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Abstract. Single-label classification associates each instance with
a single label, while multi-label classification (MLC), assigns multi-
ple labels to instances. Simple MLC systems assume that labels are
independent of one another, while more complex approaches cap-
ture inter-dependencies among labels. Experiments comparing per-
formance of MLC systems demonstrate that there is much room for
improvement.

Notably, when an instance is associated with multiple labels, a
feature-value of the instance may depend only on a subset of these
labels and thus be conditionally independent of the others given the
label-subset. Current systems do not account for such conditional in-
dependence. Moreover, dependence of a feature-value on a label is
likely to imply its dependence on other inter-dependent labels. Our
hypothesis is that by explicitly modeling the dependence between
feature values and specific subsets of inter-dependent labels, the as-
signment of multi-labels to instances can be done more accurately.

We present a probabilistic generative model that captures depen-
dencies among labels as well as between features and labels, by
means of a Bayesian network. We introduce the concept of label de-
pendency sets as a basis for a new mixture model that represents
conditional independencies between features and labels given sub-
sets of inter-dependent labels. Experimental results show that the per-
formance of the system we have developed based on our model for
MLC significantly improves upon results obtained by current MLC
systems that are based on probabilistic models.

1 Introduction

Multi-label classification (MLC) associates instances with possibly
multiple labels, in contrast to single-label classification, where each
instance is associated with a single label. Simple approaches for
multi-label classification transform the task into one or more single-
label classification task(s). For instance, under the Ranking by Pair-
wise Comparison method [22], a classifier is trained to distinguish
between each possible pair of labels (one-vs-one). A computation-
ally efficient alternative is the Binary Relevance method [22], where
each classification task corresponds to distinguishing a single label
from the rest (one-vs-all).

More advanced approaches for multi-label classification capture
dependencies among labels. For example, Multi-Label Search [8] ex-
plores a search space of label sets to capture such dependencies while
learning a mapping of instances to multi-labels. A more widely used
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method is a Classifier Chain [14, 15], which consists of multiple bi-
nary classifiers like those used in Binary Relevance, one classifier
per label. The chain is constructed based on an input label order-
ing. To capture relationships among labels, the feature-vector used
to represent an input instance given to a classifier F includes lab el
assignments obtained from all classifiers preceding classifier F in
the chain. Systems based on Classifier Chains include probabilis-
tic variants [5, 6, 16], and others that explicitly learn label inter-
dependencies such as a chain of Support Vector Machines [26], a
chain of naı̈ve Bayes classifiers [25], and an ensemble of Bayesian
networks [1]. Other approaches that employ graphical models, how-
ever not based on Classifier Chains, include Conditional Dependency
Networks [10], which use a fully-connected graphical model, and
systems that utilize probabilistic generative models [13, 17, 23], typ-
ically built for classifying text. The latter class of systems have not
been extensively tested against other MLC systems and on datasets
other than text.

In the context of MLC, a feature-value of an instance typically
depends on some subset of the instance labels and thus may be con-
ditionally independent of the other labels given this subset. For ex-
ample, the grade feature value of college students who are classified
(labeled) as Excelled in entrance tests and Admitted into a graduate
program is typically High, regardless of any other student labels. Fur-
thermore, dependence of a feature-value on a label is likely to suggest
its dependence on other inter-dependent labels. Current systems do
not account for the conditional independence between a feature-value
and other labels given a subset of labels. Moreover, performance of
current methods leaves much room for improvement. Our hypothesis
is that explicitly modeling the dependencies between feature values
and inter-dependent labels, as part of the classifier model, can sup-
port a more accurate assignment of multi-labels to instances.

We present a probabilistic generative model that captures depen-
dencies among labels as well as between features and labels, by
means of a Bayesian network. We introduce a mixture model to
represent conditional independencies between features and labels
given subsets of inter-dependent labels, and further develop a multi-
label classifier. Unlike previous approaches, our system uses an it-
erative process to infer values for multiple labels simultaneously.
In each iteration, the Bayesian network is modified to reflect inter-
dependencies among the most recently inferred label values; the ac-
curacy of the updated label assignments is thus improved by captur-
ing specific feature-label correlations and dependencies. We evaluate
our system on several multi-label datasets used before for evaluating
MLC systems, and demonstrate that the performance of our system
improves upon that obtained by current Classifier-Chain systems.

Using Inter-Dependence Structure
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In the next section we introduce relevant notations and present our
probabilistic generative model. Section 3 discusses procedures used
for learning structure and parameters of the model, and inference
techniques applied for multi-label classification. Section 4 provides
details about the multi-label datasets we use, performance evaluation
measures, and experimental results, while Section 5 concludes and
summarizes our findings and outlines future directions.

2 A Dependency-Based Mixture Model for
Multi-Label Data

Let D be a dataset containing m instances, and C={c1, . . . , cq}
be a set of q class-labels. Each instance in D is associated with a
subset of labels. As others have done before in the context of multi-
label classification (MLC) [1, 5], we represent an instance I ∈D as
a feature vector, �fI=〈f I

1 , . . . , f
I
d 〉, and I’s labels as a label vector,

�lI =〈lI1, . . . , lIq〉. Here d is the number of features, and lIi =1 if in-
stance I is associated with label ci, lIi =0 otherwise. Each feature
value fj is viewed as a value taken by a feature random variable Fj ,
and each label-indicator value li is viewed as a value taken by a la-
bel random variable Li. The task of multi-label classification thus
amounts to developing a classifier that takes as input an instance rep-
resented by a feature vector, and outputs a q-dimensional label vector.

2.1 Model Framework

We use a Bayesian network framework to model inter-dependencies
among labels as well as between features and labels. Each node rep-
resents either a label variable Li (1 ≤ i ≤ q) or a feature variable
Fj (1 ≤ j ≤ d), and each directed edge indicates a dependence re-
lationship between a pair of variables.

Representing label inter-dependencies

In the context of multi-label classification, labels may be directly
correlated with one another, regardless of their association with any
specific instance. As a simple example, drivers that are labeled as
Speeding are also likely to be labeled Accident-Prone, regardless of
any specific driver characteristics (features). We represent each un-
conditional dependence between a pair of labels ci and cj as a di-
rected edge from label variable Li to variable Lj . As another ex-
ample, Figure 1 shows the more complex inter-dependency structure
among label variables that we learn as part of our experiments (see
Section 4) in the context of the Emotions dataset [21]; in this exam-
ple, instances are songs and labels are emotions. A directed edge,
e.g. from Amazed-Surprised to Sad-Lonely, represents the assertion
that knowing that an instance is associated with the label Amazed-
Surprised influences the level of belief about the instance’s associa-
tion with the label Sad-Lonely.

A label may often depend on a small set of a few labels while being
conditionally independent of other labels given this set. To continue
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Figure 1: An example Bayesian network structure over labels that we learn
using the Emotions dataset [21].

the previous simple example, the label Accident-prone is condition-
ally independent of the label New-driver given the label Speeding.
To capture such conditional independencies, we introduce the con-
cept of label dependency sets. A dependency set for a label ci is a
minimal set of labels, ci1 , . . . , cim such that knowing an instance’s
association with each label cij in the set is sufficient to infer the
likelihood of the instance to be associated with ci. We utilize the
Bayesian network framework to obtain a practical representation of a
label dependency set. The network structure captures both direct de-
pendencies between pairs of labels and conditional independencies
among labels given certain subsets of them. More specifically, each
label variable Li directly depends on its parents Pa(Li) while being
conditionally independent of its non-descendants given Pa(Li); the
joint distribution of the label variables is thus given by:

Pr(L1, . . . , Lq)=

q∏

i=1

Pr(Li|Pa(Li)) .

Employing the above conditional independence, we refer to a label
variable Li and its parents in the network as the label dependency
set for Li. Thus, for each variable Li (1 ≤ i ≤ q), we define a label
dependency set: LSi={Li} ∪ Pa(Li).

Representing dependencies between features and labels.

An instance’s association with certain labels is clearly correlated
with the instance feature values. Additionally, the value of a feature
may be correlated with multiple labels and not just with one. For ex-
ample, in the Emotions dataset [21], where instances are songs rep-
resented using rhythm and tone features and labels are emotions, the
value of the tone feature is typically Low when a song is labeled as
Sad-Lonely while it is typically High when a song is simultaneously
labeled as both Sad-Lonely and Amazed-Surprised.

As explained earlier while introducing label dependency sets
(LDS), the association of an instance with certain labels typically
provides information about its association with other labels. For in-
stance, a song that has a High tone feature value and is labeled as
Amazed-Suprised is likely to also be labeled as Sad-Lonely. We rep-
resent the dependence of a feature, Fj , on a subset of inter-dependent
labels, LSi (to which we refer as a label dependency set) by plot-
ting directed edges connecting each label variable in the set with the
feature variable. We thus capture the conditional dependence among
labels in the set LSi given the feature Fj . Figure 2 extends the ex-

L1 L2 L6L5L4L3

F1

Amazed-
Surprised Quiet-Still Sad-

Lonely

Tone

Parents of L5
Pa(L5)

Label Dependency Set for L5
LS5 = {L5} U Pa(L5)

= {L2, L4, L5}

L2 L3

Figure 2: An extension of the network shown in Figure 1, where labels are
emotions and features are rhythms/tones. The feature associated with the vari-
able F1 is tone. Bold-faced nodes (L5 and its parents L2 and L4) form the la-
bel dependency set, LS5. Solid directed edges represent dependencies among
the labels while dashed edges represent dependence between the feature, F1,
and the label dependency set, LS5.
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ample Bayesian network presented in Figure 1. The dashed arrows
from labels L2, L4, and L5 (i.e., Amazed-Surprised, Quiet-Still, and
Sad-Lonely) to the feature, F1 (i.e. Tone) in Figure 2 capture the de-
pendence of the feature on the subset of inter-dependent labels com-
prising the label L5 and its parents, L2 and L4; this label subset is
referred to as the label dependency set, LS5={L5} ∪ Pa(L5).

Moreover, when an instance is associated with multiple labels, a
feature-value of the instance may depend only on a subset of these
labels. As an example, the tone feature value of a song that is labeled
as Sad-Lonely and Amazed-Suprised is likely to be High regardless
of the song’s association with any other labels. That is, the tone is
conditionally independent of all other labels, given the two labels
Sad-Lonely and Amazed-Suprised. By explicitly representing depen-
dence between a feature and the labels in an LDS as discussed above,
our model captures conditional independence of the feature from all
other labels given the LDS.

We next present a probabilistic generative model that captures the
label inter-dependencies and dependencies between features and la-
bels discussed above.

2.2 Model Description

Generative models have been used before for multi-label classifica-
tion [13, 17, 23], typically for classifying text. While these models
address dependencies among labels, they do not represent intricate
dependencies between feature values and subsets of labels. In con-
trast, our proposed model captures conditional independencies of
features from labels by directly representing the dependencies be-
tween feature values and label subsets. (In addition, our model is de-
veloped in the general context of multi-label classification — not lim-
ited to text.) We next discuss the instance generation process, based
on a Bayesian network structure, and provide further detail about our
model.

The generation process comprises two steps:

I Labels assignment: To generate an instance I , its class-labels
are first determined, i.e., a label value lIi is assigned to each
label variable Li (1 ≤ i ≤ q). We view each label assignment
as a Bernoulli event, where lIi=1 when I is associated with
the label ci, and lIi=0 otherwise. Based on the Bayesian net-
work structure, the conditional probability of Li to be assigned
1 given the values of its parents denoted VPa(Li) is denoted as:
αi = Pr(Li=1|VPa(Li))

2 while its probability to be assigned 0
is 1−αi. The order in which label values are assigned is based
on the topological order of label variables, Lt1, . . . , Ltq in the
Bayesian network. The assigned label values form a label-vector
�lI for instance I .

II Features assignment: Based on the label-vector �l, a label depen-
dency set LSFj is selected for each feature Fj . We expect this
set to constitute a small subset of labels such that Fj’s value
depends only on the label subset. We introduce a Multinomial
random variable λFj that takes on a value k ∈ {1, . . . , q} with
probability: θ

�l
j,k = Pr(λFj =k|�l); λFj =k indicates the selec-

tion of the k’th label dependency set. We denote this set as:
LSk = {Lk} ∪ Pa(Lk). We refer to θ

�l
j,k as the mixture param-

eter as it models the dependence between the labels in each label
dependency set, LSk and the value of feature Fj .

The value for feature Fj is thus selected based on the val-
ues taken by the random variables in the set LSk, denoted as

2 Throughout the paper, for any set, S, of random variables, we denote by VS
the values taken by the variables in this set.

L1 L2
. . . Lq

λFj

θ
�l
j,k

LSk Fj

j = 1, . . . , d

Figure 3: Bayesian network representing the generative mixture
model of multi-label data.

VLSk . We view each feature value selection as a Multinomial
event, where the probability of Fj to take on a value v is:
φj,k(v) = Pr(Fj =v|λFj =k,VLSk ). Here φj,k(v) denotes the
conditional probability of feature Fj to take on the value v given
the label dependency set LSk. In the model, all feature variables
are assumed to take on discrete values. We thus discretize each
real-valued feature in the datasets used for our experiments, as
done by earlier studies [1] (see Section 4 for further details regard-
ing discretization). The selected values for all features together
form a complete feature-vector �f I representing the instance I .

We note that the process of assigning feature values enforces sev-
eral independence relationships. Having selected LSk as the label de-
pendency set, we denote by Lk the set of all label variables other than
{Lk} ∪ Pa(Lk), i.e., Lk = {L1, . . . , Lq} − LSk. The value selec-
tion — for each feature Fj — is conditionally independent of all
labels in Lk given LSk. Furthermore, the selected feature-value for
Fj is also conditionally independent of all other feature values given
the label vector �lI .

Formally stated, the independence assumptions enforced by our
model are:

(i) The feature values f I
1 , . . . , f

I
d of an instance I , are conditionally

independent of each other given the instance’s label vector �lI :

Pr(�f I |�lI) =
d∏

j=1

Pr(f I
j |�lI) . (1)

Although this assumption over-simplifies feature inter-
dependencies, it has been proven effective [1, 25].

(ii) Given the values taken by a label variable Lk and its parents
Pa(Lk) in a selected label dependency set LSk for an instance
I , a value f I

j of a feature is conditionally independent of all other
labels of I:

Pr(Fj =fI
j |λFj =k, L1= lI1, . . . , Lq= lIq) =

= Pr(Fj =fI
j |λFj =k, Lk= lIk,VPa(Lk)) . (2)

Figure 3 shows a graphical representation of the generative mix-
ture model presented above. Nodes represent random variables, and
directed edges represent dependencies among variables. Label and
feature random variables are denoted as circles. In contrast, the label
dependency set, LSk is denoted by a square as its value is determin-
istically assigned based on values taken by the label variable Lk and
its parents Pa(Lk). Notably, the node for LSk represents a set, and
as such the directed edge from LSk to the feature Fj is a short-hand
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for multiple edges connecting each label variable in LSk with Fj as
described in Section 2.1. Variables representing labels and features
are observed, that is, their values are provided within the training
dataset. These variables are shown as shaded in the figure. The value
of the variable λFj is governed by the mixture parameter θ�lj and is
not given as part of the dataset. As such, it is latent and shown as
unshaded.

Under all the above mentioned independence assumptions and
based on the structure of our generative model, the joint probabil-
ity of the label vector �lI and the feature vector �f I is expressed as:

Pr(�lI , �fI) = Pr(�lI) Pr(�f I |�lI) =

=

q∏

i=1

Pr(Li= lIi |VPa(Li))×

×
d∏

j=1

q∑

k=1

θ
�l
j,k Pr(Fj =f I

j |λFj =k, Lk= lIk,VPa(Lk)) ,

(3)

where:

(a)
∏q

i=1 Pr(Li= lIi |VPa(Li)) is the factorization of the joint proba-
bility Pr(�lI)=Pr(L1= lI1, . . . , Lq= lIq), based on the individual
q label values, given the conditional independencies encoded in
the network;

(b) Pr(Fj =f I
j |λFj =k, Lk= lIk,VPa(Lk)) denotes the conditional

probability of a feature value fI
j (1 ≤ j ≤ d, where d is the to-

tal number of features), given the values taken by a label variable
Lk and its parents Pa(Lk); Lk ∪ Pa(Lk) comprises the label de-
pendency set LSk (under the current generative mixture model);

(c) θ�l
I

j,k denotes the probability that the label dependency set LSk is
selected given a label-vector �lI for a feature Fj .

3 Model Learning and Inference

We next introduce a procedure for learning the structure and the pa-
rameters of our generative model, and present an inference technique
for multi-label classification.

3.1 Structure and Parameter Learning

We employ an iterative procedure to learn the Bayesian network
structure, specifically the structure of inter-dependencies among the
label nodes shown at the top of Figure 3, and to estimate the model
parameters shown on the RHS of Equation 3. This iterative procedure
is summarized in the pseudocode shown in Figure 4.

In each iteration, we first learn a label inter-dependency structure
using the BANJO package [20]; we then estimate the model param-
eters through an Expectation Maximization process; following that,
we infer multi-label values for instances in the training set. The inter-
dependency structure is learned in the first iteration from the training-
set labels, and in subsequent iterations, from the most recently in-
ferred label values. The model parameters are estimated throughout
the learning procedure using the training-set labels.

We use this iterative process as it modifies the network structure to
reflect inter-dependencies among the most recently inferred label val-
ues. We expect such a network to allow the system to capture specific
feature-label correlations and conditional independencies, which in
turn, may improve the accuracy of the updated label assignments.
As shown in the experiments section, this assumption is indeed sup-
ported by the improved performance of our system.

1 Initialize Bayesian network structure using the BANJO
package [20], based on training-set labels;

2 Initialize model parameters, αi and φj,k(v) using maximum

likelihood estimation, and θ
�l
j,k using EM algorithm, based on

training-set labels;
3 Set initial inferred label values (i.e. each lIi , i = 1, . . . , q) for

each instance I∈D to 0;
4 Set t to 0 and P to Hamming accuracy (or F1-score) of initial

model over training set;
5 while True do

6 Update Bayesian network structure using BANJO, based on
most recently inferred label values;

7 Update model parameters, αi, φj,k(f
I
j ), and θ

�l
j,k, based on

training-set labels;
8 while True do

9 Infer values taken by random variables in each label
dependency set LSk (see Figure 5 for details);

10 if Hamming accuracy (or F1-score) of model does not
improve then

11 break;
12 end

13 end

14 Set P
′

to Hamming accuracy (or F1-score) of updated
model over training set;

15 if P
′ ≤ P then

16 break;
17 end

18 P ← P
′
; t← t+ 1;

19 end

Figure 4: Summary of model learning.

At the end of each iteration we assess the classification perfor-
mance of our model over the training set; the iterative procedure is
terminated when there is no improvement in performance between
two successive iterations. For assessing model performance, we uti-
lize the F1-score metric when using the dataset of multi-localized
proteins, and the Hamming accuracy when using other multi-label
datasets; these performance measures are described later in Sec-
tion 4. The number of iterations needed to learn our model, which
we denote by t, may vary across different datasets and also depends
on the number of class-labels q; in our experiments, the number of
iterations did not exceed 10.

We use maximum likelihood estimation to compute the two sets
of observed model parameters (shown in Equation 3): (a) The
conditional probability of a label lIi given the values taken by
Li’s parents, αi = Pr(Li= lIi |VPa(Li)) and (b) The conditional
probability of a feature value fI

j given the values taken by all
variables in each label dependency set (LDS), LSk (1 ≤ k ≤ q),
φj,k(f

I
j ) = Pr(Fj =fI

j |λFj =k, Lk= lIk,VPa(Lk)). To estimate the
latent parameters, namely, the probability of each label dependency
set, LSk, θ�lj,k, for a given label vector �l and a feature Fj , we devel-
oped an Expectation Maximization algorithm [7]:
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1. Expectation step. For each instance I , we compute the prob-
ability of each LDS LSk, to be selected for feature Fj ,
that is, λFj =k, given I’s label vector �l and feature-value f I

j , as:

Pr(λFj =k|Fj =f I
j ,�l

I) =

=
θ
�lI

j,k Pr(Fj =f I
j |Lk= lIk,VPa(Lk))

q∑

k=1

θ
�lI

j,k Pr(Fj =f I
j |Lk= lIk,VPa(Lk))

.

2. Maximization step. Using the probabilities computed in the Ex-
pectation step, we marginalize over all instances in the training
set to re-estimate the mixture parameter, θ�lj,k , for each feature Fj

and label vector �l as:

θ
�l
j,k =

=

∑

vj

∑

{I|�lI=�l,fI
j=vj}

Pr(λFj =k|Fj =f I
j ,�l

I) Pr(Fj =f I
j |�lI)

q∑

k=1

∑

vj

∑

{I|�lI=�l,fI
j =vj}

Pr(λFj =k|Fj =f I
j ,�l

I) Pr(Fj =fI
j |�lI)

,

where vj takes on all possible values for feature Fj .
We denote by �lILSk

the restriction of the label vector �lI to
only those labels that are in the set LSk. The conditional prob-
ability of a feature Fj to be assigned a value v given the values
taken by the label variables in the label dependency set, LSk,
Pr(Fj =v|VLSk ), is calculated as:

Pr(Fj =v|Lk= lk,VPa(Lk)) = Pr(Fj =v|VLSk ) =

=

∑

{I|�lI
LSk

=�lLSk
,fI

j=v}
Pr(λFj =k|Fj =f I

j ,�l
I) Pr(Fj =f I

j |�lI)

∑

vj

∑

{I|�lI
LSk

=�lLSk
,fI

j=vj}
Pr(λFj =k|Fj =f I

j ,�l
I) Pr(Fj =f I

j |�lI)
.

Throughout the estimation process, we apply Laplace smooth-
ing [18] by adding fractional pseudocounts to observed counts of
events to all the parameters to avoid overfitting. The process of al-
ternating between the Expectation step and the Maximization step is
carried out until convergence is reached. To determine convergence,
we test that changes to the latent parameter values between iterations
are smaller than 0.05.

We next present the inference procedure for assigning multiple
labels to instances.

3.2 Probabilistic Multi-label Classification

Probabilistic inference in the context of multi-label classification
(MLC) amounts to assigning the most probable label vector �lI to
an instance I based on its feature vector �f I . Inferring the condi-
tional probability, Pr(�l|�f) for each label vector�l requires 2q calcula-
tions, where q denotes the number of labels. To avoid this exponen-
tial number of calculations, some current probabilistic methods for
multi-label classification assign a value to each label li (1 ≤ i ≤ q)

such that the conditional probability Pr(Li= li|�fI) is maximized
(see e.g. [1]). Others estimate the joint probability of the labels,
Pr(L1= l1, . . . , Lq= lq|�fI) and eventually infer each label value
based on estimates of other labels (see e.g. [5]; [25]). These methods
typically infer each label value by utilizing a fixed set of feature-label
dependencies captured by their respective models.

In contrast, our system iteratively infers values for sets of multiple
labels by capturing in each iteration specific feature-label dependen-
cies based on the most recently inferred label values. We assign val-
ues to label variables in each label dependency set (LDS) LSi (see
Section 2.1 for the LDS definition), such that the conditional proba-
bility Pr(VLSi |�fI) is maximized.

To ensure that our method is practically applicable, we set a limit
on the maximum number of parents, p, per label variable in the net-
work. In the experiments described here, we restrict the dependency-
set size to three (i.e. we set p=2) because the mean number of labels
per dataset is at most three; the number of inference calculations is
thus 2p+1q=23q=8q, where q ranges between 6 and 27. To gauge
the influence of changes to the values of p on classifier performance,
we ran experiments by varying the maximum number of parents in
the range 1-3 using Emotions and Scene datasets, which have a rel-
atively low number of labels. While increasing the value of p leads
to a notable increase in the Subset accuracy measure of the classi-
fier, there is no significant improvement in the classifier’s Hamming
accuracy measure (see Section 4 for details about these measures).
We anticipate that higher values of p can further improve classifier
performance when running experiments on datasets with higher num-
bers of labels.

As our system considers multiple dependency structures between
features and labels, we expect that setting a relatively low bound
on the dependency-set size considered in each structure, as we do
here, will still allow the system to capture the significant depen-
dencies and independencies among features and label subsets, even
in larger datasets. Moreover, unconditional direct dependencies are
not the only ones our model captures. While each label depends on
two parent-labels—thus conditionally independent of other labels,
indirect inter-dependencies are still captured throughout the network
structure. As demonstrated by the results in Section 4, our utilization
of label subsets of even a small size still significantly improves the
performance of our system compared to that of current systems.

Given a feature vector �fI of an instance I , our task is to pre-
dict its label vector �lI , which involves assigning a 0/1 value to each
of its labels lIi (1 ≤ i ≤ q). According to our probabilistic model,
since the value of each label variable Li depends only on values
of its parent nodes Pa(Li) in a Bayesian network setting, for each
Li, we infer the values of variables in the label dependency set,
LSi = {Li}∪Pa(Li). To infer these label values, we follow an it-
erative process, which is summarized in the pseudocode shown in
Figure 5. In each iteration, for all possible value assignments, li
and VPa(Li) to the label variable Li and its parents, respectively, we

1 foreach label dependency set LSi = Li ∪ Pa(Li) do

2 foreach value assignment to Li and to Pa(Li) do

3 Calculate conditional probability:
Pr(Li= li,VPa(Li)|�fI ,VI

Li
)3;

4 end

5 Select value assignment that maximizes the above
conditional probability;

6 Update inferred values for labels in LSi if classification
performance over training set improves;

7 end

Figure 5: Summary of label inference.
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Characteristic Our System EBN-M/EBN-J ECC-NB ECC-J48 BR-NB

Captures dependencies among labels Using a probabilistic graphical model Using classifier chains No label
inter-dependencies

represented
Captures conditional independence

between labels and features
(given subsets of other labels)

Using label dependency sets
and a mixture model

Do not capture such conditional independence

Employs a generative model for data Using Bayesian network
Using näive

Bayes
No generative

model used
Using näive

Bayes

Table 1: Comparison of current multi-label classification systems characteristics.

calculate the conditional probability: Pr(Li= li,VPa(Li)|�fI ,VI
Li
).3

The value assignment to Li and to its parents, Pa(Li), that maxi-
mizes this probability is used as their current estimates. We note that
label dependency sets do overlap, that is, the value of the same label
variable Li may be inferred multiple times, once for each depen-
dency set in which it participates. As such, once the value of Li is
inferred within an iteration, it is only going to be updated during the
same iteration if this improves the overall predictive performance of
the model. While we currently use the standard inference techniques
for Bayesian network models [18], there is much room for optimiza-
tion by using methods for approximate inference that consider only
the likely label combinations and fewer label sets, which we shall
pursue in the future.

4 Experiments and Results

We present in this section two sets of experiments. In the first, we
utilize the standard collection of multi-label datasets that were pre-
viously used to assess the performance of multi-label classification
(MLC) systems. In the second, we employ a dataset used for a
more concrete application in computational biology, namely predict-
ing locations of proteins within the cell, also known as protein multi-
location prediction. Details of these experiments are provided below.

4.1 Datasets and Performance Measures

For the first set of experiments, we use the same multi-label datasets
that have been previously used in several comprehensive studies
(e.g. [1, 8, 26]) to assess MLC system performance, namely: Emo-
tions (72 features, 6 labels), Scene (294 features, 6 labels), Yeast
(103 features, 14 labels), and Genbase (1186 features, 27 labels).
We compare the performance of our system to that of state-of-the-art
multi-label classification systems that were evaluated in a compre-
hensive study by Alessandro et al. [1]. The study focused primarily
on MLC systems based on Classifier Chains, and included: ensem-
ble of Bayesian networks, namely, EBN-J / EBN-M [1], ensemble
of chain classifiers [15] using Naı̈ve Bayes (denoted ECC-NB) and
using J48 (denoted ECC-J48), and Binary Relevance using Naı̈ve
Bayes (denoted BR-NB) [22]. We note that the last of these four sys-
tems is not a classifier-chain but was still included in that study and
is thus included here as well. As done in Alessandro’s study, we dis-
cretize each real-valued feature into four bins, select features using
a correlation-based feature selection technique [24], and employ the

3 Recall that Li denotes the set of all label variables other than Li and
Pa(Li) and that the values taken by the variables in Li is denoted as VLi

.

stratified 10-fold cross-validation for evaluating system performance.
Table 1 summarizes the main distinguishing properties of the com-
pared systems.

In the second set of experiments, we use a protein multi-location
dataset, derived from DBMLoc [27], where each protein is repre-
sented by 30 features, and the 9 possible subcellular locations corre-
spond to 9 class-labels (see [19] for detail). We compare the perfor-
mance of our system to that of state-of-the-art multi-location predic-
tion systems as reported by Briesemeister et al. [2], in their assess-
ment of the YLoc+ system [2], including Euk-mPLoc [3], WoLF
PSORT [11], and KnowPredsite [12]. According to the methods used
in the previous assessment [2], we employ minimal entropy parti-
tioning technique [9] for feature discretization, and stratified 5-fold
cross-validation for training/testing the classifiers.

Under our current unoptimized implementation, wall clock time
for model learning using training instances and inferring multi-labels
of test instances combined is on the order of several minutes for
datasets with a few labels, (lowest being ≤10 minutes for Emotions),
and on the order of hours for datasets with more labels, (highest being
∼20 hours for Yeast). We note that while the run-time of the prototyp-
ical system grows quadratically with the number of labels, it grows
only linearly with the dataset size. For example, the run-time for the
protein multi-location dataset (containing 8503 instances, with only
9 labels) is about 0.25 of the run-time for the smaller Yeast dataset
(2417 instances) that has 13 labels.

Throughout the experiments, we use the valuation mea-
sures described below, which are the same as those ap-
plied in the corresponding previous work. For a given in-
stance I , let M I ={ci | lIi =1, where 1 ≤ i ≤ q} be the set of
labels associated with I according to the dataset, and let
M̂ I ={ci | l̂Ii =1, where 1 ≤ i ≤ q} be the set of labels assigned to
I by a classifier, where each l̂Ii is a 0/1 label assignment. The Ham-
ming (Hacc) and the Subset (Sacc) accuracies used for the evaluation
of multi-label prediction systems [1] are computed as:

Hacc=1− 1

|D|
∑

I∈D

1

|C| |M
IΔM̂I | , and

Sacc=
1

|D|
∑

I∈D

I(MI =M̂I) ,

where Δ is the symmetric difference between MI and M̂I . Addi-
tionally, the Multi-label accuracy (MLacc) and F1-label score used
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Measure Dataset Our system EBN-M / EBN-J ECC-J48 ECC-NB BR-NB

Hacc

Emotions .793 (± .021) .780 (± .022) .780 (± .027) .781 (± .026) .776 (± .023)

Scene .898 (± .010) .880 (± .010) .883 (± .008) .835 (± .007) .826 (± .008)

Yeast .786 (± .007) .773 (± .008) .771 (± .007) .703 (± .009) .703 (± .011)

Genbase .998 (± .001) .998 (± .001) .998 (± .001) .996 (± .001) .996 (± .001)

Sacc

Emotions .319 (± .036) .263 (± .062) .260 (± .038) .295 (± .060) .261 (± .049)

Scene .610 (± .030) .575 (± .030) .531 (± .038) .294 (± .022) .276 (± .017)

Yeast .158 (± .029) .127 (± .018) .132 (± .023) .102 (± .023) .091 (± .020)

Genbase .956 (± .022) .965 (± .015) .934 (± .015) .897 (± .031) .897 (± .0031)

Table 2: Hamming and Subset accuracies, Hacc and Sacc, for multi-label prediction systems. All values except ours are taken directly from
Tables 2, 3, 4, 6 in the paper by Alessandro et al. [1]. Highest values are shown in boldface. Standard deviations are shown in parenthesis.

Measure Our system YLoc+ Euk-mPLoc WoLF PSORT KnowPredsite

F1-label 0.71 (± 0.02) 0.68 0.44 0.53 0.66

MLacc 0.68 (± 0.01) 0.64 0.41 0.43 0.63

Table 3: F1-label and MLacc scores shown for protein multi-location prediction systems. All values except ours are taken directly from Table 3
in the paper by Briesemeister et al. [2]. Standard deviations are not available there. Highest values are shown in boldface.

for evaluating multi-location prediction systems [2] are computed as:

MLacc=
1

|D|
∑

I∈D

|MI ∩ M̂I |
|MI ∪ M̂I | , and

F1-label=
1

|C|
∑

ci∈C

2× Preci ×Recci
Preci +Recci

,

where Preci and Recci for label ci are adapted measures of multi-
label precision and recall given by Briesemeister et al. [2]:

Preci =
1

|{I∈D|ci∈M̂I}|
∑

I∈D|ci∈M̂I

|M I ∩ M̂I |
|M̂I | , and

Recci =
1

|{I∈D|ci∈MI}|
∑

I∈D|ci∈MI

|MI ∩ M̂I |
|M I | .

4.2 Classification Results

Table 2 shows the Hamming and the Subset accuracies (Hacc and
Sacc, respectively) of our system compared to that obtained by cur-
rent MLC systems (as reported by Alessandro et al. [1], Tables 2, 3,
4, 6 there), obtained over the same multi-label datasets and evalua-
tion measures. The results show that our system has higher Hacc and
Sacc than all other systems over all datasets except Genbase. The
differences in the improved performance values are statistically sig-
nificant (p 	 0.05, according to the 2-sample t-test [4]). Over the

Genbase dataset, our system has the same Hacc as the others and a
slightly lower Sacc, although the latter difference is not statistically
significant. The reason for the lack of improvement in this case can
be attributed to the fact that in the Genbase dataset, the mean num-
ber of labels per instance is much lower than in the other datasets.
As such, there are relatively few dependencies and independencies
among labels and features to be utilized by our system.

Table 3 shows the F1-label score and Multi-label accuracy
(MLacc) of our system compared with those obtained by top multi-
location prediction systems (as reported by Briesemeister et al. [2],
Table 3 there), obtained over the same set of multi-localized proteins
and evaluation measures. The table shows that our system improves
over the performance of all other systems. The differences between
scores obtained by our system and those of the closest top performing
system, YLoc+, are highly statistically significant (p 	 0.001).

Thus, the results clearly demonstrate that our system, which uti-
lizes the intricate dependence and independence structure among
features and labels, improves upon current multi-label classification
methods, as shown over a variety of multi-label datasets previously
used for systems-comparison.

5 Conclusions and Future Work

We presented a probabilistic generative model that captures inter-
dependencies among labels as well as dependencies between fea-
tures and labels. Unlike other approaches for multi-label classifica-
tion (MLC), our model represents conditional independencies be-
tween feature values and labels given subsets of other labels, par-
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ticularly by introducing the concept of label dependency sets. For
example, in the Emotions dataset, the tone feature of songs depends
on the class labels Quiet-Still, Sad-Lonely, Amazed-Surprised, and
Angry-Aggressive. Typically, songs labeled as belonging to the first
two classes have a Low tone while those in the last two classes have
a High tone. Our system directly captures the conditional indepen-
dence between the tone feature and the first two labels given the other
two labels. Notably, current systems do not attempt to capture such
subtle and informative dependencies and independencies. Our exper-
iments over diverse datasets indeed show that directly modeling these
dependence and independence relationships contributes to improved
accuracy in multi-label classification, compared to previously stud-
ied systems based on Classifier Chains.

While we employ relatively small dependency sets in this study,
the improved performance of our system strongly suggests that even
such small sets can still help model the significant dependencies be-
tween feature and label subsets. We plan to develop approximate
methods for inference by considering only the likely label combi-
nations and fewer label sets to enable the practical use of larger label
dependency sets.

Since utilizing label dependency sets has proven useful, our next
aim is to directly learn label combinations that are most likely to
strongly influence feature values. We will conduct experiments over
larger datasets from different application domains, including more
complex label combinations. We anticipate that employing such label
subsets in the mixture model framework will be crucial to effectively
integrate features from different sources, for example, from text and
non-text data, and improve multi-label classification performance.
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