
Exact Particle Filter Modularization
Improves Runtime Performance

Padraic D. Edgington1 and Anthony S. Maida2

Abstract. Bayesian filters provide a robust and powerful technique
for integrating noisy information in dynamic environments. How-
ever, the computational cost of the filtering algorithm depends on the
size of the problem, and an effective solution may be constrained by
execution time. This paper applies basic concepts of clustering and
message passing to particle filters making them substantially faster
to compute, while still maintaining the original accuracy. An exam-
ple from vehicle state estimation is provided to illustrate how to im-
plement the technique. Our results indicate that modularization can
produce a speed up of over 28 times even on this small problem.

1 Introduction

Bayesian filters, such as the Kalman filter, offer a robust method for
addressing problems that can be modeled with a dynamic Bayesian
network where we are only interested in the current state [7, 8, 12,
23, 22, 9, 5, 6]. These types of problems tend to have sensors that
provide noisy observations about the state of a dynamic environ-
ment. In general, the goal is to continuously monitor the state of a
set of variables, which are indirectly related to the sensor measure-
ments. However, the computational cost of the filtering algorithm is
dependent on the size of the problem and an effective solution may
be constrained by execution time. This paper introduces a new tech-
nique which reorganizes a Bayesian filter into a set of modules. Each
module addresses a conditionally independent subset of the original
state variables. Each module uses a single Bayesian filter to process
its set of state variables and passes the results to any neighboring
modules to distribute the sensor information throughout the network.
The primary benefit of this modularization lies in reducing the exe-
cution time by reducing the size of individual problems. Specifically,
it reduces the problem of supralinear growth in time complexity as
a function of problem size. This also has the side effect of requiring
less memory to represent the smaller problems.

While Bayesian filters provide effective solutions for dynamic
Bayesian networks (DBNs) with continuous variables, there are sev-
eral other areas of research that are closely related [14]. Three
examples are dynamic Bayesian networks with discrete variables,
hidden Markov models (HMMs) and Bayesian networks. Dynamic
Bayesian networks with discrete variables generally use different
techniques than if they only had continuous variables, instead em-
phasizing building and parsing tables of conditional probabilities.
Hidden Markov models focus on a frequentist view of probability
rather than a causal model with noise. Bayesian networks are gen-
erally simpler forms of dynamic Bayesian networks: they generally

1 University of Connecticut, email: padraic@engr.uconn.edu
2 University of Louisiana at Lafayette, email: maida@cacs.louisiana.edu

have discrete variables, and their environment does not change as
time elapses.

Each of these areas of research are sufficiently similar mathemat-
ically that they have enjoyed fertile cross-pollination in recent years.
Many popular techniques are derived from Pearl’s [19] algorithms
for exact computation in Bayesian networks. Loopy belief propa-
gation (LBP) takes Pearl’s belief propagation algorithm for singly
connected networks and applies it to densely connected networks for
both Bayesian networks and dynamic Bayesian networks [16, 15].
Other techniques, such as the Boyen-Koller (B-K) method [2, 3] have
found their way from dynamic Bayesian networks to Bayesian net-
works and Hidden Markov models. Particle filters have been pro-
posed under many names as solutions to many types problems and
have been adopted into even more [22, 4, 5, 14, 17, 6].

The work solving these types of problems has fallen into two cate-
gories: exact inference methods and approximate inference methods.
Pearl’s [19] original work fell into the category of exact methods and
some research has since been performed to improve upon those al-
gorithms [11, 20, 24]. However, the majority of the research that has
been done since then—the B-K method [2, 3], loopy belief propaga-
tion [16, 15], the factored frontier algorithm [15], assumed density
filtering [13], thin junction tree filtering [18] and particle filtering
[22, 4, 5, 14, 17, 6]—has focused on approximate inference.

Several approaches have been developed for improving the exe-
cution time of inference in Bayesian networks [19, 11, 24]. While
none of those methods are directly applicable to Bayesian filters,
the concepts of clustering from poly-tree methods ([11, 19] see also
[1, 10, 21]) as well as using message-passing to perform local com-
putations [19] can be applied to this problem as well. Thus, we will
be creating statistically independent clusters that can interact with
each other.

Many of these algorithms explore similar concepts—primarily
clustering and message passing—and the present work is no differ-
ent. Modularization fundamentally breaks a filtering problem into a
series of independent clusters and passes information between them.
Thus, modularization brings the clustering concepts popular in tra-
ditional inference algorithms and Pearl’s message passing concepts
to filtering. This paper focuses on replicating the results of a particle
filter without adding any approximation. At the end, we will see how
the modularized version of the algorithm compares to a traditional
particle filter with the same parameters.

2 Modularizing Dynamic Bayesian Networks

This paper applies our modularization technique to particle filters.
The modularization focuses on taking an existing dynamic Bayesian
network (DBN) (e.g. Figure 1) and decomposing it into smaller mod-

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1397

1397



ules that are easier to solve than the original problem (e.g. Figure 2).
By modularized, we mean that the nodes representing model state

variables that compose a Markovian dynamic Bayesian network are
partitioned into subsets or clusters each forming an independent fil-
ter. Nodes in each cluster are generally correlated with each other,
but are independent of nodes in other clusters. This makes it possible
to assign a separate Bayesian filter to each cluster. Compared with a
monolithic filter, module filters are smaller and can be targeted to the
dynamics of each particular cluster. By exact, we mean that the mod-
ularized Bayesian network—with collective lower run time overhead
across the modularized filters—preserves the accuracy of the origi-
nal solution that used a monolithic filter for the entire network. In this
work, we will use Bayesian filters to refer to the entire class of filter-
ing algorithms, such as Kalman filters and extended Kalman filters
(collectively termed Gaussian filters), as well as particle filters.

The primary benefit from modularization lies in the computation
time. Since the execution time for a Bayesian filter is super-linearly
dependent on the size of either the state variables or the informa-
tion sources, reducing the number of elements that are processed at
any one time will improve the overall execution time. While there
is some overhead cost from reassembling the modular results, the fi-
nal cost will generally be lower than the non-modularized execution
time. The speedup of the resulting modular algorithm depends on
the size and complexity of the original DBN. Large problems have
more potential for improvement and the speedup is correlated with
the number of modules produced; however, some improvement can
be seen even on simple problems.

In modularizing a given DBN, we will create a set of modules,
with each module designed to calculate a disjoint subset of the state
variables. Each of these modules will have a separate Bayesian filter
to calculate the probability distribution for the state variables con-
tained in that cluster. The relationships between information sources
and the modules will remain the same. However, since information
sources will only be directly related to a single module, the computa-
tion for incorporating the belief about an information source can be
limited to the related module. To ensure that the information is well
distributed throughout the network, message passing is implemented
to allow modules to act as information sources for each other.

As a side effect, modularization also has the benefit of simplify-
ing much of the conceptual and mathematical structure of a Bayesian
filter. Instead of having to understand or calculate the complex rela-
tionships between distantly related elements in the network, much of
the work will be handled locally by the direct relationships. Thus,
the message passing mechanism will alleviate the need to calculate
all of the distant relationships; instead it uses the local relationships
when passing information between modules. Since this information
passing is cumulative, long distance relationships are effectively cal-
culated through function composition.

3 Building a Modularized Bayesian Filter

The first step in creating a modularized Bayesian filter is to group
the nodes (state variables) into conditionally independent clusters.
For the purposes of this paper, we will assume that this can be done.
For a small problem, it is possible to do this by hand, but for a larger
problem, we will want to use a clustering algorithm. As can be seen
in Figure 2, each cluster is present in every time step and they serve
to isolate their component nodes from other information sources in
the network.

Once the dynamic Bayesian network has been modularized, work
can begin on constructing the modularized Bayesian filter to solve the

problem. Constructing a filter has two major steps. First, filters will
be selected to process each cluster that was generated by clustering.
Once these filters have been defined, the message passing structures
that allow information to be propagated can be described.

3.1 Selecting Bayesian Filters

Selecting Bayesian filters for a modular dynamic Bayesian network
is quite similar to selecting a Bayesian filter for a regular dynamic
Bayesian network. The primary difference is that instead of selecting
a single filter to handle all of the calculations of the network, one fil-
ter will be selected for each cluster in the modular dynamic Bayesian
network.

This set of filters should be selected by the same criteria that are
used traditionally. In this case, instead of looking at the problem as a
whole, each cluster is examined independently of the rest of the net-
work. The only state variables that are of importance are those within
the cluster currently being examined. All of the adjacent nodes in the
graph can be considered as if they were static information sources,
regardless of whether they consist of a traditional information source
or another node in the original graph.

Thus, standard criteria such as linearity and the shape of the prob-
ability distribution are only considered within the scope of a single
cluster at a time. That is, a modularized filter can be decomposed into
a set of heterogeneous Bayesian filters. One caveat to this simplicity
is in the case where a cluster with a simple probability distribution is
adjacent to a cluster with a complex probability distribution. While it
is possible to manipulate the complex probability distribution so that
it can be related to the simple distribution, in some cases it may be
preferable to use a more complicated Bayesian filter for the simple
cluster to make the comparisons easier.

3.2 Message Passing

As stated earlier, the modularized filters communicate by message
passing. Message passing is—for the most part—a straightforward
process: messages will go in both directions, from a causal cluster to
a resultant cluster and vice-versa. Message passing utilizes the exist-
ing Bayesian filter algorithms for most of the work. Causal messages
improve the update information that is passed to a Bayesian filter. Re-
sultant messages act as an additional observation to be incorporated.
The major complication comes when information that was passed
causally may be returned in a resultant message.

Often causal links in a DBN indicate how a variable changes based
on the state of another variable. This is encapsulated in the notion
of updating the previous state with the changes that have occurred
since the last update. In this case, message passing works to provide
a more accurate update command for the receiving filter. The other
possibility is that the receiving filter only uses the information to set
the state of the variables. In this case, the message would not be used
to modify the previous state of the variables, but as the predicted
value for those variables. The basic difference between a traditional
Bayesian filter and a modular one here is that the state variables in the
causal cluster will be updated with the available information before
being used as a control action by the receiving filter.

In the case of resultant messages, it is expected that the receiving
filter has already predicted the state of the variables for this cycle. As
such, the message should be framed in terms of a measurement of
the state variables. Since the message is being viewed as a measure-
ment, it can be processed as such by the receiving Bayesian filter.
This means running just the measurement section of the receiving

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance1398



Bayesian filter to integrate the message with the existing probabilis-
tic belief.

It is hard to overstate the simplicity of the basic message passing
method, as it primarily involves passing the results of one Bayesian
filter to a related Bayesian filter using the existing relations defined
by the equations underlying the Bayesian network. This simplicity
will be shown more explicitly in our example. However, the mes-
sage passing method has one complication: there is the potential for
information to be duplicated.

Since problems will require passing information in both direc-
tions along graph edges, we should expect that information which
is passed as a causal message would also be returned as part of a
resultant message. To solve this problem, a novel inverse Bayesian
filter is used to remove the information in the causal message from
the information in the resultant message, thus only passing novel in-
formation to the causal module. This can be seen in Figure 3 with
precise descriptions of the messages being passed. Since Bayesian
filters work in a fixed manner, it is easy to work backwards through
a filter to retrieve a piece of information given the other pieces. This
method will also ensure a relatively fixed cost for the operation that is
independent of the number of information sources that the resultant
module has incorporated into its state variables.

3.3 Non-Standard Information Representations

The simplest information sources are represented as Gaussian func-
tions when they are used as parameters for a Bayesian filter. Since
message passing is a major part of modularized Bayesian filters, it
needs to be possible to pass the state of a particle filter as a message
to other filters.

There are two potential problems with using anything besides
a unimodal Gaussian function as an information source for other
Bayesian filters. The first—and most obvious—is that existing
Bayesian filters have all been designed to process Gaussian func-
tions as their information sources. Thus, either the probability distri-
bution must be represented as a Gaussian function or the Bayesian
filter needs to be modified to handle the complex probability distri-
bution directly. The second problem is more subtle: complex proba-
bility representations are often used to represent complex probabil-
ity distributions. Attempting to shoehorn them into a filter designed
to handle simple representations is likely to require some approxi-
mation. In the case that approximation is needed, it is beneficial to
minimize the amount of error added, while still being mindful of the
execution time of the approximation methods.

In general, when using a complex probability representation in a
simpler Bayesian filter, the probability representation will need to be
converted to something that the filter can process. An example of
this is shown in Section 3.3.1 in the form of converting particle sets
to Gaussian distributions for Kalman filters and extended Kalman fil-
ters. In contrast, if the receiving Bayesian filter is sufficiently robust,
then it may be possible to modify the filter to accept the complex
probability representation directly. An example of this is shown in
Section 3.3.2 where the particle filter will be modified to use particle
sets as updates and measurements. Conceptually, these ideas should
generalize well to other complex probability representations such as
mixtures of Gaussians or kernel functions.

3.3.1 Particle Sets as Information Sources for
Kalman-Filter Based Bayesian Filters

Particle sets have traditionally been limited to representing the prob-
ability density function for the state variables in a particle filter
[5, 6, 22]. Since the Kalman filter and extended Kalman filter per-
form operations on the Gaussian distributions directly, modifying the
algorithm would be overly complicated. Instead, it is easier to con-
vert a particle set to a Gaussian distribution.

The simplest method involves calculating the mean and covariance
of the particle set and using it as the parameter for the Bayesian filter.
The equations are similar whether calculating the Gaussian form for
an unweighted particle set or a weighted particle set. Equations (1)
and (2) show the formulas to calculate the mean and covariance for an
unweighted particle set. Equations (3) and (4) show the formulas to
calculate the mean and covariance for a weighted particle set. In both
cases the equations evaluate all n particles in the set x. In general,
the individual particles, xis, are composed of multiple state variables
and thus are processed as a vector.

This method can work quite well for many problems. However,
this is the simplest method for converting a particle set to a Gaussian
representation. For distributions that are more complex, alternative
manipulations may be required. Additionally, for the more compli-
cated variants of the Kalman filter, converting the particle set to a
mixture of Gaussians or a kernel function can be used to provide a
more accurate approximation of the particle set.

μ̂ =
1

n

n∑
i=1

xi (1)

Σ̂ =
1

n− 1

n∑
i=1

(xi − μ̂) (xi − μ̂)T (2)

μ̂ =
1(

n∑
i=1

wi

) n∑
i=1

wixi (3)

Σ̂ =
1(

n− 1

n

n∑
i=1

wi

) n∑
i=1

wi (xi − μ̂) (xi − μ̂)T (4)

3.3.2 Particle Sets as Information Sources for Particle
Filters

Using particle sets as information sources for particle filters provides
a more interesting case to consider. Since the particle filter itself is
quite robust, it is actually possible to use the particle sets as informa-
tion sources directly. There is some additional complexity in that the
methods for using a particle set as the control action will differ from
the methods for using a particle set as an observation. However, both
of these cases provide an interesting look at how complex probability
representations can be manipulated within a Bayesian filter.

The first information source that a particle filter uses is the control
action, which represents the belief about how the state of the envi-
ronment has changed since the previous time step. Traditionally, the
algorithm would take samples from the provided Gaussian distribu-
tion and apply them to selected particles from the previous time step
to arrive at a prediction about the current state of the environment.
Thus, the goal in modifying the particle filter to use a particle set
as the representation of the update command involves finding a way
to sample from the particle set. Those samples can then be used to

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance 1399



update selected particles representing possible previous states of the
environment.

A particle set represents the true probability distribution as a set of
particles. If the true probability density function is well represented
by the set of particles, then it is sufficient to sample from the particle
set. If the particle set is unweighted, then simply selecting particles
randomly with equal weight is sufficient to provide a high quality
sampling function for a particle set. However, if the particle set is
weighted, then a discrete pseudo-random number generator is used to
select particles with probability proportional to their weights. Both of
these techniques are generally easy to implement, as they are already
part of handling the main particle set in a particle filter.

Unfortunately, particle sets are not well suited for grading other
particles. While the weights on weighted particles are readily acces-
sible to a particle filter, the distribution described by the density of
the particle set is not readily accessible. As such, using a particle set
as the information provided as an observation is similar to using a
particle set with a Gaussian filter. The main difference in working
with a particle filter is that the particle set does not need to be con-
verted to a specific type of probability representation. Instead, any
representation that can quickly produce an estimation of the full dis-
tribution and then be used to grade particles will be effective for this
task.

However, there is one case—which is of particular interest in mod-
ularized Bayesian filters—in which particle sets can be used by a
particle filter directly. In modularized Bayesian filters, messages will
often be passed circularly. In these cases, the information passed as
the update command needs to be removed from the particle set. Nor-
mally, this would be done using an inverse Bayesian filter; however,
in this case the inverse filter only needs to ignore the information
about the distribution of the particles. the weights on the individual
particles can be readily used as the probability of that particle based
on other observations. As such, a particle can be graded simply by
applying the weight of the relevant part of the particle set. The exact
weight applied can be obtained by any of a number of simple tech-
niques, such as interpolation, or just selecting the nearest point in the
particle set and using its weight directly.

4 Computation Time for Modularized Bayesian
Filters

This section will examine a few simple cases for particle filters that
will show how the algorithm is capable of scaling for large problems.
The actual speedup obtained from applying these techniques depends
on the specific problem being addressed. There are two types of par-
ticle filters: one that uses a fixed number of particles and one that
varies the number of particles based on the complexity of the proba-
bility distribution. The original particle filter, which uses a fixed num-
ber of particles at each time step, has a fixed execution time based on
that number of particles. Since the number of particles produced is
chosen by hand, looking at this algorithm is not terribly interesting.
Instead, the KLD sampling variant provides a more robust and gen-
eralizable view of the cost of using a particle filter.

In the KLD sampling particle filter, the Kullback-Leibler diver-
gence ensures that the generated probability distribution represents
the true distribution within a specified tolerance. As long as the ac-
curacy of the information provided to the KLD sampling particle fil-
ter is constant, the number of particles generated remains reasonably
constant between iterations of the algorithm. For a single particle fil-
ter, the time complexity is O(pn); where p is the number of particles
required to represent a single dimension of the state space adequately

and n is the number of dimensions in the state space. For this exam-
ple, we will assume that p is constant across dimensions, though it
does not have to be. As an illustration, if the particle set was rep-
resenting a unimodal distribution, the particle distribution could be
seen as forming a hyper-ellipse, where the number of particles would
roughly correspond to the volume of the hyper-ellipse.

Dividing the problem into a set of m equally sized modules pro-
duces a time complexity of O(mpn/m) to calculate all of the mod-
ules. The time complexity of the inverse particle filter is based on
the method used to obtain a weight for each particle of interest. For
this example, we will assume that a k-d tree is used to select the
nearest particle. k-d trees are efficient, having a time complexity of
O(n log n) to create the tree and O(log n) to find the nearest element
in the tree, where n is the number of particles in the set. For this ex-
ample, that translates into a time complexity of O(pn/m log pn/m)
to construct each k-d tree and O(pn/m log pn/m) to grade all the par-
ticles in a set. Summing these together yields a full time complexity
of

O
(
mpn/m + 2 (m− 1) pn/m log pn/m

)
= O

(
mpn/m log pn/m

)
. (5)

For additional clarification, let us consider two test cases: in the
first case, there will be two modules with state variables evenly dis-
tributed between them; in the second case, there will be n mod-
ules, each processing one state variable. In the first case, substituting
m = 2 into (5) produces a time complexity of O(2pn/2 log pn/2) =
O(pn/2 log pn/2), which will clearly provide a healthy speedup
as compared to the original O(pn). In the second case, m = n
is substituted into (5). This produces the more attractive result of
O(npn/n log pn/n) = O(np log p), which can be further reduced to
O(n).

For a particle filter, the effects on memory usage are the same as
with time complexity. Since the number of particles generated di-
rectly influences the computation time and the amount of space re-
quired to hold the result, reducing the number of particles affects
both complexities the same way.

5 Vehicle State Estimation Example

Next, we will look at a complete example of building a modularized
Bayesian filter. This example considers a hypothetical automobile
moving in a planar environment. It respects the basic physical con-
cepts of motion, but ignores more complex aspects such as slip and
drag. The formulation of the problem provides a set of equations re-
lating acceleration, velocity and position variables. These equations
can then be used to create a dynamic Bayesian network that can be
clustered. Bayesian filters will then be applied to each cluster and
their interactions can be described explicitly.

The vehicle described here operates in a two-dimensional plane,
so it needs an x and y variable to represent its position in the plane.
Since it is a non-holonomic vehicle, its orientation also affects the
motion of the vehicle, so an angular pose variable θ is also neces-
sary. This example is modeled in terms of position, velocity and ac-
celeration so a set of three variables are needed for each level. This
produces nine state variables to estimate. The equations of motion

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance1400



Figure 1. The initial dynamic Bayesian network for the vehicle state es-
timation example. Circles indicate state variables, triangles denote control
values, and squares indicate observations or measurements.

for this vehicle are as follows:

ẋt = ẋt−1 + ẍtΔt (6)

ẏt = ẏt−1 + ÿtΔt (7)

θ̇t = θ̇t−1 + θ̈tΔt (8)

vm =
1

2

(√
ẋ2
t−1 + ẏ2

t−1 +
√

ẋ2
t + ẏ2

t

)
(9)

vθ =
1

2

(
θ̇t−1 + θ̇t

)
(10)

xt = xt−1 − vm
vθ

sin (θt−1) +
vm
vθ

sin (θt−1 + vθΔt) (11)

yt = yt−1 +
vm
vθ

cos (θt−1)− vm
vθ

cos (θt−1 + vθΔt) (12)

θt = θt−1 + vθΔt (13)

These equations can then be used to define a dynamic Bayesian net-
work. With the addition of a set of singly connected control (u) and
measurement (z) nodes, the graph will look like Figure 1.

This problem can be separated into two conditionally independent
clusters. The first cluster is comprised of the position and velocity
nodes, with the acceleration nodes in the second cluster. This clus-
tered network is shown in Figure 2. By collapsing all of the related
nodes and focusing on the information flow, we arrive at Figure 3.
The graph shows the two clusters as a pair of circles. Both of the clus-
ters have a set of related measurement variables. However, the con-

Figure 2. The clustered dynamic Bayesian network for the vehicle state
estimation example. The original problem with 9 state variables reduced to
subproblems of size 3 and 6.

trol variables only affect the acceleration cluster directly. The results
from the acceleration cluster will be fed to the position/velocity clus-
ter. The results from the position/velocity cluster are also fed back to
the acceleration cluster via an inverse Bayesian filter. Since the in-
verse filter will be decomposing the results of the position/velocity
cluster, it requires several of the position/velocity filter’s parameters
as well.

Most of the relationships in Figure 3 are directly derived from Fig-
ure 2, where the clusters and their relationships to the other parts of
the graph are fully defined. These relationships have been carried
over into Figure 3. The addition here is in the information flow. The
basic flow of causality to and from the information sources is un-
changed as indicated by the thin-bodied arrows. However, in order
for the information in these elements to be applied to all of the state
variables in the graph, the information must be able to pass between
clusters.

Since the state of the acceleration cluster causes the position and
velocity variables to change, the state of the acceleration cluster is
passed directly to the position/velocity cluster as its update. This al-
lows the information in the external update (control) command and
the information in the acceleration sensors to be applied to the po-
sition and velocity state variables. Since we also want the infor-
mation from the position and velocity sensors to be applied to the
acceleration calculations, this information also needs to be passed
from the position/velocity cluster to the acceleration cluster. How-

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance 1401



Figure 3. The clustered dynamic Bayesian network with information flow
made explicit. Within cluster nodes are collapsed. The star-shaped node de-
notes an inverse filter.

ever, since the position and velocity calculations have already incor-
porated the information about the acceleration, the results of the posi-
tion/velocity cluster cannot be passed back to the acceleration cluster
directly. Instead, the current state of both the acceleration state vari-
ables, as well as the position and velocity state variables are passed
to an inverse Bayesian filter, which can separate the acceleration in-
formation from the position and velocity information, allowing the
remaining position and velocity measurements to be used to update
the acceleration information.

5.1 Selecting Bayesian Filters

Having defined two clusters for the problem, the next step is to se-
lect a Bayesian filter for each individual cluster. Since the individ-
ual clusters do not need to employ the same filters, we can select
a Bayesian filter that is appropriate for each cluster separately. As
defined in Equations 6–8, the three acceleration nodes have a sim-
ple linear relationship with the velocity nodes. Since the control and
measurement nodes are directly related for this example, the acceler-
ation cluster is well suited to a simple Kalman filter. The position and
velocity cluster on the other hand has several non-linear relationships
between its nodes and other nodes in the graph. As such, it would be
better suited to an extended Kalman filter (EKF) or particle filter. In
this paper, we will show how this case unfolds with a particle filter.

5.2 Assembling the Modular Particle Filter
Algorithm

These concepts can now be translated into a modularized Bayesian
filter algorithm. The algorithm for the modular particle filter is shown

Algorithm 1 A modular particle filter algorithm for the vehicle state
estimation example.

1: procedure MODULAR PARTICLE FILTER(. . . )

2:
[
ˆaμt

ˆaΣt

]
← KF

(
aμt−1,

aΣt−1, ut, M t,
azt,

aQt,
aAt,

aBt,
aCt

)

3: p,vP t ← PARTICLE FILTER

(
p,vP t−1,

[
ˆaμt

ˆaΣt

]
,

[p,vzt
p,vQt]

)

4:
[
ẑIBF Q̂IBF

]
←INVERSE PARTICLE FILTER(p,vP t)

5:
[
p,vμt−1

p,vΣt−1

] ← PS2GAUSSIAN(p,vP t−1)
6: zIBF ← PREDICTION−1

(
p,vμt−1, ẑIBF

)
7: QIBF ← PREDICTION−1

(
Q̂IBF

)
8: [aμt

aΣt] ← KFm( ˆaμt,
ˆaΣt, zIBF,QIBF, I)

9: return [p,vP t
aμt

aΣt]
10: end procedure

Algorithm 2 An inverse particle filter algorithm for the vehicle state
estimation example.

1: procedure INVERSE PARTICLE FILTER(P )
2: [μt Σt] ← WEIGHTED PS2GAUSSIAN(P )
3: [ψt Ψ t] ← UNWEIGHTED PS2GAUSSIAN(P )
4: K−1

t ← Ψ t (Ψ t −Σt)
−1

5: Qt ← K−1
t Σt

6: zt ← K−1
t (μt −ψt) +ψt

7: return [zt Qt]
8: end procedure

in Algorithm 1. The modular particle filter largely serves as a meta-
algorithm to call other algorithms based on the required parameters.

x a vector
X a matrix
f (·) a function
KF Kalman filter
ax an element related to the acceleration cluster
p,vx an element related to the position and velocity cluster
xIBF an element related to the inverse Bayesian filter
x̂ a temporary estimate of an element

Table 1. List of symbols used.

Line 2 begins by using a Kalman filter to integrate the previ-
ous acceleration state (aμt−1, aΣt−1) with the update information
(ut, M t) and the acceleration measurements (azt, aQt). For con-
sistency, the previous acceleration state and the At matrix are both
passed to the Kalman filter. In this example, the At matrix is also the
zero matrix, so these variables do not actually contribute anything to
the calculations. As such, a tightly optimized algorithm would omit
these.

Since the update commands are only related to the acceleration
variables, there is no need to qualify any of these variables with the
cluster name. This is contrasted with the measurements, where only
the variables related to acceleration are used directly in the Kalman
filter. The result of the Kalman filter is another Gaussian distribution
reflecting the belief about the current state of the vehicle’s accelera-
tion ( ˆaμt, ˆaΣt).

Line 3 uses a particle filter to integrate the previous state of the po-
sition and velocity variables (p,vP t−1) with the control action ( ˆaμt,
ˆaΣt) and the related sensor measurements (p,vzt, p,vQt). The dif-

ference between a regular particle filter and the one used here, is that

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance1402



it uses the results from line 2 as the control action, instead of some-
thing defined externally. The result of the particle filter is a particle
set that contains all of the available information about the position
and velocity variables (p,vP t).

Line 4 calls an inverse particle filter to decompose the particle set
generated in line 3. If we assume that the particle filter produces a
weighted particle set, then the decomposition is simple. If the particle
filter returns an unweighted particle set, then the prediction needs to
be calculated directly. Since this is a simple problem, the particle set
is just converted into a pair of Gaussian distributions.

Algorithm 2 shows the algorithm used for the inverse particle fil-
ter for this example. This allows the the prediction distribution to
be removed from the result distribution. Line 2 converts the particle
set into a Gaussian distribution taking the particle weights into ac-
count. This produces a Gaussian representation of the current state
distribution (μt, Σt). Line 3 extracts the predicted state information
(ψt Ψ t) by not using the weight information. Lines 4–6 calculate
the change in the distribution as though an EKF had been used. Line 4
calculates the inverse Kalman gain. Lines 5 and 6 then remove the
predicted state from the final state to calculate the information that
was added by the particle filter algorithm. The measurement infor-
mation is left in terms of the position and state velocity variables,
which makes it relatable to the acceleration state variables.

Back in the modular particle filter, the goal of lines 5–7 is to trans-
form the measurement from the velocity space to a space that the
Kalman filter can access. There is a linear relationship between the
acceleration and the velocity, which enables this transformation to
be applied easily. In some complicated problems, it may be easier to
move this transformation into the inverse particle filter so that it can
be addressed at the same time. Furthermore, a couple of simplifica-
tions could be made for this problem. Since the velocity variables
are the only ones directly related to the acceleration variables, line 5
of the modular particle filter and lines 2 and 3 of the IPF algorithm
could be modified to only calculate the Gaussian distribution for the
velocity variables and ignore the position state variables. In addition,
since the inverse particle filter calculates a Gaussian distribution for
the particle set in line 2, this result could be held to be used directly
in line 5 of the modular particle filter instead of recalculating it.

The measurement part of the Kalman filter used in line 8 begins
with the assumption that there is an existing distribution about the ac-
celeration state variables that merely needs a measurement integrated
with it. The results from line 2 satisfy the first criterion. The mea-
surement data calculated in lines 4–7 satisfy the second part. Thus,
we can use the Kalman filter to integrate the new information into
the existing distribution. The measurement part of the Kalman fil-
ter starts by calculating the Kalman gain and then integrates the new
measurement.

6 Methods

To test this example and compare it to a traditional particle filter, a
simulated test bed was created to match the environment described
by (6)–(13) and Figure 1. Each of the information sources is calcu-
lated independently by adding noise to the true state of the related
state variable, where the noise was sampled from a zero mean Gaus-
sian distribution with a standard deviation of 0.10.

A standard KF was used for the simulation; however, the KLD
sampling variant of the particle filter was used for the particle fil-
ters. This allowed the particle set to adapt to the complexity of the
distribution for each situation. The KLD-sampling particle filter has
some extra parameters which control the precision of the particle set;

these parameters were fixed for both algorithms: ε = 0.01, z-score
of 1.645 (95%), and bin sizes of 0.025 in their respective measure-
ments. The algorithms were initialized with a single particle repre-
senting the true state of the vehicle.

This simulator was built using Java and tested on Java version
1.6.29. EJML version 0.17 was used as the linear algebra package
to calculate the Kalman filter equations. The code was not subjected
to substantial optimization. Instead, code reuse was the focus of al-
gorithm implementation so that none of the algorithms had an un-
fair advantage due to coding strategies. Likewise, the code was not
multi-threaded during testing. The algorithms were timed by start-
ing a nanosecond scale timer before the simulator entered into the
respective modularized Bayesian filter procedure and stopped imme-
diately after it exited the procedure. The results were then reported.
The simulator repeated this process at every time step until the list of
commands for the vehicle had been exhausted.

Each algorithm was run 50 times on each of three control plans.
The control plans described the motion the vehicle should take for
five minutes. Each plan was created separately. However, they were
each similar in that the vehicle always started in the same position
and ended at a stop after the five minutes. During the simulation the
vehicle varied its velocity or its turning radius every few seconds.

The simulations were performed on the Big Red cluster at the Uni-
versity of Louisiana at Lafayette. Big Red was a homogeneous Be-
owulf cluster that consisted of up to 70 compute nodes connected to
a primary distribution node. The cluster was built at the end of 2008
using relatively modern hardware for the time. Each of the machines
had a dual-processor motherboard with two Intel� XeonTM2.8GHz
dual core processors and 1GB of main memory. The nodes ran Cen-
tOS 4.4 with a 32-bit x86 SMP Linux kernel.

The simulations were scheduled so that only one simulation was
run on an individual machine at a time. This helped limit memory
issues with the particle filters; however, the particle filters were still
limited to one million particles per particle set to keep the algorithms
within the 1GB RAM limit so that paging was not an issue. As we
will see, this was only marginally successful, but did substantially
reduce the overall time to produce results.

7 Results

Averaging all of the simulations at each time step produces the charts
shown in Figures 4 and 5. Figure 4 shows the average amount of time
required to process the Bayesian filter (vertical axis) at each time
step (horizontal axis). Both algorithms are plotted as they progress
through the simulation. A numerical representation of the overall av-
erages is presented in Table 2. The table contains the mean and stan-
dard deviation for the execution time of each algorithm, as well as
the size of their particle sets.

When the traditional particle filter was not being delayed by pag-
ing issues, it took about 18 s to compute; however, the modular par-
ticle filter consistently required about 1 s for its computations. As
seen in Table 2, just comparing the averages directly, the modularized
particle filter was about 29 times faster than the traditional particle
filter under these conditions. The memory usage was substantially
decreased due to the smaller particle set size. The modular particle
filter required less than 9% as many particles as the traditional algo-
rithm. The actual results are far better than this comparison shows.
In this case, the traditional particle filter was explicitly limited to us-
ing 1 000 000 particles, and it did so every time. Without this limit,
the particle set size continues to grow; limited testing on 16GB ma-
chines showed that it would hit this increased limit within the first

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance 1403



0.01

0.1

1

10

100

1000

0 60 120 180 240 300

E
x

e
c
u

t
io

n
 T

im
e
 (

s
)

Simulation Time (s)

PF Modular PF

0.01

0.1

1

10

100

1000

0 60 120 180 240 300

E
x

e
c
u

t
io

n
 T

im
e
 (

s
)

Simulation Time (s)

PF Modular PF

0.01

0.1

1

10

100

1000

0 60 120 180 240 300

E
x

e
c
u

t
io

n
 T

im
e
 (

s
)

Simulation Time (s)

PF Modular PF

Figure 4. A chart of the simulation results showing the amount of time
required at each time step throughout the simulation.

0

2

4

6

8

10

12

14

16

18

0 60 120 180 240 300

X
 P

o
s
it

io
n

 E
r
r
o
r
 (

m
m

)

Simulation Time (s)

PF Modular PF

Figure 5. Mean absolute error in the x dimension over the 150 simulated
runs for each algorithm. The other dimensions showed similar behavior.

couple seconds of simulation time.
Using the O() time complexity analysis above, we would ex-

pect the traditional particle filter to require time commensurate with
O(p9). This modular filter would require O(p6) for the particle fil-
ter, and O(2p6) to convert the particle set into Gaussian distribu-
tions for the inverse filter. The Kalman filter is cheap compared
to the processing for the particle sets, and so adds a negligible
amount of time to the computation. Thus, the overall computation

Table 2. A numerical presentation of the simulation results with EKF error
for comparison.

Algorithm μ̂ σ̂
Traditional PF 29.12 s 14.51

Particle Count 1 000 000 0.000
x-Dimension MAE 11.79mm 1.242

Modular PF 1.024 s 0.1042
Particle Count 87 087 9 445
x-Dimension MAE 11.90mm 1.316

Traditional EKF MAE 13.07mm 1.463

time should be O(3p6). Given that we find 87 087 particles were re-
quired to satisfy the conditions for the 6-state-variable particle filter,
p should be 6.658 and we would expect the traditional particle fil-
ter to want about 25 700 000 particles. Thus we would expect about
25 700 000/(3 · 87 087) = 98.37 times speedup on this problem.
However, the traditional particle filter was limited to 1 000 000 par-
ticles. This would reduce the speedup to 3.83 times. Excluding the
paging issues seen in the traditional particle filter, the speedup ob-
served was around 18 times, which is close to the predicted speedup.

Figure 5 shows that modularization does not affect the accuracy of
the filter on this problem. The mean error for both algorithms track
very closely together, and any discrepancy is clearly being dwarfed
by the noise from the measurements.

8 Conclusion

This research applied modularization to particle filters as a means
of improving execution time. Modularization works by dividing the
problem into a set of simpler sub-problems and recombining the re-
sults to maintain the accuracy of the traditional method. These mod-
ules then pass messages between them so that incoming information
can be distributed throughout the network. This work also addressed
a number of issues with filter construction with complex filters. An
example was given to show how modularization can be applied to a
practical problem. Finally, the example was tested in a simulator to
show that the method is effective, even on small problems.

The results from the simulation showed that modularization can
be effective even for small particle filters. On larger problems, mod-
ularization would allow implementers to choose between improving
execution speed and improving the precision of the results.

9 Further Research

The most obvious place for further research is in application. We
have shown results for vehicle state estimation here, but it is likely
that other Bayesian filter applications would also benefit. When ap-
plied to an existing application, a relative performance comparison
could be made. Modularization could also be applied to other types
of Bayesian filters. We have shown how modularization works with
particle filters, but there are several other filtering algorithms in use.
Some of those also use specialized probability distributions which
would require additional work to use as messages.

REFERENCES

[1] S.K. Andersen, K.G. Olesen, F.V. Jensen, and F. Jensen, ‘HUGIN*–
a shell for building Bayesian belief universes for expert systems’, in
International Joint Conference on Artificial Intelligence, volume 2, pp.
1080–1085, Detroit, MI, (1989). Morgan Kaufmann Publishers Inc.

[2] X. Boyen and D. Koller, ‘Tractable inference for complex stochastic
processes’, in Proceedings of the Fourteenth Conference on Uncer-
tainty in Artificial Intelligence, UAI’98, pp. 33–42, San Francisco, CA,
USA, (1998). Morgan Kaufmann Publishers Inc.

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance1404



[3] X. Boyen and D. Koller, ‘Exploiting the architecture of dynamic sys-
tems’, in Proceedings of the Sixteenth National Conference on Arti-
ficial Intelligence and the Eleventh Innovative Applications of Artifi-
cial Intelligence Conference Innovative Applications of Artificial In-
telligence, AAAI ’99/IAAI ’99, pp. 313–320, Menlo Park, CA, USA,
(1999). American Association for Artificial Intelligence.

[4] A. Doucet, N. de Freitas, K. Murphy, and S. Russell, ‘Rao-
blackwellised particle filtering for dynamic Bayesian networks’, in Pro-
ceedings of the Sixteenth Conference on Uncertainty in Artificial Intelli-
gence, UAI’00, pp. 176–183, San Francisco, CA, USA, (2000). Morgan
Kaufmann Publishers Inc.

[5] D. Fox, ‘KLD-sampling: adaptive particle filters’, Advances in Neural
Information Processing Systems, 1(14), 713–720, (2002).

[6] D. Fox, ‘Adapting the sample size in particle filters through KLD-
sampling’, International Journal of Robotics Research, 22(12), 985–
1004, (2003).

[7] R.E. Kalman, ‘A new approach to linear filtering and prediction prob-
lems’, Transactions of the ASME–Journal of Basic Engineering, 82,
35–45, (1960).

[8] R.E. Kalman and R.S. Bucy, ‘New results in linear filtering and predic-
tion theory’, Journal of Basic Engineering, 83, 95–108, (March 1961).

[9] U. Kjærulff, ‘dHugin: A computational system for dynamic time-sliced
Bayesian networks’, International Journal of Forecasting, 11, 89–111,
(1995).

[10] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques, The MIT Press, Cambridge, MA, 2009.

[11] S.L. Lauritzen and D.J. Spiegelhalter, ‘Local computations with proba-
bilities on graphical structures and their application to expert systems’,
Journal of the Royal Statistical Society. Series B (Methodological),
50(2), 157–224, (1988).

[12] J.D. McLean, S.F. Schmidt, and L.D. McGee, ‘Optimal filtering and lin-
ear prediction applied to a midcourse navigation system for the circum-
lunar mission’, Technical Report NASA-TN-D-1208, NASA, Ames
Research Center, Moffett Field, CA, (March 1962).

[13] T.P. Minka, ‘Expectation propagation for approximate Bayesian infer-
ence’, in Proceedings of the Seventeenth Conference on Uncertainty in
Artificial Intelligence, eds., Jack Breese and Daphne Koller, UAI’01,
pp. 362–369, San Francisco, CA, USA, (2001). Morgan Kaufmann
Publishers Inc.

[14] K. Murphy, Dynamic Bayesian Networks: Representation, Inference
and Learning, Ph.D. dissertation, University of California, Berkeley,
Berkeley, CA, USA, 2002.

[15] K. Murphy and Y. Weiss, ‘The factored frontier algorithm for approx-
imate inference in DBNs’, in Proceedings of the Seventeenth Confer-
ence on Uncertainty in Artificial Intelligence, UAI’01, pp. 378–385,
San Francisco, CA, USA, (2001). Morgan Kaufmann Publishers Inc.

[16] K.P. Murphy, Y. Weiss, and M.I. Jordan, ‘Loopy belief propagation for
approximate inference: an empirical study’, in Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial Intelligence, UAI’99, pp.
467–475, San Francisco, CA, USA, (1999). Morgan Kaufmann Pub-
lishers Inc.

[17] B. Ng, L. Peshkin, and A. Pfeffer, ‘Factored particles for scalable mon-
itoring’, in Proceedings of the Eighteenth Conference on Uncertainty in
Artificial Intelligence, UAI’02, pp. 370–377, San Francisco, CA, USA,
(2002). Morgan Kaufmann Publishers Inc.

[18] M.A. Paskin, Exploiting locality in probabilistic inference, Ph.D. dis-
sertation, University of California at Berkeley, Berkeley, CA, USA,
2004. AAI3165519.

[19] J. Pearl, ‘Fusion, propagation and structuring in belief networks’, Arti-
ficial Intelligence, 29(3), 241–288, (September 1986).

[20] M.A. Peot and R.D. Shachter, ‘Fusion and propagation with multiple
observations in belief networks’, Artificial Intelligence, 48(3), 299–
318, (1991).

[21] S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Pearson Education Inc., Upper Saddle River, NJ, 2nd edn., 2003.

[22] A.F.M. Smith and A.E. Gelfand, ‘Bayesian statistics without tears: a
sampling - resampling perspective’, The American Statistician, 46(2),
84–88, (May 1992).

[23] G.L. Smith, S.F. Schmidt, and L.A. McGee, ‘Application of statistical
filter theory to the optimal estimation of position and velocity on board
a circumlunar vehicle’, Technical report, NASA Ames Research Center,
Moffett Field, CA, (1962).

[24] N.L. Zhang and D. Poole, ‘Exploiting causal independence in bayesian
network inference’, Journal of Artificial Intelligence Research, 5, 301–

328, (December 1996).

P.D. Edgington and A.S. Maida / Exact Particle Filter Modularization Improves Runtime Performance 1405


	Exact Particle Filter Modularization Improves Runtime Performance
	1 Introduction
	2 Modularizing Dynamic Bayesian Networks
	3 Building a Modularized Bayesian Filter
	3.1 Selecting Bayesian Filters
	3.2 Message Passing
	3.3 Non-Standard Information Representations
	3.3.1 Particle Sets as Information Sources for Kalman-Filter Based Bayesian Filters
	3.3.2 Particle Sets as Information Sources for Particle Filters


	4 Computation Time for Modularized Bayesian Filters
	5 Vehicle State Estimation Example
	5.1 Selecting Bayesian Filters
	5.2 Assembling the Modular Particle Filter Algorithm

	6 Methods
	7 Results
	8 Conclusion
	9 Further Research

