∀y1 . . . ym τ(φ1) ∨ τ(φ2) ∨ · · · ∨ τ(φk)

is true. This reduction can clearly be done in polynomial time in the
size of Φ, the resulting probabilistic program consists of exactly one
NC and is fixed, and the query is also fixed. �

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog± 1421

REFERENCES

[1] Marcelo Arenas, Leopoldo E. Bertossi, and Jan Chomicki, ‘Consistent
query answers in inconsistent databases’, in Proc. PODS, pp. 68–79.
ACM Press, (1999).

[2] The Description Logic Handbook: Theory, Implementation, and Ap-
plications, eds., Franz Baader, Diego Calvanese, Deborah L. McGuin-
ness, Daniele Nardi, and Peter F. Patel-Schneider, Cambridge Univer-
sity Press, 2nd edn., 2007.

[3] Delbert D. Bailey, Vı́ctor Dalmau, and Phokion G. Kolaitis, ‘Phase tran-
sitions of PP-complete satisfiability problems’, Discrete Appl. Math.,
155(12), 1627–1639, (2007).

[4] Catriel Beeri and Moshe Y. Vardi, ‘The implication problem for data
dependencies’, in Proc. ICALP, volume 115 of LNCS, pp. 73–85.
Springer, (1981).

[5] Meghyn Bienvenu, ‘On the complexity of consistent query answering in
the presence of simple ontologies’, in Proc. AAAI. AAAI Press, (2012).

[6] Meghyn Bienvenu and Riccardo Rosati, ‘Tractable approximations of
consistent query answering for robust ontology-based data access’, in
Proc. IJCAI, (2013).

[7] Guy Van Den Broeck, Nima Taghipour, Wannes Meert, Jesse Davis,
and Luc De Raedt, ‘Lifted probabilistic inference by first-order knowl-
edge compilation’, in Proc. IJCAI, pp. 2178–2185, (2011).

[8] Andrea Calı̀, Georg Gottlob, and Michael Kifer, ‘Taming the infinite
chase: Query answering under expressive relational constraints’, J. Ar-
tif. Intell. Res., 48, 115–174, (2013).

[9] Andrea Calı̀, Georg Gottlob, and Andreas Pieris, ‘Towards more ex-
pressive ontology languages: The query answering problem’, Artif. In-
tell., 193, 87–128, (2012).

[10] İsmail İlkan Ceylan, Adnan Darwiche, and Guy Van Den Broeck,
‘Open-world probabilistic databases’, in Proc. KR, pp. 339–348. AAAI
Press, (2016).

[11] İsmail İlkan Ceylan and Rafael Peñaloza, ‘Probabilistic query answer-
ing in the Bayesian description logic BEL’, in Proc. SUM, volume
9310 of LNAI, pp. 21–35. Springer, (2015).

[12] Nilesh Dalvi, Christopher Ré, and Dan Suciu, ‘Probabilistic databases:
diamonds in the dirt’, Commun. ACM, 52(7), 86–94, (2009).

[13] Nilesh Dalvi and Dan Suciu, ‘The dichotomy of probabilistic inference
for unions of conjunctive queries’, J. ACM, 59(6), 1–87, (2012).

[14] Claudia D’Amato, Nicola Fanizzi, and Thomas Lukasiewicz, ‘Tractable
reasoning with Bayesian description logics’, in Proc. SUM, volume
5291 of LNAI, pp. 146–159. Springer, (2008).

[15] Adnan Darwiche and Pierre Marquis, ‘A knowledge compilation map’,
J. Artif. Intell. Res., 17, 229–264, (2011).

[16] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen, ‘ProbLog: A
probabilistic Prolog and its application in link discovery’, in Proc. IJ-
CAI, pp. 2468–2473. Morgan-Kaufmann, (2007).

[17] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn,
Ni Lao, Kevin Patrick Murphy, Thomas Strohmann, Shaohua Sun, and
Wei Zhang, ‘Knowledge Vault: A Web-scale approach to probabilistic
knowledge fusion’, in Proc. KDD, pp. 601–610. ACM Press, (2014).

[18] Thomas Eiter, Thomas Lukasiewicz, and Livia Predoiu, ‘Generalized
consistent query answering under existential rules’, in Proc. KR. AAAI
Press, (2016).

[19] Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa,
‘Data exchange: Semantics and query answering’, Theor. Comput. Sci.,
336(1), 89–124, (2005).

[20] John T. Gill, ‘Computational complexity of probabilistic Turing ma-
chines’, SIAM J. Comput., 6(4), 675–695, (1977).

[21] Georg Gottlob, Thomas Lukasiewicz, Maria Vanina Martinez, and Ger-
ardo I. Simari, ‘Query answering under probabilistic uncertainty in Dat-
alog+/– ontologies’, Ann. Math. Artif. Intell., 69(1), 37–72, (2013).

[22] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, and Gerhard
Weikum, ‘YAGO2: A spatially and temporally enhanced knowledge
base from Wikipedia’, in Proc. IJCAI, pp. 3161–3165, (2013).

[23] Tomasz Imieliski and Witold Lipski, ‘Incomplete information in rela-
tional databases’, J. ACM, 31(4), 761–791, (1984).

[24] Jean Christoph Jung and Carsten Lutz, ‘Ontology-based access to prob-
abilistic data with OWL QL’, in Proc. ISWC, volume 7649 of LNCS, pp.
182–197. Springer, (2012).

[25] Marta Kwiatkowska, Gethin Norman, and David Parker, ‘PRISM:
Probabilistic symbolic model checker’, Computer Performance Eval-
uation Modelling Techniques and Tools, 2324, 200–204, (2002).

[26] Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi,

and Domenico Fabio Savo, ‘Inconsistency-tolerant semantics for de-
scription logics’, in Proc. RR, pp. 103–117, (2010).

[27] Thomas Lukasiewicz, Maria Vanina Martinez, Andreas Pieris, and Ger-
ardo I. Simari, ‘From classical to consistent query answering under ex-
istential rules’, in Proc. AAAI, pp. 1546–1552. AAAI Press, (2015).

[28] Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo I. Simari,
‘Inconsistency handling in Datalog+/– ontologies’, in Proc. ECAI, pp.
558–563, (2012).

[29] Thomas Lukasiewicz, Maria Vanina Martinez, and Gerardo I. Simari,
‘Complexity of inconsistency-tolerant query answering in Datalog+/–’,
in Proc. ODBASE, pp. 488–500, (2013).

[30] Thomas Lukasiewicz and Umberto Straccia, ‘Managing uncertainty
and vagueness in description logics for the Semantic Web’, J. Web Sem.,
6(4), 291–308, (2008).

[31] Tom M. Mitchell, William W. Cohen, Estevam R. Hruschka Jr.,
Partha Pratim Talukdar, Justin Betteridge, Andrew Carlson, Bha-
vana Dalvi Mishra, Matthew Gardner, Bryan Kisiel, Jayant Krish-
namurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapan-
dula Nakashole, Emmanouil Antonios Platanios, Alan Ritter, Mehdi
Samadi, Burr Settles, Richard C. Wang, Derry Tanti Wijaya, Abhi-
nav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm Greaves, and
Joel Welling, ‘Never-ending learning’, in Proc. AAAI, pp. 2302–2310.
AAAI Press, (2015).

[32] Thomas Rölleke Norbert Fuhr, ‘A probabilistic relational algebra for the
integration of information retrieval and database systems’, ACM Trans.
Inf. Syst., 15(1), 32–66, (1997).

[33] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De
Giacomo, Maurizio Lenzerini, and Riccardo Rosati, ‘Linking data to
ontologies’, J. Data Sem., 10, 133–173, (2008).

[34] David Poole, ‘The independent choice logic for modelling multiple
agents under uncertainty’, Artif. Intell., 94(1-2), 7–56, (1997).

[35] Joris Renkens, Dimitar Shterionov, Guy Van den Broeck, Jonas Vlasse-
laer, Daan Fierens, Wannes Meert, Gerda Janssens, and Luc De Raedt,
‘ProbLog2: From probabilistic programming to statistical relational
learning’, Proc. NIPS, 1–5, (2012).

[36] Jaeho Shin, Feiran Wang, Christopher De Sa, Ce Zhang, and Sen Wu,
‘Incremental knowledge base construction using DeepDive’, in Proc.
VLDB, volume 8, (2015).

[37] Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch. Proba-
bilistic Databases, 2011.

[38] Jacobo Torán, ‘Complexity classes defined by counting quantifiers’, J.
ACM, 38(3), 753–774, (1991).

[39] Leslie Gabriel Valiant, ‘The complexity of computing the permanent’,
Theor. Comput. Sci., 8(2), 189–201, (1979).

[40] Moshe Y. Vardi, ‘The complexity of relational query languages’, J.
ACM, 137–146, (1982).

[41] Klaus W. Wagner, ‘The complexity of combinatorial problems with
succinct input representation’, Acta Inf., 23(3), 325–356, (1986).

[42] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu, ‘Probase:
A probabilistic taxonomy for text understanding’, Proc. SIGMOD,
481–492, (2012).

İ.İ. Ceylan et al. / Complexity Results for Probabilistic Datalog±1422

