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Abstract.1 This paper introduces an integrated adaptive temporal-
causal network model for dynamics in networks of social 
interactions addressing contagion between states, and changing 
connections within these social networks by two principles: the 
homophily principle and the more-becomes-more principle. The 
model has been evaluated in three different manners: by simulation 
experiments, by verification based on mathematical analysis, and 
by validation against an empirical data set.  

1 INTRODUCTION 
In today’s world being successful and popular is mostly influenced 
by your social capabilities and how you interact with the people 
you know and work with. These social interactions are heavily 
investigated over the last few decades, in which analysis and 
prediction of the behaviour of humans in social situations plays a 
major role. The area of Social Networks has already a longer 
tradition, starting in the Social Sciences over 40 years ago. More 
recently, it has gradually developed in other disciplines as well; 
see, for example [4, 7, 23]. This development also involves 
computational methods to analyse and simulate networks both 
from the perspective of network structure and of dynamics.  

Two main types of dynamics in relation to networks can be 
distinguished: dynamics within a given network structure (e.g., 
social contagion), and dynamics of a network (evolving networks). 
In the former case the network stays the same, but states (nodes) in 
the network change their level over time. In the latter case the 
network connections change, for example, their weights may 
increase or decrease. An example of this, also used in Section 6, is 
a network of adolescents followed over the years with the 
individuals’ opinions about alcohol drinking as states and their 
friendships as connections. These states and connections both 
change over time. In many cases the two types of dynamics are 
addressed computationally as separate phenomena. This paper will 
address both types of dynamics and their interactions in an 
integrated manner. 

The computational modelling approach used is the Network-
Oriented Modelling approach based on temporal-causal networks 
described in [21, 22]; see also the ECAI’16 tutorial on Network-
Oriented Modelling. This approach is a generic, dynamic AI 
modelling approach based on networks of causal relations but it 
differs from most other causal approaches (e.g., [17]) in that it 
incorporates a continuous time dimension to model dynamics in an 
adaptive manner, both of the states and of the network itself. This 
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temporal dimension enables causal reasoning and simulation for 
cyclic and adaptive causal networks, such as networks for 
connected mental or brain states, or for social interactions, or both. 
The modelling approach can incorporate ingredients that are 
sometimes used in specific types of (continuous time, recurrent) 
neural network models, and ingredients that are often used in 
probabilistic or possibilistic modelling. It is more generic than such 
methods in the sense that a much wider variety of modelling 
elements are provided, enabling the modelling of many types of 
dynamical systems, as described in [21, 22].  

For the dynamics within a network an existing approach to 
social contagion will be adopted. For the dynamics of the network, 
two different principles are considered and integrated, namely the 
homophily principle and the more becomes more principle. The 
main objective of this paper is to explore how combining of these 
three models for social contagion and network evolution can be 
used to analyse and predict human behaviour in social situations. 
The contagion principle indicates that the more a person interacts 
with someone else, the more their opinions or beliefs or emotions 
or other states will converge; e.g., [5]. The homophily principle in a 
sense indicates the converse of this: the similarity of states such as 
opinions or beliefs or emotions of persons affects the strength of 
the connection between them; e.g., [6, 12, 13, 19]. The more 
becomes more principle describes the phenomenon that whenever 
someone is popular (in the sense of the strength of connections), he 
or she will become more popular over time because it is believed 
that this person is worth relating to; e.g., [2, 15]. 

In this paper, in Section 2 the Network-Oriented Modelling 
approach based on temporal-causal modelling networks used is 
briefly described. Section 3 introduces the integrated network 
model, and in Section 4 simulation experiments are discussed. 
Section 5 addresses verification of the model by mathematical 
analysis of equilibria. In Section 6 validation of the model is 
addressed based on empirical data from [8]. Finally, a discussion is 
provided in Section 7. 

2 TEMPORAL-CAUSAL NETWORK MODELS 
Causal modelling, causal reasoning and causal simulation have a 
long tradition in AI; e.g., [10, 11, 17]. One of the challenges has 
been that causal modelling involving cyclic graphs is difficult; 
therefore, many approaches limit themselves to Directed Acyclic 
Graphs (DAG’s). The Network-Oriented Modelling approach 
based on temporal-causal networks described in [21, 22] can be 
viewed as part of this tradition. The computational model presented 
here has been designed using this network modelling approach. It 
is a widely usable generic dynamic AI modelling approach that 
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distinguishes itself by incorporating a dynamic and adaptive 
perspective, both on states and causal relations. This dynamic 
perspective takes the form of an added continuous time dimension, 
enabling modelling of cyclic and adaptive networks, and also of 
timing of causal effects. Due to this, causal reasoning and 
simulation is possible for adaptive networks that inherently contain 
cycles, such as adaptive networks for connected mental or brain 
states, or for social interaction. From the technical point of view, it 
has some ingredients in common with specific types of (continuous 
time, recurrent) neural network models, but is more generic in the 
sense that a much wider variety of modelling elements can be used, 
as will also be shown by the integrated model presented here. In 
[21, 22] a more detailed description of this Network-Oriented 
Modelling approach can be found. 

According to the adopted modelling approach, a model is 
designed at a conceptual level, for example, in the form of a 
graphical conceptual representation or a conceptual matrix 
representation. A graphical conceptual representation displays 
nodes for states and arrows for connections indicating causal 
impacts from one state to another, and includes some additional 
information in the form of: 
� for each connection from a state X to a state Y a connection 

weight �X,Y (for the strength of the impact of X on Y) 
� for each state Y a speed factor �Y (for the timing of the effect of 

the impact) 
� for each state Y the type of combination function cY(..) used (to 

aggregate multiple impacts on a state) 
To choose combination functions, a number of standard options is 
available, varying from linear functions or logistic functions, to 
product or max and min-based functions as often used in 
probabilistic and possibilistic approaches; e.g., [21]. The 
conceptual representation of a model can be transformed in a 
systematic or even automated manner into a numerical 
representation of the model as follows [21]; here the variable t 
indicates a time point; it varies over the real numbers. 

 

From conceptual to numerical representation 
� at each time point t each state Y in the model has a real number 

value (usually in the interval [0, 1]), denoted by Y(t) 
� at each time point t each state X connected to state Y has an 

impact on Y defined as impactX,Y(t) = �X,Y X(t) where �X,Y is 
the weight of the connection from X to Y  

� The aggregated impact of multiple states Xi on Y at t is 
determined using a combination function cY(..): 

aggimpactY(t) = cY(impactX1,Y(t), …, impactXk,Y(t))  
= cY(�X1,YX1(t), …, �Xk,YXk(t)) 

where Xi are the states with connections to state Y 
� The effect of aggimpactY(t) on Y is exerted over time 

gradually, depending on speed factor �Y:  
Y(t+�t) = Y(t) + �Y [aggimpactY(t) - Y(t)] �t 
dY(t)/dt = �Y [aggimpactY(t) - Y(t)]  

� This provides ase difference and differential equation for Y: 
Y(t+�t) = Y(t) + �Y [cY(�X1,YX1(t), …, �Xk,YXk(t)) - Y(t)] �t 
dY(t)/dt = �Y [cY(�X1,YX1(t), …, �Xk,YXk(t)) - Y(t)] 

 

These numerical representations can be used for mathematical and 
computational analysis and simulation. 

In cases in which connection weights �X,Y are dynamic, they 
are also considered as states. This means that in graphical 
conceptual representations connection weights which usually are 
depicted as labels for arrows, can also be handled as nodes: also 
arrows can occur from and to them, as shown, for example in Fig. 

1 and Fig. 2. For numerical representations dynamic connection 
weights also get a time argument: �X,Y(t). So the difference and 
differential equation for a state Y becomes: 

Y(t+�t) = Y(t) + �Y [cY(�X1,Y(t)X1(t), …, �Xk,Y(t)Xk(t)) - Y(t)] �t 
 dY(t)/dt = �Y [cY(�X1,Y(t)X1(t), …, �Xk,Y(t)Xk(t)) - Y(t)] 

Moreover, as they are considered states themselves, to model their 
dynamics, the dynamic connection weights will also be described 
by a difference or differential equation, which also can be based on 
a combination function and speed factor as above, and even on 
weights of connections to or from these connection weights (the 
latter will be assumed to have value 1 here). This will be illustrated 
in detail in next section. 

3 THE COMPUTATIONAL MODEL 
Three different elements will be addressed by the computational 
model: the contagion principle, the homophily principle, and the 
more becomes more principle. 

 

Contagion principle. This principle indicates that levels of states 
of connected nodes affect each other. A most basic form is that 
they are adjusted in a way that they become more equal, which can 
be considered a form of averaging; sometimes this is called 
absorption [5]. Also possible is that the level of one state amplifies 
the level of another state, so that spirals can occur; this is called 
amplification [5]. In the current paper an absorption model is used. 

 

Homophily principle. This principle indicates that the more 
similar (the levels of) the states of two connected nodes are, the 
stronger their connection will become: ‘birds of a feather flock 
together’ [6, 12, 13].  
More becomes more principle. This principle expresses that 
nodes that already have more and stronger connections get more 
and stronger additional connections than nodes with less or weaker 
connections (the rich become more rich and the poor remain poor). 
Analyses have been made showing that applying this principle 
usually leads to scale-free networks [2, 15]. When both the states 
and the connection weights are assumed dynamic, this leads to a 
circular causal relation state    connection. This may cause 
difficulties in explaining by which causes in the past observed 
phenomena in networks have developed. For example, when in a 
network it is found that similar state levels and strong connections 
occur together, due to such a circular causal relation it is difficult to 
tell which type of principle(s) was originally causing this situation; 
see for example: [1, 18, 20, 14]. 

3.1 Dynamics of States: Social Contagion  
In this section, XA denotes the level of state X for member A. This 
state X can be any type of state, either internal or externally 
observable (e.g. an internal state of feeling an emotion, or an 
expressed emotion state, or an (internal) intention, or an action 
performed, or a belief or opinion). The connection weights are 
denoted by �A,B for the connection from A to B. The following 
general model for contagion is used (see [21]): 

dXB /dt  =  �B [ cB(�A1,B XA1, … , �Ak,B XAk) – XB]  
XB(t+�t) =  XB(t) +  

�B [ cB(�A1,B XA1(t), … , �Ak,B XAk(t)) – XB(t)] �t 
For the states XB the model uses the scaled sum combination 
function (also see [5, 21]): 

cB(V1, … , Vk)   = ssum�(V1, … , Vk) = (V1 + … + Vk)/ � 
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with � = �A1,B + … + �Ak,B the sum of the incoming weights for 
state XB. This makes 

cB(�A1,B XA1(t), … , �Ak,B XAk(t)) =  
(�A1,B XA1(t) + … + �Ak,B XAk(t))/(�A1,B + … + �Ak,B) 

This is the weighted average of the state levels XA1(t), … , XAk(t) 
with weights proportional to �A1,B , … , �Ak,B, respectively. Using 
this combination function for the aggregated impact on state XB, 
the differential and difference equation are 
dXB /dt  =  �B [(�A1,B XA) +… + �Ak,B XAk)/(�A1,B + … + �Ak,B) – XB]   
XB(t+�t) =  XB(t) +   
�B [(�A1,B XA1(t) + … + �Ak,B XAk(t))/(�A1,B + … + �Ak,B) – XB(t)] �t 

3.2  Dynamics of Connections: Homophily  
The network characteristics are specified by the connection 
strengths �A,B. A first question to be answered is how these 
connection strengths are changing, and, in particular, the other 
states affecting them have to be identified. By the homophily 
principle the connection strengths �A,B are affected by the 
activation levels of the connected states of A and B. Such a 
dependency is depicted in fig. 1. Note that by adding these effects 
on the connection strengths cyclic relationships occur; for example 
see Figure 1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A next step is to determine how exactly the connection strengths 
are affected by the activation levels. This is needed to obtain a 
dynamic equation for �A,B. For the current model the dynamic 
connection weights �A,B are assumed to change over time based on 
a principle similar to the one from [16]: the closer the activation 
levels of the states, the stronger the mutual connections between 
the members will become, and the higher the difference between 
the activation levels, the weaker they will become. In other words: 
activation levels close to each other imply a strong upward change 
in �A,B, and activation levels far apart imply a downward change of 
�A,B. This is how the homophily principle works: the more you are 
alike, the more you like (each other); the inspiration for the model 
below was obtained from [6, 12, 13, 19].  

As an example of this principle in practical use, if you wonder 
whether there is a chance to become connected with somebody, 
you might consider whether you often like and agree on the same 
things. It can often be observed that persons that have close 
relationships or friendships are alike in some respects; e.g. they go 
to the same clubs, take the same drinks, have the same opinions, 
vote for the same or similar parties. Such observations might be 
considered support for the homophily principle: in the past they 
were attracted to each other due to being alike. However, also a 
different explanation is possible: they were often together and due 

to that they affected each other’s states by social contagion, and 
therefore they became alike. So, the cyclic relation between XB and  
�A,B as mentioned above leads to two possible causal explanations 
of a state of being alike and a state of being connected: 

being connected �  being alike 
being alike  �  being connected 

Such circular causal relations make it difficult to determine what 
came first. It may be a state just emerging from a cyclic process 
without a single cause. For more discussion on this issue, for 
example, see [1, 14, 18, 20]. 

The homophily principle may be formalised using a 
combination function cA,B(V1, V2, W) and speed factor �A,B  
according to the following general format (where connections to 
connection weights themselves are assumed to have weight 1): 
�A,B(t+�t)= �A,B(t) + �A,B [cA,B(XA(t), XB(t), �A,B(t)) - �A,B(t)] �t       
d�A,B/ dt = �A,B [cA,B(XA, XB,�A,B) - �A,B] 

Here it is assumed that the values of �A,B  stay within the interval 
[0, 1] and in particular the conditions 

cA,B(V1, V2, 0) � 0 and  cA,B(V1, V2,1) 	 1  
are fulfilled. The combination function cA,B(...) is assumed to 
depend on the one hand on W and on the other hand on the 
difference |V1 – V2| (which is always between 0 and 1) in such a 
way that lower values of |V1 – V2| relate to higher values of  cA,B(V1, 
V2, W), and higher values of |V1 – V2| relate to lower values of  
cA,B(V1, V2, W) : the higher |V1 – V2|, the lower cA,B(V1, V2, W) 
and in particular:   

| V1 – V2| = 1   
  �A,B  decreasing    
  d�A,B(t)/ dt  	 0    

    cA,B(V1, V2, W) 	 W  
| V1 – V2| = 0    
  �A,B  increasing  
  d�A,B(t)/ dt  � 0   
 
    cA,B(V1, V2, W) � W 

Furthermore, it is assumed that cA,B(V1, V2, W) only depends on the 
difference |V1 – V2| and not on the values of V1 and V2 themselves. 
Then as a simplification in notation the combination function 
cA,B(...) can be expressed as a function hA,B(D, W)  of D = |V1 – V2| 
and W: cA,B(V1, V2, W) = hA,B(D, W). As discussed above, the 
function hA,B is assumed to be monotonically decreasing in D: 

D1 	 D2   
 hA,B(D1, W) � hA,B(D2,W) 
D  = 1    
   hA,B(D, W) 	 W      
D  = 0   
   hA,B(D, W) � W 

Moreover, 
hA,B(D, 0) � 0  and  hA,B(D, 1) 	 1  

Somewhere between low values of D = |V1 – V2| (with hA,B(D, W) � 
W) and high values of D (with hA,B(D, W) 	 W) a value for D is 
assumed for which hA,B(D, W) = W. This is called the homophily 
threshold value, indicated by �homophily or by �A,B; so 

hA,B(D, W) � W  when  D 	 �A,B 
hA,B(D, W) = W  when  D = �A,B 
hA,B(D, W) 	 W  when  D � �A,B 

So, for this threshold value �A,B it holds: 
� an upward change of connection weight �A,B occurs  

when |V1 – V2| < �A,B  
� no change of connection weight �A,B occurs  

when |V1 – V2| = �A,B  
� a downward change of connection weight �A,B occurs  

when |V1 – V2| > �A,B  
A simple example of a continuous function hA,B(D, W) satisfying the 
above conditions for a given value of W is obtained when the 
threshold value �A,B is assumed to be a fixed value and then use a 
simple decreasing linear function in D through the point with 
coordinates (�A,B, W) (i.e., through the point with D = �A,B  and 
hA,B(D, W) =  W): 

 

�  

 

�  

�  

�  

   

 XA 
 XB 

     

  XC 

    

  XD 

Figure 1.  Conceptual representation: homophily principle 
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hA,B(D, W) = W + � (�A,B - D)  
for some �, that still can be chosen. To fulfil the conditions 

hA,B(D, 0) � 0 and  hA,B(D, 1) 	 1  
which prevent the weight value �A,B  go outside the interval [0, 1], � 
can be chosen as a function �(W) of W which can suppress the term 
�A,B - D when W comes closer to 0 or 1:  

hA,B(D, W) =  W + �(W) (�A,B - D)  
When this function �(W) is assumed to be always � 0  and close to 0 
when W is close to 0 or 1, then this can keep the value of �A,B 
within the interval [0, 1]. This can be satisfied by the function  

�(W) = W (1-W)  
which is 0 for W = 0 and for W = 1, and positive between these 
values with a maximum 0.25 for W = 0.5. This makes that � is 
changing slowly in the neighbourhood of 0 or 1, thus achieving 
that � does not cross these boundaries. Then the following example 
function fulfilling the above conditions is obtained: 

hA,B(D, W) = W + W (1-W) (�A,B - D)  
For the combination function cA,B(V1, V2, W) the above choice for  
hA,B(D, W) translates into: 

cA,B(V1, V2, W) = W + W (1- W) (�A,B - | V1 – V2|)  
Using this combination function, the dynamic relations for �A,B 
are: 
d�A,B/ dt = �A,B �A,B(1 - �A,B) (�A,B - |XA - XB| )  
�A,B(t+�t) = �A,B(t) + 

    �A,B  �A,B(t)(1 - �A,B(t)) (�A,B - |XA(t) - XB(t)| ) �t     
Note that in the example experiments discussed below one and the 
same homophily threshold value �homophily has been used for all 
connections. 

3.3   Dynamics of Connections: More Becomes More  
Another type of model for a dynamic connection from a member B 
to A takes into account to which extent other member’s C connect 
to member A. The idea behind this is that somebody who is very 
popular seems worth connecting to. This is called the ‘more 
becomes more’ principle. For example, if B is followed by many 
others C on Twitter, then B seems to be interesting to follow for A 
as well. As the connections of others to B may change over time, 
this will imply that also A will have a dynamic connection to B, 
and in turn this connection will affect the connection of others to B 
over time as well. This can be modelled taking into account the 
weights �Ci,B for i = 1,.., k of all connections from others Ci to B as 
follows. The inspiration for this model was obtained from [2, 15]. 
For a conceptual representation, see Fig. 2.  
 
 
 
 
 
 
 
 
 
 
 

  
 
From this the following numerical representation is obtained: 
        d�A,B /dt  = �A,B[cA,B(�C1,B .., �Ck,B) - �A,B] 
       �A,B(t+�t) =  �A,B(t) + �A,B[cA,B(�C1,B(t),  ..., �Ck, B(t)) - �A,B(t)] 

Here cA,B(…)  is a combination function for the values �C1,B, …, 
�Ck,B, for example, a logistic sum function, or a scaled sum 
function. The latter is chosen here with as scale factor the number k 
of other members involved: 
cA,B(�C1,B .., �Ck,B) = ssumk(�C1,B, .., �Ck,B) = (�C1,B + .. + �Ck,B)/k 
Note that in a network modelling the adaptation of connection 
weights the direction of this influence is not automatically the 
direction involving social contagion; this will depend on the 
application considered. For example, a network modelling a 
connection from A to B when A is following B on Twitter will not 
play a role in social contagion from A to B. For social contagion 
the opposite network plays a role where a connection from A to B 
occurs when A is followed by B, which is not initiated by A but by 
B: on Twitter and most other social media you cannot appoint your 
own followers. In other cases, it may be different. For example, if 
A wants to announce an event or new product, he or she can choose 
an occasion where many others will see the message, for example, 
posting it on a suitable forum; in such a case both the initiation and 
the social contagion are directed from A to the others. For the sake 
of simplicity, the latter is assumed here. 

3.4 Integration of the Different Models 
Within the integrated model the connection weights are affected by 
both the homophily principle and the more becomes more 
principle. These two effects have to be integrated. To achieve this a 
combination function is used that combines both the combination 
function for the homophily principle and for the more becomes 
more principle. Recall that the combination function for ωA,B based 
on the homophily principle is:  
chomo,�A,B(XA, XB, ωA,B)= ωA,B + ωA,B (1- ωA,B)*( τA,B -  |XA  - XB| )  
For the more becomes more principle the combination function for 
ωA,B is: 

cmore,�A,B(�C1,B, .. , �Ck,B) = (�C1,B + .. + �Ck,B)/k 
In order incorporate the influence of the separate models into the 
combined model, a parameter α between 0 and 1 is introduced and 
then for the integrated combination function c�A,B(…) the weighted 
average is chosen of the two separate combination functions: 
c�A,B(XA, XB, ωA,B, �C1,B, .. , �Ck,B) = α * chomo,�A,B(XA, XB, ωA,B) +  

     (1-α) * cmore,�A,B(�C1,B, .. , �Ck,B)  
This is used as aggregated impact in the following difference for 
weight �A,B:  
�A,B(t+�t) =  �A,B(t) +  
       ��A,B [c�A,B(XA(t), XB(t), ωA,B(t), �C1,B(t), .. , �Ck,B(t)) - �A,B(t)] 
Parameter  is called the homophily influence fraction. When α is 
close to 1, the homophily model is dominating, and when α is close 
to 0, the more becomes more model dominates. When α is 0.5, both 
models have equal influence on the new weight value.  

4 SIMULATION EXPERIMENTS 
The model described above can be used to make predictions about 
emergent properties of dynamic social networks. To examine this, 
some questions concerning emerging properties were formulated 
and these were tested by simulation experiments. Due to the 
contagion principle it may be expected that the state levels of the 
nodes connected in a social network to become more alike and due 
to the homophily principle and the more becomes more principle 
their connections will change over time. Via the more becomes 
more principle it may be expected that the nodes that are connected 
to nodes that have the most and stronger connections will keep 

     
      X  
 

XB 
 

    
  X  

   
     XA 
 

�  

�  

�  

Figure 2.  Conceptual representation: more becomes more principle 
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those connections and they will become stronger. The homophily 
principle also changes the connections depending on the levels of 
the nodes. An example social network has been designed to see 
what the outcome is for these questions in a case study. The 
network contains 14 nodes and consists of two groups that each are 
strongly interconnected and have only a few (bridge) connections 
between members of different groups; see Fig. 3. These could, for 
example, be two groups of friends of different high schools that 
have a few connections between them due to four members that 
went to the same primary school. The assumed connection weights 
are shown in the connection matrix in Table 1.  

So, will the integrated model change the levels of the states in 
each of the groups in such a way that they will converge to the 
same value for this group, depending on the popular nodes and the 
amount and strength of the connections? Or will the levels of all 
nodes converge to one and the same value for both groups?  
Besides that, due to the homophily principle, will the bridge 
connections between the two separate groups become weaker as 
their states are too different, or will they become stronger due to 
the more become more principle and due to the levels in the groups 
becoming more similar? Many types of emerging dynamic patterns 
may occur, and it is not so easy to predict them at forehand. 

In the example about the high school friend groups, by the 
homophily principle the bridge connections could disappear when 
the persons in first group all play basketball and the people in the 
other friend group don’t like basketball. However, when both 
groups like basketball, it is quite likely that the connections 
between the two groups will become stronger. And the more 
becomes more principle may still have a stronger effect to increase 
the bridge connections. 

 
Table 1.  Initial weights of the connections in the example network

 

4.1 Analysis of the Example Social Network 
Gephi version 0.8.2. [3] has been used to analyse the example 
social network, which is shown in Figure 3. It consists of 14 nodes 
or nodes and 39 edges. The average degree is 2.786 with a highest 
in-degree of 6, which means that there is one node who has 6 
connections directed towards him/her; this is node D. As can be 
seen from Fig. 3, the most ‘popular’ nodes in the network are 
nodes D, E, I and L, these are the biggest and the size here 
indicates the number of connections for nodes. Node E has the 
highest betweenness centrality of 80.167, after which node D 
follows with 72.5, node L with 41 and node I with 38.167. The 
highest values for the between-ness centrality are most likely the 
popular members and have the most influence on the rest of the 
connecting nodes. The number of communities is 3 and the 
modularity is 0.369. The example network was designed as having 
2 communities with a few nodes that also had bridge connections 
with the other community: nodes E, H, I, L, N. 

 
Figure 3.  The example social network with nodes (circles) and edges 

(arrows with direction) 

This group is also considered a community, probably since the 
modularity is 0.369 and the communities used here are small. For 
the two simulation experiments discussed here the parameter 
settings and initial values used are shown in Tables 1 to 3. 
Simulations were done in Matlab 2014v [4]. 

 
Table 2.  Parameters used for the simulation experiments 

 

4.2 Simulation Results for Experiment 1 
The first experiment addresses the case that the initial levels in the 
two groups do not differ much: the two groups have preferences 
about sports that match. The values of the levels of all nodes in the 
social network vary between 0.3 and 0.8. Because the levels are not 
so different, it may be expected that the bridge connections 
between the two groups (involving nodes E, H, I, L and N) will 
become stronger and the levels of all the nodes converge to the 
same value. Fig. 4 depicts the change of the levels of the nodes 
over time. The levels start at different initial values ranging from 
0.3 to 0.8, as can be seen in Table 3. The graph shows that indeed 
all levels converge into one value, around 0.53. 

 Table 3.  Initial values of the levels of the nodes 

  

 
Figure 4.  Experiment 1: changing levels of the states 

In Fig. 5 the weights of the bridge connections between the two 
groups are shown which are expected to develop higher values. 
This is indeed the case; eventually they all converge to 1. This 

Parameter α ηweights ηstates τhomophily time 
Value 0.5 0.2 0.2 0.05 100 

Node A B C D E F G H I J K L M N 
Experiment 1 0.4 0.6 0.3 0.7 0.5 0.6 0.4 0.8 0.5 0.3 0.6 0.6 0.7 0.4 
Experiment 2 0.8 0.6 0.7 0.9 0.7 0.5 0.6 0.8 0.2 0.4 0.1 0.3 0.4 0.2 
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happens because after time point 20 all levels differ less than 0.05, 
so both the homophily principle and the more becomes more 
principle have an increasing effect. 

 
Figure 5.  Experiment 1: changing bridge connection weights (between the 

nodes E, H, I, L and N) 

4.3 Simulation Results for Experiment 2 
In the second Experiment 1: changing bridge connection weights  
simulation experiment the two groups have their own opinion 
about sports. The first group, consisting of nodes A, B, C, D, E, F, 
G, H, considers basketball a really nice sport, therefore the initial 
levels of their states are high (values between 0.5 and 0.9). The 
second group, consisting of nodes I, J, K, L, M, N, have low initial 
levels as they do not like basketball (values between 0.1 and 0.4). 
One question was whether in some cases the bridge connections 
between nodes E, H, I and L will vanish over time due to the effect 
of homophily. Fig. 6 depicts the change of the levels of the nodes 
over time. As can be seen from the plot, the levels in both groups 
start of from the different initial values. Group 1 consists of the 
lines in the graph that start from 0.5 to 0.9 and group two consists 
of the lines starting below ranging from 0.1 to 0.4. The graph 
shows two things. First, there is an effect of increased clustering 
within each group (most in Group 2), but later the values of these 
clusters still converge to one value, around 0.53.  
 

 
Figure 6.  Experiment 2: changing levels of the states 

So, in the longer term the bridge connections still make that one 
value is reached, which indicates that the bridge connections do not 
vanish. In Fig. 7 the weights of the bridge connections between the 
two groups are shown. A question was whether they would 
decrease to close to 0, due to the homophily principle. As can be 
seen from the plot, this is not the case. The connections between 
these nodes stay quite high and they are becoming higher over 
time. This can be explained by the more becomes more principle as 
follows. Note that Fig. 3 shows that the bridge connections all 

involve quite popular nodes. Therefore, the more becomes more 
principle makes these connections stronger instead of weaker, as 
would the homophily principle do. Apparently the more becomes 
more principle dominates in this case, and makes that effects of the 
homophily principle do not emerge. When after some time the 
differences between the levels become less than the homophily 
threshold �homophily = 0.05, even the homophily principle starts to 
contribute to the increase of the connection weights. 

 

 
Figure 7.  Experiment 2: changing bridge connection weights (between the 

nodes E, H, I, L and N) 

5 VERIFICATION BY MATHEMATICAL 
ANALYSIS 

This section presents some of the results of a mathematical analysis 
for the model. These results agree with the example simulations 
that have been performed, some of which are shown in Section 4. 
This provides verification of the model. First, a variable V 
indicating a state or connection weight is called stationary at t if 
dV(t)/dt = 0, it is increasing at t when dV(t)/dt > 0 and decreasing 
at t when dV(t)/dt < 0. For a connection weight �A,B being 
stationary means d�A,B(t) /dt = 0; this is equivalent to: 

α chomo,�A,B(XA(t), XB(t), ωA,B(t)) + 
(1-α) cmore,�A,B(�C1,B(t), .. , �Ck,B(t)) = �A,B(t) 

which is modelled as 
 α (�A,B(t) + �A,B(t) (1 - �A,B(t)) (�A,B - |XA(t) - XB(t)|)) + 
(1-α)  (�C1,B(t) + .. + �Ck,B(t))/k  = �A,B(t) 

Similarly for states XA. An equilibrium is when all states and 
connections are stationary at t. By rewriting the above formulae the 
following criteria can be derived for �A,B being stationary, 
increasing, and decreasing at time t. 
 

Proposition 1 (Criteria for stationary, increasing, decreasing) 
Stationary at t: 

α �A,B(t) (1 - �A,B(t)) (�A,B - |XA(t) - XB|(t)) + 
(1-α) [ (�C1,B(t) + .. + �Ck,B(t))/k  - �A,B (t)] = 0 

Increasing at t: 
α  �A,B(t) (1 - �A,B(t)) (�A,B - |XA(t) - XB(t)|) + 
(1-α) * [ (�C1,B(t) + .. + �Ck,B(t))/k  - �A,B(t) ] > 0 

Decreasing at t: 
α �A,B(t) (1 - �A,B(t)) (�A,B - |XA(t) - XB(t)|) + 
(1-α) * [ (�C1,B(t) + .. + �Ck,B(t))/k  - �A,B(t) ] < 0 

 
Next, an equilibrium analysis will be made for the cases when 
0<<1. Later, in Proposition 4 the special case  = 0 (more 
becomes more) will be addressed and in Proposition 5 the case  = 
1 (homophily). An equilibrium state can be considered for a 
connection weight �A,B for the three cases �A,B = 0, �A,B = 1 or 0 < 
�A,B < 1.  
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Proposition 2 (Equilibrium) Let values XA and �A,B  for all A and 
B for an equilibrium state be given. Then for all A and B the 
following hold: 
(a) If �A,B = 0 and <1, then �C,B = 0 for all C connected to B 
(b) If �A,B = 1 and <1, then �C,B = 1 for all C connected to B  
(c) If 0 < �A,B < 1, and >0 then  

|XA - XB| =  
        �A,B + (1/ -1) * [ (�C1,B + .. + �Ck,B)/k  - �A,B ]/[�A,B(1 - �A,B)] 
 

Proof (a) From �A,B = 0 and <1 it follows that (�C1,B + .. + 
�Ck,B)/k  = 0, and since 0 ≤ �C,B ≤ 1 for all C this entails �C,B = 0 
for all C 
(b) Similar to (a) 
(c) This follows from: 
α * �A,B(1 - �A,B) (�A,B - |XA - XB|) = 

-(1-α) * [ (�C1,B + .. + �Ck,B)/k  - �A,B ]  
 �A,B - |XA - XB| = 
-(1-α) * [ (�C1,B + .. + �Ck,B)/k  - �A,B ]/[ α �A,B(1 - �A,B)] 
 |XA - XB| = �A,B 
+ (1/ -1) * [ (�C1,B + .. + �Ck,B)/k  - �A,B ]/[�A,B(1 - �A,B)]       ■ 
 
More specifically, for an equilibrium in which all values XA are the 
same the following is found. 
 
Proposition 3 (Equilibrium with equal state values) Assume 
0<<1. Let for an equilibrium state values XA and �A,B  for all A 
and B be given, such that XA = XB for all A and B. Then for each B 
the equilibrium values �C,B  for all C either are all equal to 0 or 
are all equal to 1: 

�C,B  = 0 for all C or �C,B  = 1 for all C 
Moreover, all connection weights �A,B > 0 are attracted to the 
equilibrium value �A,B = 1, and not to the value �A,B = 0. 
 

Proof  From XA = XB it follows that  
�A,B(1 - �A,B) (�A,B - |XA - XB|) = �A,B(1 - �A,B) �A,B ≥ 0 

 
Take the smallest �A,B for B. Then 

(�C1,B + .. + �Ck,B)/k  - �A,B  ≥ 0 
 
Therefore since their sum is 0, both �A,B(1 - �A,B) �A,B and (�C1,B + 
.. + �Ck,B)/k  - �A,B  are 0: 

�A,B (1 - �A,B) = 0, which is equivalent to �A,B = 0 or �A,B = 1 
(�C1,B + .. + �Ck,B)/k  = �A,B   

 
By Proposition 2 if �A,B = 0, then all �C,B = 0, and if �A,B = 1, then 
all �C,B = 1. So, either �C,B = 0 for all C or �C,B = 1 for all C. 
The case �C,B = 0 for all C is not attracting: if for one of the �C,B > 
0 and �C,B < 1, then (�C1,B + .. + �Ck,B)/k  - �A,B  ≥ 0 and �A,B(1 - 
�A,B) �A,B > 0, so it is increasing. 
 
Some special cases have been excluded in parts of the above 
analysis:  = 0 or  = 1. When  = 0 the model describes only the  
more becomes more principle. Then the equilibrium equations are: 

cmore,�A,B(�C1,B, .. , �Ck,B)  = �A,B 
(�C1,B + .. + �Ck,B)/k  = �A,B 

For this case the following can be found.  
 
Proposition 4 (More becomes more:  = 0). Assume  = 0 and let 
equilibrium values �C,B be given. Then for all C and D the 
equilibrium values �C,B and �D,B are equal: �C,B = �D,B.  
 

Proof Take the A such that �A,B is the lowest from the �C,B. Then 
from 

(�C1,B + .. + �Ck,B)/k  = �A,B 
it follows 

(�C1,B + .. + �Ck,B)  - k �A,B = 0 
(�C1,B - �A,B) + .. + (�Ck,B - �A,B)  = 0 

where each term �Ci,B - �A,B ≥ 0. Therefore �Ci,B = �A,B  for all i.  ■ 
 
Next, consider  = 1, a model for only the homophily principle. 
Then the equilibrium equation becomes 

chomo,�A,B(XA, XB, ωA,B) = �A,B 
�A,B + �A,B(1 - �A,B) (�A,B - |XA - XB|) = �A,B 
�A,B(1 - �A,B) (�A,B - |XA - XB|) = 0 

 
The solutions of this equation are: 

�A,B = 0 or �A,B = 1 or |XA - XB| = �A,B 

 
Proposition 5 (Homophily:  = 1). Assume  = 1 and let 
equilibrium values �A,B be given. Then for all A and B it holds 

�A,B = 0   or   �A,B = 1   or   |XA - XB| = �A,B 

6 VALIDATION FOR REAL WORLD DATA 
For validation, data have been used from [8] for a large network of 
adolescents at three time points in subsequent years at which 
measurements have been done about how the state or opinion about 
alcohol drinking is and how their friendships are. In total, there 
were 160 participants, but only 129 were present at all three 
measurements. For the network structure, the participants were 
asked to name a maximum of six friends. They were also asked 
about their behaviour, for example, about their alcohol drinking 
behaviour, whether they were using drugs and their smoking 
behaviour. The following data files from the collection were used: 
 

Friendship 1:  About the relationships between subjects at time point 1 
Friendship 2:  About the relationships between subjects at time point 2 
Friendship 3:  About the relationships between subjects at time point 3 
Alcohol:  The alcohol drinking behaviour of every subject  
 at the 3 time points 
 

The model uses continuous values between 0 and 1. Therefore, the 
data points from the dataset were transformed into values that are 
comparable with data that will be predicted by the model. The 
score ‘best friend’ has been mapped on value 0.9, ‘just a friend’ on 
0.5 and ‘no relation’ on 0.1. The values are chosen in this way 
partly because the function used to determine the next value of a 
connection weight � contains the factor ω(1-ω). That means that 
when ω is exactly 0 or 1, no change can occur. By using the above 
values, this will not be a problem. 

In order to compare the empirical data with the model data 
used in this project, simulations were performed for 20 times steps. 
At t = 0 the initial values were taken from the first time point of the 
empirical data, in this way giving the model the same starting 
position as the empirical data. Then the simulated values at time 
point 10 and at time point 20 were compared to the second and 
third time point of the empirical data. To compare the simulated 
data to the empirical data the parameters have been tuned to this 
specific network by Simulated Annealing (e.g., [9]); For the 
Simulated Annealing as an error function, the sum of squares of 
deviations between simulated model values and empirical values 
has been used, in order to get a minimal error. The parameters used 
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Figure 8. Simulated annealing: pattern of average of squares of deviations 
between empirical data and simulated data 

Figure 9. Two examples of the dynamics of connection weights in the 
model in comparison to the empirical values 

and their ranges are shown in Table 4. It was found out that the 
speed factors ηweights and ηstates should not be too high for proper 
functioning of the model. 

As mentioned, the Glasgow data [8] was collected for three 
time points in subsequent years. There are cases that at the first 
time point there was no reported relation between two subjects, but 
at time point 3 there was. However, this is not taken into account 
by the model used here. The model does not create new 
connections. An alternative option could be to assume by default a 
very low weight initially, but that option has not been chosen. 
Therefore, a selection of the Glasgow data was made: relations 
between two subjects who did not yet have a relation during the 
initial time point, have been ignored. By applying the Simulated 
Annealing parameter estimation method to the empirical data and 
the model data, the parameter values shown in the rightmost 
column in Table 4 were identified. 

 
Table 4.  Parameters, their ranges and the identified values 
Parameter Notation Interval Value 
Update speed factor for states ηweights [0, 0.55] 0.2811 
Update speed factor for connections ηstates [0, 0.25] 0.2065 
Fraction of homophily influence  [0, 1] 0.2556 
Threshold for homophily principle �homophily [0, 1] 0.1945 

 
The pattern for the error, defined as the average of the squares 

of the deviations between the empirical data and simulated data, is 
shown in Fig. 8. The lowest value is 0.0035; the square root of this 
value is 0.0592. Considered as a measure for deviations within the 
[0, 1] interval where the values of connections and states vary, this 
means an average deviation of 6%, which is not bad as an 
approximation; this provides a positive validation result. 
 

 
 
 
 
 
 

 
 

 
 
 
 

 
In Fig. 9 for just two typical examples of connection weights it 

is shown how the dynamics of the model compares to the empirical 
values. Note that in Fig. 9 the (isolated) empirical values have been 
displayed with connecting lines between them; however, there is 
no linear relation, they are just measurements at different time 
points. Note that due to the discrete scores in the empirical data, 
real values can only be 0.1, 0.5 or 0.9. Here the real value of 
weight 1 stays 0.9 all the time, whereas the value of the model 
changes a bit, but deviates at most 0.02. The real value of weight 2 
first stays 0.9 but then changes from 0.9 to 0.5 between the second 
and third time point. The value of the model also decreases, with 
deviations between 0.1 and 0.2.  

Note that the identified value of the homophily influence 
fraction parameter  was around 0.25. This can be interpreted in 

the sense that according to the model in this network the evolution 
of relations is determined for about 25% by the homophily 
principle based on similarity in alcohol drinking, and for about 
75% by the more becomes more principle. 
 

 
 

 
 
 

 
 
 
 
 
 

 
 

7 DISCUSSION 
The computational model for dynamics in social networks 
introduced in this paper was designed by integrating three models 
for the dynamics of states and relations of persons in a social 
network, addressing the contagion principle [5], the homophily 
principle [6, 12, 13, 19] and the more-becomes-more principle [2, 
15], respectively. The model relates to and differs from existing 
work as follows. The first two models were adopted as variations 
on existing models from [5, 19], and the third model and the 
integration of the three models are new, as far as the authors know.  

The integrated model was evaluated in three different manners: 
by various simulation experiments, by verification based on 
mathematical analysis, and by validation against an empirical data 
set. By all three methods a positive evaluation was found. The 
simulation results were as expected or at least were well 
explainable, the verification showed that the model provides the 
outcomes as predicted by the mathematical analysis, and the 
validation provided outcomes of the model with deviations from 
the empirical data within a 6% range of the [0, 1] interval. As part 
of the validation it was found that for the considered network of 
adolescents [8], according to the tuned model the dynamics of 
connections was determined by the homophily principle based on 
similarity in alcohol drinking for about 25%, and by the more 
becomes more principle for about 75%.  

For future research variations of the model can be analysed. For 
example, for the homophily sub-model, as an alternative a 
quadratic variant as introduced in [19] can be used. Moreover, 
homophily with respect to multiple states can be explored, for 
example, not only similarities for drinking alcohol but also for 
smoking and sports behaviour. Also alternatives for the more 
becomes more and social contagion sub-models can be analysed, 
for example by choosing other combination functions from the 
collection of possible combination functions shown in [21].  

Finally, validation can be performed for more empirical data on 
social networks and their dynamics over time. However, often data 
sets for social networks only provide data for one point in time and 
only about the connections. It is not easy to find data sets that 
include data about connections over time and in addition also data 
about states of the members of the network over time. In this sense 
the Glasgow data set [8] used here is very valuable and has a rather 
unique position. 
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