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Abstract. This paper is devoted to the assignment problem when
the preferences of the agents are defined by qualitative utilities. In
this setting, it is not possible to compare assignments by summing up
individual utilities because the sum operation becomes meaningless.
We study here the optimization of a Sugeno integral of the individual
utilities. We show that the problem is NP-hard in the general case,
but we also identify special cases that are solvable in polynomial
time. Furthermore, we provide a mixed integer programming formu-
lation in the general case, which leads to a compact formulation for
k-minitive capacities.

1 INTRODUCTION

Assignment problems appear in many AI applications, in various
contexts such as task allocation in robot teams [22], auctions with
side constraints [29], heuristic search [21]. Furthermore, the assign-
ment problem is of interest in many problems involving agents ex-
pressing preferences, such as automated resource allocation, match-
ing people with services, time-slot allocation. The standard as-
signment problem can be defined as follows: given a set N =
{a1, . . . , an} of agents and a set T = {t1, . . . , tn} of items, an
n × n utility matrix U = (uij), where uij represents the utility of
item tj for agent ai, we want to determine a one-to-one assignment
maximizing the sum of individual satisfactions. Formally, denoting
by x = (x1, . . . , xn) an assignment, where xi = j if item tj is as-
signed to agent ai, the utility of x for agent ai is ui(x) = uixi and
we want to maximize

∑n
i=1 ui(x) (utilitarian criterion). It is well-

known that the determination of such an optimal assignment can be
performed in polynomial time (e.g., by transforming the problem to
a minimization problem and using the Hungarian method [23]).

However the use of the utilitarian criterion requires utilities to be
evaluated on a cardinal scale. Cardinal utilities rely on the assump-
tion that the magnitude of increments to satisfaction can be com-
pared across different situations [27]. A cardinal utility scale is a
utility index that preserves preference orderings uniquely up to posi-
tive affine transformations. Nevertheless, in many situations, we deal
with data representing people’s opinions, interests, preferences, etc.
In this case, data are often ordinal, and therefore should be handled in
a suitable way unless we have some quite strong arguments making
us believe that it can be handled at a higher level (namely as a car-
dinal scale). As emphasized by Roberts [28], using numerical rep-
resentations of preference orders may lead people to derive mean-
ingless conclusions when preference aggregation is based on usual
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arithmetic operations, even if the utilities uij take value in a valua-
tion scale L that is linearly ordered according to a binary relation �.
This is illustrated in the following example.

Example 1 Consider an assignment problem where |N | = |T | =
4 and the utilities uij are encoded on an ordinal scale L =
{++,+, 0,−,−−}. The scale is endowed with the following linear
order: ++ � + � 0 � − � −−. The utility matrix is:

⎛
⎜⎜⎝

t1 t2 t3 t4

a1 ++ − 0 −
a2 − + 0 +
a3 ++ −− + 0
a4 + −− − −

⎞
⎟⎟⎠.

Now, assume that the initial scale is transformed into a numer-
ical scale, using an arbitrary monotonic transformation function
φ : L → Z+. Consider two possible transformation functions φ
and φ′ defined by:

uij ++ + 0 − −−
φ(uij) 3 2 1 -2 -3
φ′(uij) 2 1 0 -1 -2

Note that both resulting numerical scales are compatible with L,
i.e. λ � λ′ ⇒ φ(λ) > φ(λ′) for all (λ, λ′) ∈ L2. Let us con-
sider now the two assignments x = (3, 2, 4, 1) and x′ = (1, 2, 3, 4).
The associated vectors of individual utilities are u(x) = (0,+, 0,+)
and u(x′) = (++,+,+,−), where the ith component is the utility
of agent ai. With a solver, it can easily be checked that, when using
φ for numerical encoding, assignment x is optimal and x′ is subopti-
mal. Moreover, when using φ′ for numerical encoding, we obtain the
opposite conclusion since x′ is optimal and x is suboptimal. Thus,
one observes that slight changes in the numerical values lead to very
different conclusions. This illustrates the need for algorithms specif-
ically dedicated to assignment problems with qualitative scales.

In order to compare assignments in a qualitative setting, we need to
be able to compare utility vectors y = (y1, . . . , yn), where y = u(x)
and x is an assignment. Several preference models have been pro-
posed to compare solutions when elements are evaluated on a quali-
tative scale (for simplicity, we present them in the setting of a quali-
tative assignment problem):

− Some preference models induce a partial order on the feasi-
ble solutions. The most popular model in this class is the pairwise
dominance relation defined by: y � y′ if there exists a bijection
π : [n] → [n] such that yi � yπ(i) for all i ∈ [n], where
[n] = {1, . . . , n}. The symmetric (resp. asymmetric) part of �, de-
noted by ∼ (resp. �), is the indifference (resp. preference) relation.
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In other words, an assignment x is preferred to x′ if there exists a
bijection π from A to A such that: every agent ai is at least as satis-
fied with x as agent aπ(i) with x′, and there exists at least an agent
ai that is more satisfied with x than agent aπ(i) with x′. We call this
rule ordinal dominance in the following. For example, in the previ-
ous instance, y � y′ for y = u(1, 2, 3, 4) = (++,+,+,−) and
y′ = u(4, 3, 2, 1) = (−, 0,−−,+). To our knowledge, this ordinal
dominance relation was introduced by Bartee [1], and revisited by
Bossong and Schweigert [2, 31]. Several recent works in a qualita-
tive setting use this relation [3, 4, 5].
− Other preference models induce a complete order on the feasible
solutions, namely variations of max ordering, leximax and leximin.
The max (resp. min) ordering relation consists in ranking feasible
assignments according to the agent whose satisfaction is better off
(resp. worse off) among all agents. For example, in the previous in-
stance, if one uses the min ordering relation then y = u(3, 2, 4, 1) =
(0,+, 0,+) is preferred to y′ = u(1, 2, 3, 4) = (++,+,+,−)
since 0 � −. The leximax (resp. leximin) relation is an enrichment
of the max (resp. min) relation, that consists in breaking ties by going
down the ranking (i.e., if the worst satisfactions are both equal, one
compares the second worsts, and so on...). Finally, one can also con-
sider k-max (resp k-min) aggregation operators consisting in evalu-
ating a solution according to its kth largest (resp. smallest) element
(in the sense of the order relation on L).

In this paper, we are interested in the second type of preference mod-
els (those inducing a complete order on the solutions). Finding an
optimal assignment according to all the above-mentioned models can
be performed in polynomial time [7, 15, 19, 32], and sometimes even
faster than in the standard cardinal case. Though appealing from the
algorithmic viewpoint, these preference models (inducing a complete
order on the solutions) are nevertheless quite simple from the norma-
tive and descriptive viewpoints.

Before going on with our contribution, let us mention two related
works that do not fit with the above classification. The first work
deals with assignment problems with ordinal data viewed as social
choice problems, typically with assignment functions based on scor-
ing rules [14]. This amounts to consider ranks instead of costs in the
standard Hungarian method, which does not raise new algorithmic
issues. The second (more recent) work is devoted to a variant of the
covering location problems [34] where the objective function is the
Sugeno integral. To our knowledge, this is the first attempt to make
use of the Sugeno integral in a combinatorial setting. Yet, their moti-
vation is totally different from ours, as they use it to model fuzziness.

We also study here this sophisticated aggregation operator named
Sugeno integral, that subsums all the previous models and encom-
passes a much broader set of decision behaviors. Namely, we inves-
tigate the optimization of a Sugeno integral of the individual utili-
ties. The paper is organized as follows. In Section 2, we present the
Sugeno integral and some special cases of interest. Then, we show
that the determination of an optimal assignment in these special cases
can be performed in polynomial time (Section 3) while the problem is
NP-hard in the general case (Section 4). Finally, we provide a mixed
integer programming formulation for the general case, and we briefly
discuss the results of preliminary numerical tests (Section 5).

2 THE SUGENO INTEGRAL

In order to compare assignments in a qualitative setting, we need to
be able to compare utility vectors y = (y1, . . . , yn), where yi ∈ L

is the utility of agent ai (in Example 1, yi corresponds to the grade
of the task assigned to agent ai) and L is any finite qualitative scale.

The Sugeno integral is precisely an aggregation operator for ordinal
scales, that enables to combine several qualitative values into a sin-
gle representative one. This operator has been introduced by Sugeno
[33], and has many applications in qualitative decision theory under
uncertainty [6, 12] and multicriteria decision making [11, 17].

Before coming to the Sugeno integral (and to ease its presenta-
tion), let us previously introduce the weighted maximum [9], that can
be seen as a qualitative version of weighted sum, where the sum is
replaced by operation max, and the product by operation min. As-
sume that each agent ai has an importance weight wi, expressed on
the same ordinal scale L as the utilities. The weighted maximum of
a vector y ∈ Ln then reads as follows: maxi∈[n] min{wi, yi}. For
instance, for allocating the different tasks involved in the writing of a
research consortium proposal, the head of the consortium may accept
to receive a low-rated task if it helps increase the overall satisfaction.
This can be modelled by stating that the utility of the head is at most
–let’s say– “−” whatever task assigned to her. In other words, the
only case in which the satisfaction level yi of the head is taken into
account should be when a task she rated −− is assigned to her. The
weighted maximum aggregation operator makes it possible by set-
ting wi = − for the head. Importantly, note that the discriminative
power of the weighted maximum can be enhanced by using for the
weights a scale L′ such that L′ ⊇ L. The possible aggregate values
are indeed then in L′, whose range can be much larger than the one
of L.

The Sugeno integral generalizes the weighted maximum by using
the notion of capacity. In this respect, it is acknowledged as the qual-
itative counterpart of the Choquet integral [30]. A capacity is a set
function v : 2N → L that represents the importance of a coalition of
agents in the present setting. Note that, as for the importance weights
in the weighted minimum, the utilities and the capacity values are
both expressed on scale L. Here also, the discriminative power of
the Sugeno integral can be significantly enhanced by using a scale
L′ ⊇ L for the capacity values. For simplicity, the range of the capac-
ity is assumed to be L in the sequel of the paper, but all the presented
results are still valid if an enriched scale is used for the capacity val-
ues. Another way of breaking ties is to use lexicographic refinements
of the Sugeno integral [8, 16]. Most of the algorithms proposed in the
remainder of the paper can be adapted to handle such refinements.

Definition 1 Consider the finite set [n] = {1, . . . , n} . A capacity is
a set function v : 2[n] → L such that:
i) v(∅) = ⊥, v([n]) = 
,
ii) ∀A,B ⊆ [n], A ⊆ B ⇒ v(A)  v(B),
where 
 (resp. ⊥) denotes the max (resp. min) element in L accord-
ing to �.

For any subset A ⊆ [n], v(A) represents the importance of coali-
tion A of agents. Let us now recall some definitions about capacities.

Definition 2 Let v be a capacity on [n]. We say that v is:
− minitive if for any subsets A,B ⊆ [n], v(A∩B) = v(A)∧v(B);
− maxitive if for any subsets A,B ⊆ [n], v(A∪B) = v(A)∨v(B);
− symmetric if for any subsets A,B ⊆ [n], |A| = |B| implies
v(A) = v(B);
where ∧ := min and ∨ := max.

We are now able to define the Sugeno integral:

Definition 3 The discrete Sugeno integral of y = (y1, . . . , yn) has
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the following equivalent formulas:

Sv(y) :=
n∨

i=1

(y(i) ∧ v(A(i))) (1)

Sv(y) :=
n∧

i=1

(y(i) ∨ v(A(i+1))) (2)

where (·) is a permutation on [n] such that y(1)  . . .  y(n),
∨ := max, ∧ := min, A(i) := {(i), . . . , (n)} and A(n+1) := ∅.

Note that, even if there are several permutations σ such that
yσ(1)  . . .  yσ(n) (due to possible ex aequos), the value of the
Sugeno integral is uniquely defined. In formula 2 above, v(A(i+1))
represents the importance of the coalition of agents that are better off
than ai in y. The utility yi of agent ai will be more taken into account
in the evaluation of y as the importance of this coalition will be low.

Example 2 Coming back to Example 1, consider assignment x =
(1, 2, 3, 4). The corresponding utility vector is y = (++,+,+,−).
Assume that v({1}) = 0, v({1, 2}) = +, v({1, 2, 3}) = ++. By
definition of a capacity, v(∅) = −− and v([4]) = ++. The Sugeno
integral Sv(y) of y reads as follows:

∨4
i=1(y(i) ∧ v(A(i)))

= (y4∧v([4]))∨(y3∧v({1, 2, 3}))∨(y2 ∧v({1, 2}))∨(y1∧v({1}))
= (− ∧++) ∨ (+ ∧++) ∨ (+ ∧ +) ∨ (+ + ∧ 0) = +

Equivalently, it reads as follows:
∧4

i=1(y(i) ∨ v(A(i+1)))

= (y4∨v({1, 2, 3}))∧(y3∨v({1, 2}))∧(y2∨v({1}))∧(y1∨v(∅))
= (− ∨++) ∧ (+ ∨+) ∧ (+ ∨ 0) ∧ (+ + ∨ −−) = +

A well-known example of Sugeno integral is the so-called h-index,
used to measure both the productivity and citation impact of a scien-
tist. If an author has published n papers, let us define (y1, . . . , yn)
as the citation vector of the author, where yi is the number of times
paper i is cited. By setting v(A(i)) = |A(i)| = n − i + 1, the value
Sv(y) is nothing else but the h-index of the author [35].

The Sugeno integral is more expressive than the weighted max-
imum, which is only a special case obtained for a maxitive capac-
ity v such that v({i}) = wi for all i ∈ [n] [18] (in this case,
v(A) = maxi∈A wi, which makes v a possibility measure, and
weighted max a qualitative expected utility [10]). Actually, Marichal
[25] showed that if one restricts to the use of a combination of
max and min operators (together with qualitative weights), then the
Sugeno integral is the only solution for aggregating qualitative val-
ues, provided one adds the natural constraint that the aggregated
value for (⊥, . . . ,⊥) should be ⊥ and the one for (
, . . . ,
) should
be 
.

The Sugeno integral includes other well identified special cases
[18]:

− Sv(y) = mini yi iff v(A) := ⊥ for all A � [n];
− Sv(y) = maxi yi iff v(A) := 
 for all A ⊆ [n], A �= ∅;
− Sv(y) = k-miniyi iff v(A) := ⊥ for |A| ≤ n − k and 

otherwise;
− Sv(y) is the ordered weighted maximum w.r.t. w defined by
OWMax(y) := ∨n

i=1(wi ∧ y(i)) where y(1)  . . .  y(n)

and w1 � . . . � wn, iff v is a symmetric capacity such that
v(A) = wn−|A|+1 for any A ⊆ [n], A �= ∅;

− Sv(y) is the ordered weighted minimum defined by
OWMinw(y) := ∧n

i=1(wi ∨ y(i)) where y(1)  . . .  y(n)

and w1 � . . . � wn, iff v is a symmetric capacity such that
v(A) = wn−|A| for any A � [n].

The ordered weighted minimum encompasses a gradation of aggre-
gation operators ranging from the min operator (wi = ⊥ for all i) to
the max operator (wn = ⊥ and wi = 
 for i �= n), including the
k-min operators. Note that the assumption w1 � . . . � wn is not
restrictive since ∧n

i=1(wi ∨ y(i)) = ∧n
i=1((∧i

k=1wi) ∨ y(i)).

Example 3 Coming back to Example 1, assume now that we wish to
evaluate utility vector y = (++,+,+,−) with the ordered weighted
minimum and weights w1 = ++, w2 = 0, w3 = − and w4 = −−.
The ordered weighted minimum OWMinw(y) is:

(w1 ∨ y(1)) ∧ (w2 ∨ y(2)) ∧ (w3 ∨ y(3)) ∧ (w4 ∨ y(4))
= (w1 ∨ y4) ∧ (w2 ∨ y3) ∧ (w3 ∨ y2) ∧ (w4 ∨ y1)
= (+ + ∨−) ∧ (0 ∨+) ∧ (− ∨+) ∧ (−− ∨++) = +

In the next section, we show that an assignment maximizing the
OWMinw operator can be determined in polynomial time, as well as
one optimizing the weighted minimum.

3 POLYNOMIAL CASES

This section is devoted to the presentation of polynomial time solu-
tion procedures for the determination of optimal assignments accord-
ing to special cases of the Sugeno integral.

3.1 Weighted min and weighted max

To warm up, we begin with the weighted minimum and the weighted
maximum because it is very simple to show the polynomial time
complexity in these cases. The solution procedures are derived from
the threshold method for the max min assignment problem.

The max min assignment problem aims at determining an assign-
ment x that maximizes mini ui(x), where ui(x) is the (qualitative)
utility of agent ai in assignment x. We recall that the threshold algo-
rithm to compute a max min assignment works as follows: it consists
in determining max{λ ∈ L : ∃x ∀i ui(x) � λ}. In order to
know if the max min value is greater or equal to a given λ ∈ L, one
uses a max flow algorithm to compute a maximal matching in the
bipartite graph Gλ = (V1, V2, E) where V1 = {a1, . . . , an} (resp.
V2 = {t1, . . . , tn}) is the set of agents (resp. tasks) and there is an
edge between ai and tj if uij � λ. We recall that a maximal match-
ing is a set of non-adjacent edges of maximal cardinality. It is said to
be perfect when the cardinality is n. The maximal matching is per-
fect in Gλ iff the value of a max min assignment is at least λ. One
can use a bisection search on L to speed up the determination of the
minimal λ such that a feasible assignment exists. This assignment is
then a max min assignment.

The adaptation of this method to compute a maximal assignment
according to a weighted minimum ∧n

i=1(wi ∨ ui(x)) simply con-
sists in replacing uij by uij ∨ wi in the matrix, and then applying
the threshold method used for the max min case. The correctness
of this approach is obvious. The generation of the transformed ma-
trix is in O(n2), and then there are at most log |L| calls to a max
flow algorithm in O(n3) [24]. The overall complexity is therefore
O(n3 log |L|).

This positive result also holds for the determination of an assign-
ment maximizing the weighted maximum ∨n

i=1(wi ∧ ui(x)). Such
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an assignment can indeed be simply computed as follows. Let i∗, j∗

denote indices such that ui∗j∗ = maxi maxj(uij ∧ wi). Any as-
signment where task tj∗ is assigned to agent ai∗ is optimal for the
weighted maximum.

3.2 OWMin and OWMax

The procedure to determine a maximal assignment according to the
OWMinw operator is also a threshold method, based on the following
proposition:

Proposition 1 Let y ∈ Ln. The following property holds:

|{i ∈ [n] : yi � λ}| ≥ |{i ∈ [n] : wi ≺ λ}| ⇔ OWMinw(y) � λ.

Proof Assume that |{i ∈ [n] : yi � λ}| ≥ |{i ∈ [n] : wi ≺ λ}|.
By definition of OWMinw(y), this implies that all values y(i) ≺ λ
are weighted by wi � λ. Consequently, OWMinw(y) � λ.

Conversely, assume that |{i ∈ [n] : yi � λ}| < |{i ∈ [n] : wi ≺
λ}|. By definition of OWMinw(y), this implies there exists a rank i
for which y(i) ≺ λ and wi ≺ λ. Consequently, OWMinw(y) ≺ λ.

Proposition 1 may be interpreted in the following way in the
setting of ordinal assignment problems: the value of the ordered
weighted min of an assignment is greater than or equal to λ if and
only if there are at least g(λ) agents whose (qualitative) utility is at
least λ, where g(λ) = |{i ∈ [n] : wi ≺ λ}|. A threshold method
can therefore be used to determine min{λ ∈ L : ∃x s.t. |{i ∈
[n] : ui(x) � λ}| ≥ g(λ)}. In order to know if the optimal
value is greater than or equal to a given λ ∈ L, one uses a max
flow algorithm to compute a maximal matching in the same bipar-
tite graph Gλ as above, where the set of edges is now defined by
E = {{ai, tj} : uij � λ}. If the cardinality of a maximal match-
ing is greater than or equal to g(λ), then the optimal value is greater
than or equal to λ, otherwise it is the opposite. By using here also
a binary search to determine the minimal λ, the complexity of the
whole threshold method is of course the same as for the max min
case (O(n3 log |L|)).

Example 4 Coming back to Example 1, assume that we wish
to determine an optimal assignment for OWMinw with w =
(++, 0,−,−−). The matrix with the utilities of the agents is re-
called on the top of Figure 1. Since we have |{i ∈ [n] : wi ≺
++}| = 3 and there does not exist a matching of cardinality 3
in G++ (graph in the bottom left corner of Figure 1), the optimal
value is necessarily strictly smaller than ++. However, we have
|{i ∈ [n] : wi ≺ +}| = 3 and there exists a matching of car-
dinality 3 in G+ (see the dotted egdes in the bottom right graph of
Figure 1). By completing this matching in a complete assignment (by
assigning task t4 to agent a4 here), one obtains an assignment x such
that OWMinw(u(x)) = +. This assignment is optimal for OWMinw.

A similar approach can be used for maximizing an OWMax op-
erator: the value of the ordered weighted max of an assignment is
greater than or equal to λ if and only if there are at least g(λ) + 1
agents whose qualitative utility is at least λ.

Remark 1 Note that the ordered weighted operators f : Ln → L

suffer from the drowning effect, i.e. one can have f(y) = f(y′)
while y′ � y (ordinal dominance). This is due to the fact that
all these operators use max and min operations. In order to guar-
antee that the returned assignment x is non-dominated (i.e., ∀x′

not(u(x′) � u(x))), one can adapt the threshold methods as fol-
lows. One replaces the max flow algorithm by a max flow min cost
algorithm from s to t in the network G = (V,E, c) with unit capaci-
ties, where V = {a1, . . . , an}∪{t1, . . . , tn}∪{s, t}, E = {(s, ai) :
i ∈ [n]} ∪ {(ai, tj) : i ∈ [n], j ∈ [n]} ∪ {(tj , t) : j ∈ [n]} and
the costs of edges (with unit capacities) are defined by c(ai, tj) = ελ
(resp. 1 + ελ) if uij � λ (resp. uij ≺ λ), c(s, ai) = 0, c(tj , t) = 0.
Futhermore, we assume that ελ < ελ′ for λ � λ′ and that ελ � 1
∀λ ∈ L. The reader can easily verify that the min cost of a max s-t
flow in G is strictler smaller than 1 (resp. n− g(λ) + 1) iff there are
at least n (resp. g(λ)) edges of costs ελ (λ ∈ L) with a flow 1. We
claim that the assignment corresponding to a max flow of min cost
for the optimal value of λ necessarily is non-dominated. This comes
from the fact that y′ � y ⇒ ∑

i∈[n] εy′
i
<

∑
i∈[n] εyi .

⎛
⎜⎝

t1 t2 t3 t4
a1 ++ − 0 −
a2 − + 0 +
a3 ++ −− + 0
a4 + −− − −

⎞
⎟⎠

G+

a1

a2

a3

a4

t1

t2

t3

t4

G++

a1

a2

a3

a4

t1

t2

t3

t4

Figure 1: Illustration of Example 4.

3.3 Sugeno with k-maxitive capacities

We now show how to extend the polynomiality result for the
weighted maximum to a wider class of Sugeno integrals. In order
to define this class, let us recall the definition of the Möbius trans-
form of a capacity v in a qualitative setting and the formulation of
the Sugeno integral in terms of ordinal Möbius masses. Note that the
Möbius transform is not uniquely defined in the ordinal case [18].
Nevertheless, we use in this paper a specific Möbius transform that
we call canonical ordinal Möbius transform.

Definition 4 The canonical ordinal Möbius transform of a capacity
v is the set function m on [n] defined by:

m(A) :=

{
v(A) if v(A) � v(A \ {i}), ∀i ∈ A

⊥ otherwise,

Note that if v(A) ∈ L then m(A) ∈ L. Coefficients m(A), for
A ⊆ [n], are called ordinal Möbius masses. Conversely, capacity v
can be recovered from m using the following equation:

v(E) =
∨

A⊆E

m(A)
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Interestingly enough, any Sugeno integral can be rewritten using or-
dinal Möbius masses as follows [18]:

Sv(y) =
∨

A⊆[n]

(
∧
i∈A

yi ∧m(A)) (3)

The computation of Sv(y) with Equation 3 involves 2n Möbius
masses. However only a polynomial number of them must be con-
sidered in some particular cases. For example, this is the case for
k-maxitive capacities that can be seen as ordinal counterparts of k-
additive capacities, see [26].

Definition 5 A capacity v defined on an ordinal scale L endowed
with a smallest (resp. greatest) element denoted by ⊥ (resp. 
) is
said to be k-maxitive if the canonical Möbius transform m satisfies:

(i) ∀A ⊆ [n], |A| > k ⇒ m(A) = ⊥

(ii) ∃A ⊆ [n], |A| = k s.t. m(A) �= ⊥

Given a capacity v, there is no need to explicitly compute all or-
dinal Möbius masses to decide whether it is k-maxitive or not. The
recognition can be made directly on v using the following character-
ization result:

Proposition 2 v is a k-maxitive capacity if and only if v(A) =

 ∀A ⊆ [n] such that |A| ≥ k.

Proof Assume that v is k-maxitive. By definition, ∀A ⊆ [n],
|A| > k ⇒ m(A) = ⊥ which implies that ∀A ⊆ [n], |A| > k ⇒
v(A) = v(A \ {i}) ∀i ∈ A. Since v([n]) = 
 we obtain the desired
result by induction. Conversely, for any A such that |A| > k and
any i ∈ A, we have v(A) = v(A \ {i}) = 
. Hence m(A) = ⊥ by
Definition 4, which completes the proof.

Interestingly enough, the Sugeno integral can be reformulated as
follows for k-maxitive capacities:

Sv(y) =
∨

A⊆[n]

(
∧
i∈A

yi ∧m(A))

= (
∨

A⊆[n],|A|≤k

(
∧
i∈A

yi∧m(A)))∨(
∨

A⊆[n],|A|>k

(
∧
i∈A

yi∧m(A)))

= (
∨

A⊆[n],|A|>k

(
∧
i∈A

yi ∧m(A))) ∨ (
∨

A⊆[n],|A|>k

(
∧
i∈A

yi ∧ ⊥))

= (
∨

A⊆[n], |A|≤k

(
∧
i∈A

yi ∧m(A)))) ∨ (
∨

A⊆[n], |A|>k

(⊥))

=
∨

A⊆[n], |A|≤k

(
∧
i∈A

yi ∧m(A))

This compact formulation of the Sugeno integral, involving only(
n
k

)
coefficients, enables to identify a new polynomial case:

Theorem 1 The determination of an assignment x maximizing
Sv(u(x)) can be performed in polynomial time if the capacity is k-
maxitive for a fixed k.

Proof Given a feasible assignment x, the Sugeno value of u(x) for
a k-maxitive capacity reads:

Sv(u(x)) =
∨

A⊆[n],|A|≤k

(
∧
i∈A

uixi ∧m(A))

Thus, we easily deduce the following:

Sv(u(x)) � λ ⇔
[
∃A ⊆ [n], |A| ≤ k s.t. (

∧
i∈A

uixi∧m(A)) � λ

]

To check if an assignment x s.t. Sv(u(x)) � λ exists, we propose
the following procedure. For every A ⊆ [n] |A| ≤ k s.t. m(A) � λ,
compute a maximal matching Mλ(A) in the bipartite graph
GA

λ = (A, T,Eλ), where Eλ = {(ai, tj) | uij � λ}. The proce-
dure can be stopped as soon as a set A such that |Mλ(A)| = |A|
is found. Matching Mλ can then be arbitrarily completed into a
feasible assignment, without downgrading the Sugeno value. If no
such set A is found, then maxx Sv(u(x)) ≺ λ. By using a standard
bisection algorithm, we can determine the maximal λ such that
Sv(u(x)) � λ for some feasible assignment x. The corresponding
assignment x is, by construction, an optimal assignment. For each
value of λ, there are at most O(nk) calls to a max flow algorithm in
O(n3). The number of examined values for λ is in O(log |L|). The
overall complexity is therefore O(n3+k log |L|).

4 COMPLEXITY IN THE GENERAL CASE

In this section we prove that the determination of a Sugeno optimal
assignment is an NP-hard problem. We assume that the size function
of an instance of the ordinal assignment problem is n. Consequently,
we also assume that the capacity function is not defined in extension
(which would take up O(2n) space), but rather that the determination
of v(A) for a given A ⊆ [n] can be carried out in polynomial time in
n. The following result holds:

Theorem 2 The determination of an assignment x maximizing
Sv(u(x)) is NP-hard, even if |L| = 2.

Proof The proof relies on a polynomial reduction from the mono-
tone 1-in-3-SAT problem defined as follows:
Instance: A collection of clauses C = {C1, · · · , Cm}, each clause
consists of exactly three variables, the set of boolean variables is de-
noted by B = {b1, · · · , bn}, and all literals are positive.
Question: Does there exists a truth assignment of boolean variables
in B such that each clause has exactly one true variable ?
From an instance of 1-in-3-SAT, we define an instance of the ordinal
assignment problem as follows:
− the set of agents is N = {b1i1 , b1j1 , b1k1

, . . . , bmim , bmjm , bmkm
} where

ip (resp. jp, kp) denotes the index of the first (resp. second, third)
variable in Cp;
− the set of tasks is T = {c1, . . . , cm} ∪ {f1, · · · , f2m} where task
cp represents clause Cp and tasks f1, · · · , f2m are added to have
|N | = |T | = 3m;
− the utility of assigning task cp to bp• (∀p ∈ [m]) is 
, otherwise it
is ⊥.
− the capacity v in the Sugeno integral is:

v(A) =

⎧⎪⎨
⎪⎩

� if |A| > m
� if |A| = m and ∀i ∈ [n], A ∩Ni 
= ∅ ⇒ Ni ⊆ A
⊥ if |A| = m and not(∀i ∈ [n], A ∩Ni 
= ∅ ⇒ Ni ⊆ A)
⊥ if |A| < m

where Ni = {bpi : p ∈ [m] and bpi ∈ N} is the set of occurences of
variable bi in N (it is easy to check that the capacity is well defined).
For illustration, the matrix obtained from formula (b1 ∨ b2 ∨ b3) ∧
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(b1 ∨ b2 ∨ b5) ∧ (b2 ∨ b3 ∨ b4) is (all empty components are ⊥):

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c1 c2 c3 f1 f2 f3 f4 f5 f6
b11 �
b12 �
b13 �
b21 �
b22 �
b25 �
b32 �
b33 �
b34 �

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We claim that the value of an optimal assignment w.r.t. Sv is 
 iff
the answer to the 1-in-3-SAT instance is yes.

First, assume that the value of an optimal assignment x w.r.t. Sv

is Sv(u(x)) = 
. Let y = u(x) denote the vector of individual
utilities (3m components) for x. We recall that our objective function
is Sv(y) = ∧3m

i=1(y(i) ∨ v(A(i+1))). By construction of the instance
of the ordinal assignment problem, there are at most m components
of y that are equal to 
. By definition of v, v(A(i+1)) = ⊥ for
i = 2m + 1, . . . , 3m (because |A(i+1)| < m). Consequently, we
necessarily have y(i) = 
 for i = 2m + 1, . . . , 3m (otherwise
Sv(y) �= 
). By looking at y(2m+1), . . . , y(3m), for each clause we
have therefore one variable (belonging to the clause) assigned to it.
By setting these variables to true and the other variables to false, one
obtains a feasible truth assignment for the 1-in-3-SAT instance if the
following property holds: if a variable belongs to several clauses, if
it is assigned to one of them, then it is assigned to all of them. This is
ensured by the way capacity v is defined. As shown previously, we
have indeed necessarily y(2m) = ⊥, which implies v(A(2m+1)) =

 (otherwise Sv(y) �= 
). Note that |A(2m+1)| = m. By definition
of v, it means that ∀i ∈ [n] A ∩ Ni �= ∅ ⇒ Ni ⊆ A, which is
precisely the required property.

Conversely, assume that the answer to the 1-in-3-SAT instance
is yes. By assigning cp to bpi iff variable bi is true in the solution
of the 1-in-3-SAT instance, one obtains an assignment x such that
Sv(u(x)) = 
 (this is proved by similar arguments as above).

Since a polynomial procedure is unlikely to exist in the general
case (unless P = NP ), we looked for a MIP formulation. This is
the topic of the next section.

5 A MIP FORMULATION

To model our problem as a mixed integer program (MIP), we need
to find a linear reformulation of the Sugeno integral. In this respect,
Equations 1 and 2 are not very useful because they are based on a
sorting of the components of y, therefore their linearization would re-
quire to introduce binary permutation variables. Equation 3 presents
a more interesting form since the ordered aggregation is achieved by
an aggregation over all subsets of N . This type of formulation may
appear as intractable as the number of agents increase, but we are
going to show that it can be efficiently used to minimize the Sugeno
integral provided that the capacity is k-maxitive. Note that the maxi-
mization case has been treated in Section 3 dedicated to the polyno-
mial cases. Let us consider the following minimization problem, that
can be of interest when variables yi represent disutilities:

min
∨

A⊆[n]

(
∧
i∈A

yi ∧m(A))

s.t. y ∈ Y

where Y ⊆ [0, 1]n denotes the set of feasible utility vectors. It is
equivalent to the MIP:

min w (4)

s.t.

⎧⎨
⎩

w ≥ tA ∀A ⊆ [n]
tA =

∑
i∈A bAi yi + bA0 m(A) ∀A ⊆ [n]∑

i∈A bAi + bA0 = 1 ∀A ⊆ [n]
(5)

where bAi ∈ [0, 1] and tA =
∑

i∈A bAi yi + bA0 m(A) represents
the value

∧
i∈A(yi ∧ m(A)) at optimum. Note that constraint 5 is

quadratic, but the quadratic terms can be removed by introducing
product variables pAi = bAi yi and the following constraints:

pAi ≤ bAi (6)

pAi ≤ yi (7)

pAi ≥ yi + bAi − 1 (8)

This usual reformulation through the linearization constraints 6, 7
and 8 is due to Fortet [13, 20]. Every triple of constraints insures that
bAi = 0 ⇒ pAi = 0 and bAi = 1 ⇒ pAi = yi. Hence we obtain the
following mathematical program:

min w

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w ≥ tA ∀A ⊆ [n]
tA =

∑
i∈A pAi + bA0 m(A) ∀A ⊆ [n]∑

i∈A bAi + bA0 = 1 ∀A ⊆ [n]
pAi ≤ bAi ∀A ⊆ [n] ∀i ∈ A
pAi ≤ yi ∀A ⊆ [n] ∀i ∈ A
pAi ≥ yi + bAi − 1 ∀A ⊆ [n] ∀i ∈ A

This formulation is not compact for general capacities since the num-
ber of variables and constraints grows exponentially with n. However
the formulation becomes compact for k-maxitive capacities. Under
the k-maxitivity assumption indeed, we have

∧
i∈A(yi∧m(A)) = ⊥

for |A| > k. The constraints and variables that were needed for all
subsets of [n] become therefore only necessary for all subsets of size
not greater than k. Hence the number of variables and constraints
becomes polynomial in n (assuming that k is a constant).

Unfortunately the linearization technique presented in the case of
a minimization does not apply directly for maximizing the Sugeno
integral. To overcome the problem, we now use another formulation
of the Sugeno integral based on ordinal co-Möbius masses [18]. We
use here the canonical ordinal co-Möbius transform m defined by:

m(A) :=

{
v([n]\A) if v([n]\A) < v(([n]\A)∪{i}), ∀i ∈ A


 otherwise,

Note that, here also, m(A) ∈ L. The Sugeno integral can be ex-
pressed as a function of m as follows [18]:

Sv(y) =
∧

A⊆[n]

(
∨
i∈A

y(i) ∨m(A)) (9)

Let us consider now the maximization problem:

max
∧

A⊆[n]

(
∨
i∈A

y(i) ∨m(A))

s.t. y ∈ Y

This problem can be reformulated as:

max w (10)

s.t.

⎧⎨
⎩

w ≤ dA ∀A ⊆ [n]
dA =

∑
i∈A bAi yi + bA0 m(A) ∀A ⊆ [n]∑

i∈A bAi + bA0 = 1 ∀A ⊆ [n]
(11)
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where bAi ∈ [0, 1] and dA =
∑

i∈A bAi yi + bA0 m(A) represents the
value

∨
i∈A y(i) ∨m(A) at optimum. Using the Fortet linearization

recalled above, the maximization problem can be reformulated as
follows:

max w (12)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

w ≤ dA ∀A ⊆ [n]
dA =

∑
i∈A pAi + bA0 m(A) ∀A ⊆ [n]∑

i∈A bAi + bA0 = 1 ∀A ⊆ [n]
pAi ≤ bAi ∀A ⊆ [n] ∀i ∈ A
pAi ≤ yi ∀A ⊆ [n] ∀i ∈ A
pAi ≥ yi + bAi − 1 ∀A ⊆ [n] ∀i ∈ A

(13)

Here also, a more compact formulation can be obtained for k-
minitive capacities:

Definition 6 A capacity v defined on an ordinal scale L endowed
with a smallest (resp. greatest) element denoted by ⊥ (resp. 
) is
said to be k-minitive if its ordinal co-Möbius transform is equal to

 for any A ⊆ [n] such that |A| > k, and there exists at least one
subset A of exactly k elements such that m(A) �= 
. Formally:

(i) ∀A ⊆ [n], |A| > k ⇒ m(A) = 

(ii) ∃A ⊆ [n], |A| = k s.t. m(A) �= 


Given a capacity v, there is no need to explicitly compute all ordi-
nal co-Möbius masses to decide whether it is k-maxitive or not. The
recognition can be made directly on v by using the following result:

Proposition 3 v is a k-minitive capacity if and only if v([n] \ A) =
⊥ for all A ⊆ [n] such that |A| ≥ k.

Proof Assume that v is k-minitive. By definition, ∀A ⊆ [n],
|A| > k ⇒ m(A) = 
 which implies that ∀A ⊆ [n], |A| > k
⇒ v([n] \ A) = v(([n] \ A) ∪ {i}) ∀i ∈ A. Since v(∅) = ⊥ we
obtain the desired result by induction. Conversely, let A be a subset
such that |A| = k. We have v([n] \ A) = v([n] \ A) ∪ {i} = ⊥ for
all i ∈ A. Hence m(A) = 
 by definition of m, which completes
the proof.

Under the k-minitivity assumption, the constraints and variables
that were needed for all subsets of [n] become therefore only neces-
sary for all subsets of size not greater than k.

In order to apply this mathematical programming technique to the
Sugeno assignment problem (maximization case) where utilies are
expressed on a qualitative scale L, we need first to convert L to the
following numeric scale C = { 1

|L| ,
2
|L| , · · · , 1}. Then we consider

boolean variables zij representing assignment decisions. We have
zij = 1 whenever task j is assigned to agent i and zij = 0 otherwise.
Hence, assignment constraints are expressed as follows:

∑n
i=1 zij = 1, j = 1, . . . , n (14)∑n
j=1 zij = 1, i = 1, . . . , n (15)

The utility of agent i is therefore defined by yi =
∑n

j=1 uijzij .
Note that, due to constraint (15), this definition of yi ensures that
yi ∈ [0, 1]. Hence, the vector of individual utilities is given by
y = (y1, . . . , yn) ∈ [0, 1]n. These variables yi can be used in combi-

nation with Program 12-13, which yields the following overall MIP:

max w

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑n
i=1 zij = 1 j = 1, · · · , n∑n
j=1 zij = 1 i = 1, · · · , n

yi =
∑n

j=1 uijzij i = 1, · · · , n
w ≤ dA ∀A ⊆ [n]
dA =

∑
i∈A pAi + bA0 m(A) ∀A ⊆ [n]∑

i∈A bAi + bA0 = 1 ∀A ⊆ [n]
pAi ≤ bAi ∀A ⊆ [n] ∀i ∈ A
pAi ≤ yi ∀A ⊆ [n] ∀i ∈ A
pAi ≥ yi + bAi − 1 ∀A ⊆ [n] ∀i ∈ A

zij ∈ {0, 1} ∀i, ∀j, w ∈ R
+, yi ∈ R

+ ∀i
dA ∈ R

+ ∀A ⊆ [n], bAi ∈ R
+ ∀A ⊆ [n], ∀i ∈ {0} ∪A

Some numerical tests have been carried out using IBM ILOG
CPLEX Optimization Studio 12.4 on a computer with 3.8 Gb of
memory and an Intel Core 2 Quad 2.40 Ghz processor. We used an
ordinal scale L with |L| = 5. Möbius masses corresponding to 2-
minitive capacities were randomly drawn in L, and the average com-
putation times over 20 instances (for each size) were observed. The
results showed that instances up to size n = 20 can be solved in a few
seconds, while the solution of instances of size 25 requires more than
600 seconds (value of the timeout in our tests). This fast growth of
the solution times goes with the O(n4) growth of the number of con-
straints in the MIP formulations: from 20 to 30 agents, the number
of constraints increases from ∼160,000 to ∼1,000,000. Interestingly,
for Möbius masses defined such that Sv(y) = mini yi, instances up
to 100 agents were solved in a few seconds. This tends to confort the
intuition that the more the Sugeno integral differs from the min, the
less effective the formulation becomes.

6 CONCLUSION

In this paper, we have studied the optimization of the Sugeno inte-
gral in ordinal assignment problems. Table 1 summarizes our con-
tributions in the maximization case. We have identified special cases
(weighted min, ordered weighted min) that admit a polynomial time
solution procedure, and we have shown that it is NP-hard in the gen-
eral case, even if the cardinality of the scale is only two. Finally, we
have provided the first MIP formulation for the optimization of the
Sugeno integral under linear constraints. The preliminary numerical
tests carried out showed that the operationality of this latter approach
is limited to instances of modest size. Nevertheless, for future works,
it would be interesting to study the possibility of other MIP formu-
lations. It is indeed worth noting that an efficient linearization of the
Sugeno integral would impact on a number of combinatorial prob-
lems other than the assignment problem studied here (e.g., minimum
spanning tree problem, traveling salesman problem).

Capacity Operator Complexity Algorithm

general Sugeno NP-hard MIP
minitive weighted min O(n3 log |L|) Threshold
maxitive weighted max O(n2) max

i,j
(uij ∧wi)

symmetric OWMin, OWMax O(n3 log |L|) Threshold
k-maxitive Sugeno O(n3+k log |L|) Threshold
k-minitive Sugeno ? compact MIP

Table 1: Summary of our contributions.
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