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Abstract. Future smart grids will empower home owners to buy en-
ergy from real-time markets, coalesce into energy cooperatives, and
sell energy they generate from their local renewable energy sources.
Such interactions by large numbers of small prosumers (that both
consume and produce) will engender potentially unpredictable fluc-
tuations in energy prices which could be detrimental to all actors in
the system. Hence, in this paper, we propose negotiation mechanisms
to orchestrate such interactions as well as pricing mechanisms to help
stabilise energy prices on multiple time scales. We then prove 1) that
our solution guarantees that, while prices fluctuations can be con-
strained, 2) that it is individually rational for agents to join energy
cooperatives and 3) that the negotiation mechanisms we employ re-
sult in pareto-optimal solutions.

1 INTRODUCTION

Future smart grids aim to allow the seamless integration of dis-
tributed renewable energy (wind or solar) to provide clean and re-
newable energy. Moreover, as smart meters are deployed as part of
smart grid initiatives, home owners will be able to participate in en-
ergy markets to, not only buy and store energy, but also shift their
consumption according to real-time prices as well as sell the surplus
energy they generate from their local energy sources, acting as pro-
sumers [8]. Crucially, with smarter communication technologies and
home energy management systems, prosumers will be able to form
collectives to have a greater say in energy markets.

The smart grid will therefore engender an influx of such new and
smaller actors into the energy markets trading alongside larger exist-
ing players energy producers that manage large energy sources (nu-
clear or gas). Experience from existing energy wholesale markets
and commodity stock markets, indicate that, in contrast to markets
with a few large suppliers, prices in these open markets will tend to
fluctuate unpredictably whenever imbalances exist between demand
and supply (see figure 1). This may lead to speculation in the market,
which exacerbates the situation. In such circumstances, the complex-
ity of coping with fluctuating prices will make it even more difficult
for consumers to save money and manage their energy. Moreover, the
difficulty of predicting demand and supply could lead to dangerous
imbalances that could cause blackouts. Previous work has investi-
gated allocating demand according to supply using specific pricing
signals [11, 7], which incentives consumers to shift their needs to
times where supply is high. Moreover, they have proposed the use of
batteries and the exchange of energy [3, 14] to buy and stock when
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Figure 1. The evolution of the spot price. The red (resp. blue) line
represents the price on the German (resp. French) market in 2013 (e /MWh)

energy is cheap and consume or store when energy is expensive. Fi-
nally, some authors propose to gather consumers into cooperatives
[2] or coalitions [12] to benefit from cheaper prices in the forward
market and to buy less as possible on the spot market. Unfortunately,
these different works assume that the grid is always able to provide
energy, if the other sources (renewable generators or batteries) can-
not.

In this paper, we study the problem of forming such cooperatives
without such assumptions and provide negotiation-based solutions
to the settlement of contracts between prosumers. We consider co-
operatives because they significantly improve the buying power of
small prosumers. To help manage such cooperatives, we assume that
they are set up and led by individual aggregators that buy from se-
lected providers to supply energy at the cheapest rate to the cooper-
ative. Similar to [12], aggregators do so using predictions of energy
consumption provided by individual prosumers. Moreover, to ensure
that prosumers are incentivised to predict their behaviours accurately,
the aggregator penalises any deviations from such predictions. These
penalties reflect charges they would incur from the provider should
they over or under consume. However, in so doing, a key challenge
they face is that individual consumers may want to consume more to
avoid being penalised by the aggregator (and in turn the producer).
Moreover, despite the formation of large cooperatives, there is no
guarantee that prices will stabilise in the long run.

Against this background, we propose an approach that uses pric-
ing signals while attempting to control the high price volatility when
there is (or when agents forecast and speculate) an imbalance be-
tween supply and demand in the energy market. To address such is-
sues, we propose a model based on bilateral contracts that constrain
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the retail price as well as the demand. In a similar way to existing
energy trading protocols (e.g., in the UK or Netherlands), our frame-
work breaks down the creation of energy supply contracts according
to three different timescales: yearly, daily, and hourly. By so doing,
contracts account for different levels of perceived uncertainty in de-
mand on these timescales. Given this scenario, this paper advances
the state of the art in the following ways:

1. We propose a new mechanism to manage energy markets through
the use of constraints on energy prices and demand for energy .
We prove that the negotiation of the annual contract (the first of
the three levels), between providers and aggregators, where these
constraints are set, leads to pareto-optimal solutions.

2. We propose a novel pricing scheme that we apply at the two lower
levels (i.e., daily and hourly). Our pricing scheme incentivises pro-
sumers to (i) make predictions to know the amount of energy
they need during the different parts of the day ahead allowing
them to optimise their costs (by shifting the use of their appli-
ances, using their batteries, etc...) according to the price signal
and (ii) avoid deviating from their predicted hourly consumption.
We prove the monotonicity of the price with respect to consump-
tion (i.e. agents are not incentivised to consume in order to avoid
under-consumption penalties) and provide a closed-form formula
to compute expected payments for any prosumer in a cooperative.

3. We develop an algorithm based on mathematical programming,
that allows agents to minimise their cost given the price signal they
receive and the limits of consumption that they are committed to
holding. We prove that, in our mechanism, prosumer agents who
use this algorithm, are encouraged to join a cooperative.

The rest of the paper is structured as follows. Section 2 presents the
state of the art. Section 3 gives the model of each type of agents
and Section 4 gives their behaviour. Section 5 shows the negotiation
mechanism. Section 6 analyses the different properties of the mecha-
nism, Section 7 describes the experiments and we conclude in section
8.

2 RELATED WORK

To tackle the problem of peak demand, several works proposed in-
centive tariff schemes which aim to balance supply and demand. In
Demand-Response models [4], suppliers change their tariffs when
the demand is high, encouraging consumers to reduce their consump-
tion. Several mechanisms based on Demand-Response have been
proposed: Time-of-use (TOU) in which price of energy is high at
peak times and low at off-peak times (typically after 11pm). Crit-
ical peak pricing [6] imposes a much higher price at peak times
compared to tariffs with TOU. Real Time pricing (RTP) [10] varies
the price across the day in line with supply and demand at individ-
ual time points. Recently, a new tariff scheme has been proposed by
[13], called Prediction-of-use (POU). In this model, consumers give
a forecast of their baseline consumption against which they are given
a price for predicted consumption. If they deviate from this forecast
based consumption, they will be penalised. This tariff scheme in-
centives consumers to forecast their consumption accurately. In our
model, we combine TOU with POU schemes to both account for
varying levels of demand and supply during the day and to obtain
accurate predictions of consumption from prosumers.

Other works study the formation of prosumer (or consumer) agent
coalitions or cooperatives with the aim to reduce energy costs and
increase storage efficiency. [2] presents a scheme for electricity con-
sumption shifting. Agents participating in the scheme are motivated

to form cooperatives, in order to reduce their electricity bills via
lower group prices granted for sizable consumption shifting from
high to low demand time intervals. Even though this work uses agents
cooperatives to shift peak load, it doesn’t focus on price volatil-
ity. [11] proposes a new multiagent coordination algorithm to shape
the energy consumption of the cooperative. To coordinate individual
consumers, they introduce a virtual signal sent by a central coordina-
tor, to induce consumers to shift demand. They show that their algo-
rithm is scalable with respect to the number of agent, but they use a
two-level threshold rate, which is a high constraint to deal with the
price volatility. In our work, the price has an upper and lower bound
which are negotiated according to agents’ preferences. Among these,
we note the work of [12] that proposes a coalition formation mech-
anism in which agents set up a coalition which simulates a Virtual
Energy Consumer (VEC). The VEC buys an important amount of
energy on the forward market where prices are fixed and quite cheap.
If the VEC needs more, it buys more on the spot market, where prices
are higher. Being in a cooperative, agents buy more energy on the for-
ward market (compared to the spot market) and compensate for their
deviation within the cooperative. However, this work focuses on sta-
ble coalition formation rather than controlling price volatility. In [9],
authors study the POU scheme and analyse the case of efficient buyer
groups. They study the structure groups should take to buy in an ef-
ficient way in POU context. In contrast, in our model, one level of
our architecture uses the TOU approach to negotiate a baseline price.
This price is taken as reference to use POU scheme.

3 MODEL OF AGENTS

In this work, we consider three sets of agents. AU denotes the set of
prosumer agents, AA denotes the set of aggregator agents and AF

denotes the set of provider agents. We provide the model of each
type of agents. In the following sections, we describe the model of
prosumer agents which may own a storage capacity, a generator
and smart meters allowing them to manage their demand to fit the
production signal. As well as prosumers, producers can estimate
their production (with smart meters technologies) and produce a
signal that foster the best behaviour of their customers, i.e. stalling
the level of demand on the production. In our model, the ability
of the prosumer/consumer to fit the production signal leads to the
control of the price volatility. Next, we assume that a day is divided
into a set T of hourly slots such that each agent needs to decide its
behaviour for each slot.

3.1 Model of prosumer agents

Let psu be an agent, representing a prosumer u, belonging to a
cooperative. At each slot, psu requests for an amount of energy
qps, from the cooperative, to support its needs. psu is committed
itself to respect limits of requested energy with Qmin

ps (resp. Qmax
ps ),

the minimum (resp. maximum) energy requested by psu from the
cooperative ∀t ∈ T . btps is the energy needed by psu at slot t. bps
is different from qps as it only takes into account the appliance con-
sumptions but not the possible production or use of storage energy
owned by the prosumer. sps is the storage capacity of psu. soc−ps
represents the state of charge and soc+ps represents the remaining
storage capacity, i.e. soc−ps + soc+ps = sps. pps represents the energy
produced by the prosumer’s renewable generator, pps ≤ pmax

ps ,
with pmax

ps the maximum production capacity of the generator.
σb
ps is the forecast mean error of psu consumption. The deviation

C. Romain et al. / Managing Energy Markets in Future Smart Grids Using Bilateral Contracts134



between the forecast of psu’s needs and its real needs follows a
normal law N (bps, σ

b
ps) (see [5] for explanation). σp

ps is the forecast
mean error of psu production. The deviation between the forecast
of the prosumer’s production and its real production follows the
normal law N (pps, σ

p
ps). psu can always sell its over-supply to its

cooperative, even if its predictions are not accurate. We next prove
in Property 3 that it is interesting for a prosumer to belong in a
cooperative.

3.2 Model of provider agents

Each provider agent pvf ∈ AF has a production capacity
ppv ∈ [0; pMAX

pv ] where pMAX
pv is its maximum production capacity.

We assume that each pvf has an optimal production capacity pOPT
pv

which allows it to maximise its profit, with 0 < pOPT
pv < pMAX

pv .
The tariff proposed by the provider is minimal when the demand is
equal to pOPT

pv and increases as the demand deviates from it. Apv is
the annual subscription cost of pvf and penpv represents its penalty
costs. Moreover, each psf has a maximal tariff trMAX

pv above which
nobody is willing to buy its energy. The properties 1 and 2 show that
pOPT
pv and trMAX

pv lead to bounded tariffs.

3.3 Model of aggregator agents

Let aga be an aggregator agent, with QMIN
ag (resp. QMAX

ag ), the min-
imum (resp. maximum) amount of energy requested by the coopera-
tive from its providers ∀t ∈ T . If at slot t the energy qtag requested
by aga is higher than QMAX

ag , this involves that some prosumers
request more than they can. In so doing, the prosumers who over-
consume have to contract with providers to account for their over-
consumption. Property 4 shows that in this way the cooperative is not
penalised. σb

ag is the forecast mean error of the cooperative consump-
tion. Coopag represents the set of agents managed by the aggregator
and Pag represents the set of providers it contracts with.

4 BEHAVIOUR OF AGENTS

In this section, we describe the behaviour of each type of agents.
First, the prosumer behaviour is modelled by a linear program that
minimises its day energy cost, given its needs, production, storage
and shifting capacities and the price signal, for each slot. Second, we
propose a tariff computation formula used by the provider to set the
price according to the requested energy and its production. Third,
we introduce the algorithm of the aggregator behaviour that com-
putes the best amount to request for the annual contract negotiations
with several providers and distributes the penalty of the cooperative
among its prosumers.

4.1 Prosumer agents behaviour

The optimisation of psu cost is held on three time scales: (i) at the
annual contract level, psu announces its limits Qmin

ps and Qmax
ps

which make him pay the cheapest subscription cost and lower the
maximum tariff allowing the cooperative to satisfy its needs, (ii) at
the daily contract level, psu announces the vector <qtps, . . . , qt+n

ps >
which minimises its cost taking into account its storage capacities, its
production, its possible shifting and the price signal, (iii) at the hourly
contract level, psu should not deviate from qtps to avoid penalties.
Every day, prosumer minimises equation (2) subject to constraints
{c0, ..., c13} :

min
∑24

t=1 tr
t.qt (2)

With trt, the tariff at slot t and qt the energy requested at slot t by
the agent.

c0 : qt = btps − ptps + qs+,t
ps − qs−,t

ps + ef+,t
ps − ef−,t

ps

c1 : qt ≥ btps − ptps − betps − soc−,t
ps

This guarantees that the requested energy at slot t is enough to sup-
port the prosumer’s need according to the available energy in its bat-
tery, its production and shifting, with betps ∈ [0, btps] the part of btps
which is shiftable at slot t. ef+,t

ps represents shifting that can be made
in advance, i.e. increase the demand at slot t and ef−,t

ps ≤ betps shift-
ing that can be done later, i.e. decrease the demand at slot t. qs+,t

ps

is the amount of energy stored in the battery at slot t and qs−,t
ps the

energy extracted from the battery at slot t.
c2 : qt ≤ Qmax

ps

c3 : qt ≥ Qmin
ps

The above two constraints guarantee that the requested energy at slot
t respects the upper and lower limits.

c4 : soc−,t
ps ≥ qs−,t

ps − qs+,t
ps

This constraint guarantees that the extracted energy from the battery
at slot t is lower than the remaining energy in the battery.

c5 : soc+,t
ps ≥ qs+,t

ps − qs−,t
ps

This constraint guarantees that the remaining storage capacity is
higher than the amount of energy stored at slot t.

c6 : soc−,1
ps = socinitps

c7 : soc+,1
ps = sps − socinitps

The above two constraints initialize the program with the energy
available (and remaining capacity) in the battery at the first slot.

c8 : soc−,t
ps + soc+,t

ps = sps
c9 : soc+,t+1

ps = socps+,t − qs+,t
ps + qs−,t

ps

c10 : soc−,t+1
ps = soc−,t

ps + qs+,t
ps − qs−,t

ps

These three constraints guarantee the battery integrity.
c11 : soc−,24

ps = socrps
This guarantees that a specific level of energy, socrps, will remain at
the end of the day.

c12 :
∑

t∈T ef+,t
ps =

∑
t∈T ef−,t

ps

c13 :
∑

t∈T ef+,t
ps ≤

∑
t∈T betps

The above two constraints guarantee the management of the shifting.
This linear program allows prosumers to benefit from their battery
and their shifting possibilities to adjust their consumption according
to the price signal and take advantage of the lower price during the
day.
Prosumer agent states : (i) Each prosumer is initialised with param-
eters Qmin

ps ,Qmax
ps , sps, p

max
ps , σb

ps, σ
p
ps and sends its profile to its

aggregator. (ii) At the end of each day, ps computes socrps, solves
(2) and sends the resulted schedule of hourly demand to the aggrega-
tor. (iii) When aggregator returns the price signal, ps solves (2) again
and sends back the new schedule.

4.2 Provider agent behaviour

The provider uses a function F : Q → T r where Q is an amount of
energy and T r a tariff.

Fpv(q
tot
pv ) = trOPT

pv + trmax
ag (1− e

(
−|pOPT

pv −qtotpv |
trmax

ag
)
) (3)

trOPT
pv is the tariff proposed by the provider when pOPT

pv = qtotpv

and trmax
ag ∈ [0, trMAX

pv ] is the coefficient negotiated in the an-
nual contract. qtotpv =

∑
ag∈AA

qag , with qag the amount of en-
ergy requested by the aggregator aga who has an annual contract
with pvf . Designed in this way, the tariff function allows having a
monotonous and continuous increasing behaviour between trOPT

pv

and trOPT
pv + trmax

ag and incentivised prosumers to adjust their con-
sumption to the production.
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Property 1: Under the hypothesis that the provider computes the tar-
iffs according to (3), the maximal tariff he will apply to a cooperative
is less or equal to trOPT

pv + trmax
ag .

Proof. To prove that, we study the evolution of the price when the
difference between the supply and demand goes toward infinity. We
will show that lim

|pOPT
pv −qtotpv |→+∞

Fpv(qtotpv ) = trOPT
pv + trmax

ag . First,

lim
|pOPT

pv −qtotpv |→+∞
trag =

lim
|pOPT

pv −qtotpv |→+∞
trOPT

pv + trmax
ag (1− e

(
−|pOPT

pv −qtotpv |
trmax

ag
)
)

e−x → 0 when x→ +∞ so, by substitution, we get:

lim
|pOPT

pv −qtotpv |→+∞
trOPT

pv + trmax
ag (1− e

(
−|pOPT

pv −qtotpv |
trmax

ag
)
) =

lim
|pOPT

pv −qtotpv |→+∞
trOPT

pv + trmax
ag (1− 0)

As a result lim
|pOPT

pv −qtotpv |→+∞
Fpv(qtotpv ) = trOPT

pv + trmax
ag .

The first property guarantees that supply cannot rationally rise
without an increase of the demand, because the lower the prices, the
less profitable is the mechanism.
Property 2: Under the hypothesis that the provider computes the tar-
iffs according to (3), the minimal tariff it will apply to a cooperative
is trOPT

pv .

Proof. The tariff is minimal if the total amount of requested energy
is equal to the optimal production of the provider, i.e. pOPT

pv = qtotpv .
To prove that, we study the level of the price when the supply is equal
to the demand.

if pOPT
pv = qtotpv , we have e

(
−|pOPT

pv −qtotpv |
trmax

ag
)
= e

( 0
trmax

ag
)
= 1 and

trOPT
pv + trmax

ag .(1− 1) = trOPT
pv

The second property guarantees that prices are lower when all
produced energy is requested.

4.3 Aggregator agent behaviour

An aggregator agent manages supply and demand within a coop-
erative. This agent contracts with providers to meet the demand of
the cooperative (the sum of the demands of the agents in the co-
operative) allowing to benefit from competition between providers
to decrease the energy price4. We differentiate three kinds of con-
tracts: (i) the annual contract sets the maximum tariff applicable by
a provider and the maximal and minimal demands requested by the
cooperative at each slot, (ii) the daily contract fixes a set of hourly
contracts a day ahead, (iii) the hourly contract matches an amount of
energy and a tariff at a given slot. POU tariff scheme is applied on
hourly contracts taking as baseline negotiated earlier in the daily con-
tract. Indeed, some prosumers may under-consume while others may
over-consume. Individually, each agent will pay penalties if it under-
consumes or over-consumes. However, inside the cooperative, under
consumption of some prosumer will balance over-consumption of
others and vice versa. As shown in section 4.4, it allows cancelling
or reducing agent penalties and limiting the need for agents to re-
quest the market to sell the energy they under-consume or to buy the
energy they over-consume, thus, limiting the volatility in the energy
market.
4 We suppose the financial profit brought by these multiple subscriptions

should be higher than the involved costs.

The aggregator will spread the need of the cooperative between sev-
eral contracts negotiated with potential suppliers, using the following
linear program. This linear program computes the upper and lower
bound to negotiate with each potential provider with the purpose of
minimising the cost over the year, considering the subscription cost
and the penalty cost of each provider.

min
∑

pv∈Pag
Apv.x

pv
ag + penpv.σag.H.ypv

ag (5)
With xpv

ag = Qmax
ag,pv the maximal amount of energy requested by the

aggregator agent to provider pvf , ypv
ag = Qmax

ag,pv −Qmin
ag,pv the width

of the energy band of the aggregated demand of the cooperative to the
provider pv, H is the number of hours in a year and σag the mean
deviation consumption of the cooperative.
s.t.

∑
pv∈Pag

xpv
ag = QMAX

ag , with QMAX
ag the upper bound of the

aggregated demand of the cooperative.
The sum of the maximal amount of energy in aga’s contract must
allow providing QMAX

ag to the cooperative.
s.t.

∑
pv∈Pag

xpv
ag − ypv

ag = QMIN
ag

This sum guarantees that the deviation sum
∑

pv∈Pag
Qmax

ag,pv −
Qmin

ag,pv = QMAX
ag − QMIN

ag compensates the total deviation of the
cooperative.

s.t. ∀pv ∈ Pag, x
pv
ag ≥ yag

This inequality is equivalent to Qmax
ag,pv ≥ Qmax

ag,pv − Qmin
ag,pv . It

allows not having Qmax
ag,pv < Qmin

ag,pv . With Qmax
ag,pv (resp. Qmin

ag,pv)
the maximum (resp. minimum) energy requested by aga from pvf .

4.3.1 Prosumers production tariffication

We consider the case where a prosumer agent psu produces more
than its needs i.e. ptps > btps. It first meets its needs, then it will sell
the oversupply to other members of the cooperative, knowing that the
sale price is lower than the providers’ prices. The agent which be-
longs to the cooperative makes sure that it sells its energy. In return,
the cooperative can benefit from cheaper energy than the providers
one. The remuneration of psu, computed by aga, can be formulated
as:

trtps = Fag(q
t
ag + ppred,tps ).(1− e−|p

pred,t
ps −preal,t

ps |) (4)
where trtps is the sale tariff of psu at slot t. Fag(q

t
ag + ptps) is

the mean tariff applied by the set of providers Pag to aga for de-
mand qtag + ppredps , with qtag the cooperative demand and ppred,tps the
forecast production of psu. This tariff is only effective if the agent
produces exactly what it forecasts. If not, the tariff is multiplied by
(1 − e|p

pred,t
ps −preal,t

ps |). The more the deviation between the fore-
cast and the real production is high, the less psu will be rewarded,
because the deviation involves possible penalties for the cooperative.
The formulation of (4) incentives prosumers to forecast accurately
their production.
Property 3: Under the hypothesis that aga negotiates with several
providers, and considering an agent psu, who forecasts that it will
produce an oversupply ppredps at slot t, agents in the cooperative find
it preferable to consume the locally produced energy, i.e. consume
the oversupply of psu, each time it’s possible.

Proof. As (1− e−|p
pred,t
ps −preal,t

ps |) ∈ [0, 1[, we have the inequality
Fag(q

t
ag + ptps).(1− e−|p

pred,t
ps −preal,t

ps |) � Fag(q
t
ag + ptps)

The third property guarantees that agents will exchange energy
between them before resorting to the grid, involving less exchanges
on the market.

C. Romain et al. / Managing Energy Markets in Future Smart Grids Using Bilateral Contracts136



4.3.2 Prosumers and providers interactions

When psu announces its consumption limits, it commits to the co-
operative to not deviate from these limits at each slot. If psu doesn’t
respect this limit commitment and the amount request by the aggre-
gator become higher than the upper bound negotiated in the annual
contract, it has to directly pass a contract with a provider for each
slot where the limits are not respected.
Property 4: The agents belonging to a cooperative are not penalised
by an agent who consumes more than its higher limit at one slot, i.e.
qrealps > Qmax

ps involves qag > QMAX
ag , since it will contract for its

over demand (demand > Qmax
ps without available balancing into the

cooperative).

Proof. Let qag/{ps} < QMAX
ag/{ps} and qrealps > Qmax

ps the devia-
tion of the agent such that qag/{ps} + qrealps > Qmax

ag/{ps} + Qmax
ps .

psu will pass a contract directly with a provider for the quantity
qrealps − Qmax

ps . So the quantity bought by the cooperative becomes
qag/{ps} + qrealps − (qrealps − Qmax

ps ) = qag/{ps} + Qmax
ps which is

less than QMAX
ag/{ps} +Qmax

ps as qag/{ps} < QMAX
ag/{ps}.

Property 4 guarantees an incentive for prosumers to respect their
commitment towards the cooperative.

4.4 Penalty distribution

Before introducing the computation formula of penalty distribu-
tion, we denote: Δqag =

∑
ps∈Coop q

pred
ps − qrealps : the deviation

consumption of the cooperative. If Δqag > 0 (resp. Δqag < 0),
the cooperative under-consumes (resp. over-consumes). Let
Δqps = |qpred,tps − qreal,tps |: the deviation consumption of psu,
Pena =

∑
pv∈Pag

Penpv: the penalty of the cooperative, penps:

the penalty of psu, C+ =
∑

ps∈Coop f(q
pred
ps , qrealps , difag) with:

f(x, y, z) =

⎧⎨
⎩

1 if z > 0 and x > y
or z < 0 and x < y

0 else

The function f returns 1 if psu contributes to penalise the
cooperative, i.e. it over-consumes (resp. under-consumes) when
the cooperative over-consumes (resp. under-consumes). The sum
enumerates the agents who penalise the cooperative Q− =∑

ps∈Coop g(q
pred,t
ps , qreal,tps , difag).Δqps with:

g(x, y, z) + f(x, y, z) = 1
The function g returns 1 when psu contributes to decrease the devia-
tion of the cooperative, i.e. it over-consumes (resp. under-consumes)
when the cooperative under-consumes (resp. over-consumes). The
product g().Δqps computes the amount of energy which was
under-consumed (resp. over-consumed) when the cooperative over-
consumed (resp. under-consumed). The penalties distribution for-
mula applied by the aggregator agent to the prosumers of the co-
operative is then:

penps =

⎧⎨
⎩

Penag.
Δqps−Q

−
C+∑

Δag
if f(.)=1

0 else

The fraction Q−
C+ (=

∑
ps∈Coop g(qpred,tps ,qreal,t

ps ,difag).difps
∑

ps∈Coop f(q
pred,t
ps ,q

real,t
ps ,difag)

) corre-

sponds to the compensation of the cooperative which is spread be-
tween all the agents in a fair way. Now that the aggregator knows the
amount it will request for each supplier, it will negotiate with each of
them, to fix the tariff and the lower bound of the contracts. The fol-
lowing section provides the description of the interactions between

the agents. The algorithm 1 gives a global view of aggregators’ be-
haviour detailed in section 5.

Algorithm 1: Algorithm of an aggregatror aga
1 if all the prosumer profile are received then

2 QMIN
ag ←

∑
ps∈Coop Q

min
ps , QMAX

ag ←
∑

ps∈Coop Q
max
ps ,

σag ←
√∑

ps∈Coop(σ
b
ps)2 and solve (5);

3 for pv ∈ Pag do

4 trmax
pv ← 0, Qmin ← Qmin

pv,ag, Qmax ← Qmax
ag,pv (5);

5 aga submits the proposal to pvf ;

6 if aga receives a proposal (Annual-Contract:Xag,Xpv ,id) then

7 aga computes Uag and Upv;
8 if Uag ≥ Upv then

9 aga accepts (Annual-Contract:Xag,Xpv,id);
10 for ps ∈ Coop do

11 Δps = Qmax
ps −Qmin

ps , Δag =
∑

ps ∈ CoopΔps;

12 else

13 aga computes Qmax′
pv , Qmin′

pv , trmax′
pv such that

Zag > Zpv;
14 Xag ← {Qmax′

pv ,Qmin′
pv }, Xpv ← {trmax′

pv };
15 aga proposes the new

Annual-Contract(Xag,Xpv,id);

16 if the plannings of all the prosumers are received then

17 for ps ∈ Coop, t ∈ T do

18 schedule[t] = schedule[t] + qpvt ;

19 if there is no difference in the plannings then

20 aga accepts the daily contract;
21 else

22 aga sends the new Planning;

23 if aga receives all the tariffs from its providers then

24 aga sends the price signal to the prosumers;

25 if end of slot then

26 Penag =
∑

pv∈P penpv ∗ |qrealag − qpredag |;
27 for ps ∈ Coop do

28 if f(ps) == 1 then

29 penps ← Penag.
ΔQps−Q

−
C+

ΔQCoop ;

30 aga sends penu to psu;

5 NEGOTIATION MECHANISM

In this section, we present the negotiation mechanism, used for con-
tracts over the three time scales, and formalise the different types of
contracts handle in each scale. At the first level, providers and pro-
sumers agree on tariff and demand constraints, that lower levels have
to satisfy. The goal of the first level is to guarantee to the provider
a bounded demand, while it guarantees to prosumers a tariff range.
The bounded demand allows to easily know what would be the de-
mand in the future, thus, decreasing the speculation possibilities. For-
mally, an annual contract is a triplet: {Qmin,Qmax,trmax}. At the
second level, providers and aggregators contract on a daily contract,
formalised by a vector of n hourly contracts: <Ht,Ht+1,. . . ,Ht+n>.
An hourly contract is a triple <qag, trpv, t> with qag the forecast de-
mand selling at trpv at slot t.
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5.1 Negotiation of the annual contract

Over the period set out in the contracts, the aggregator will spread the
demand of the cooperative among several providers. The maximum
amount requested on each provider results from (5). Hence, aggre-
gator and providers will negotiate. They will do concessions on the
coefficient trmax and the lower boud using MCP5 (there are no con-
cessions on Qmax since the cooperative has to be sure to get enough
energy at each slot). In the MCP, agents submit round by round pro-
posals making a concession at each new proposal. An agreement is
reached when, uag(xag) ≤ upv(xag), or upv(xpv) ≤ uag(xpv),
with xag the proposal of the aggregator agent, xpv the proposal of
the provider agent, uag the aggregator utility function and upv the
provider utility function. The Zeuthen strategy indicates the agent
which has to make a concession during the next round by calculating
the Zeuthen index, Zi =

ui(xi)−ui(xj)

ui(xi)
. The agent with the lower Zi

has to make a concession. To negotiate the annual contract, aggrega-
tors aga and providers pvf use the following utility functions:

• uag = 2.Qmax
ag,pv −Qmin

ag,pv − trmax
ag

• upv = Qmin
ag,pv + trmax

ag

The utility of aggregators is high if the negotiated energy band is
high, i.e. Qmax

ag,pv−Qmin
ag,pv is high and when trmax

ag is low. Moreover,
the utility is high if Qmax

ag,pv is high, allowing a bigger amount of
energy for the cooperative. The utility of the provider is high when
Qmin

ag,pv is high, i.e. when the negotiated energy band is narrow (as
Qmax

ag,pv is constant the abilities to predict the demand is facilitated)
and when the tariff is high. To guarantee the pareto-optimality of
negotiated solution with the MCP, both utility functions have to be
symmetric, i.e. if ui(X1) = ui(X2) then uj(X1) = uj(X2).
So, let ui(x1) = 2.Qmax

x1
−Qmin

x1
− trx1

ag and ui(x2) = 2.Qmax
x2

−
Qmin

x2
− trx2

ag , with ui(x1) = ui(x2).
Then uj(x1) = Qmin

x1
+ trx1

ag and uj(x2) = Qmin
x2

+ trx2
ag .

If ui(x1) = ui(x2) then 2.Qmax
x1

− Qmin
x1

− trx1
ag = 2.Qmax

x2
−

Qmin
x2

− trx2
ag . As Qmax

ag,pv are constant during the negotiations we
have −Qmin

x1
− trx1

ag = −Qmin
x2

− trx2
ag so Qmin

x1
+ trx1

ag = Qmin
x2

+
trx2

ag and uj(x1) = uj(x2) if ui(x1) = ui(x2). Thus, both utility
functions are symmetric.
The concession strategy is the following one for the provider:

• trmax
t+1 = trmax

t .
Qmax−Qmin

t +1

Qmax−Qmin
t +t

, with trmax
t+1 < trmax

t ∀t

• Qmin
t+1 = Qmin

t .
Qmax−Qmin

t +1

Qmax−Qmin
t +t

; with Qmin
t+1 < Qmin

t ∀t

We can see that the concessions on trmax
t and Qmin

t are monotonic
and decreasing. The concession strategy for aggregator are the fol-
lowing one:

• trmax
t+1 = trmax

t + σb
a, with trmax

t+1 > trmax
t ∀t

• Qmin
t+1 = (Qmin

t + 1). Qmax

σb
a+penf .Qmax , with Qmin

t+1 > Qmin
t ∀t

We can see that the concessions on trmax
t and Qmin

t are monotonic
and increasing. Since (i) the utility functions are symmetric and fol-
low a monotonic behaviour (according to the concession functions),
(ii) the use of Zeuthen index, (iii) the MCP context, then the ne-
gotiation will converge on a pareto-optimal solution. Moreover, in
a context where a cooperative can negotiate with several providers,
there are no incentive to lie on the price for the provider. Indeed, if
he proposes a higher price, the cooperative will negotiate with other
providers and if he proposes a lower price he will do less benefit.
5 For these negotiations, agents adopte, in the first instance, the MCP and the

Zeuthen strategy. We choose to apply the MCP but our model allows to use
other protocols.

5.1.1 Annual contract steps

(i) Each prosumer agent sends its consumption profile to the aggre-
gator. (ii) The aggregator computes the cooperative profile and the
distribution of the demands between the providers. It submits the an-
nual contract proposals. (iii) The provider accepts or counters pro-
posals. (iv) The negotiation between the agents continues following
the MCP protocol.

5.2 Negotiation of the daily contract

The negotiation of the daily contract follows the following steps:

1. Each prosumer agent sends its consumption profile of the day to
the aggregator
<qtps,qt+1

ps ,. . . ,qt+n
ps >.

2. The aggregator computes the profile of the cooperative
<
∑

ps∈Coop q
t
ps,

∑
ps∈Coop q

t+1
ps , . . . ,

∑
ps∈Coop q

t+n
ps > and re-

quests providers.
3. Providers send their tariffs <trtpv ,trt+1

pv ,. . . ,trt+n
pv >.

4. Aggregators transfer pricing signal as proposed in [7, 14, 11]. Pro-
sumers can reschedule their planning to reduce their bill.

5. Go to step 2 if there are reschedules.

5.3 The hourly contract

There are no negotiations for the hourly contract. Agents pay for their
consumption with penalties according to their deviation.
We will show in the next section that, according to their expected
payment, prosumers have an incentive to participate in a cooperative.

6 THEORETICAL ANALYSIS

This section studies three properties of the model. First, we show
that prosumers reduce their cost when they consume less, even if
they have to pay penalties. Then, we give the expected bill of an
agent who is a member of a cooperative. We take up this property
to show that, in our model, prosumers pay fewer penalties in a
cooperative. Finally, we prove the volatility minimisation.

6.1 Monotonicity with respect to consumption

A prosumer may not be incited to consume unnecessarily in order
to avoid paying penalties. The perceived benefit by an agent who
doesn’t consume has to be higher than any penalty: qtps.tr

t
ag >

qt
′

ps.tr
t
ag + penpv.(|qtps − qt

′
ps|). Let qtps be the energy requested and

qt
′

ps the energy consumed:
qtps.tr

t
ag > qt

′
ps.tr

t
ag + penpv.(q

t
ps − qt

′
ps)

qtps.tr
t
ag > qt

′
ps.tr

t
ag + penpv.q

t
ps − penpv.q

t′
ps

qtag.tr
t
ag − penpv.q

t
ps > qt

′
ps.tr

t
ag − penpv.q

t′
ps

qtag.(tr
t
ag − penpv) > qt

′
ps.(tr

t
ag − penpv)

qtag > qt
′

ag if (trtag − penpv) > 0
The first inequality shows that our system does not incite agents to
consume to avoid under consumption penalties subject to the condi-
tion trtag−penpv > 0 ; i.e. the tariff is higher than the penalties. This
shows that the property coming from POU is kept in our case, thus
agents are not incited to request energy on the grid to avoid penalties.
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6.2 Expected payment

We can formulate the expected penalty paid by an agent by:

penps = penag(σ
b
ag −

√∑
ps∈Coop(σb

ps)
2

C+ )

with
√∑

ps∈Coop(σ
b
ps)2 the mean deviation of the consump-

tion of the set of agents who limit the deviation, with∑
ps∈Coop f(x, y, z) = C+, the number of agents in this set. Let xag

be the variable representing the deviation of the cooperative, xps the
variable representing the deviation of psu, μag the mean consump-
tion of the cooperative and μps the mean consumption of the pro-
sumer. The prosumer will pay a penalty only in two of these cases:
P (xag > μag).P (xps > μps) + P (xag < μag).P (xps < μps) =
1
4
+ 1

4
= 1

2
. The expected penalty of an agent is:

penps = 1
2
.pena(σ

b
ps −

√∑
ps∈Coop(σb

ps)
2

C+ )
The expected payment of an agent becomes :

∑n
t=0 tr

t
ag.q

t
ps +

1
2
.penag(σ

b
ps −

√∑
ps∈Coop(σb

ps)
2

C+ )

6.3 Individual rationality

We will show that an agent has interest to be a member of a coop-
erative, by demonstrating that its expected payment is lower when
the agent is in a cooperative. Hence, we demonstrate the following
inequality:

n∑
t=0

trtag.q
t
ps +

1

2
.penag.(σ

b
ps −

√∑
ps∈Coop(σ

b
ps)2∑

ps∈Coop f(xps, yps, z)
)

<

n∑
t=0

trtag.q
t
ps + penps.σ

b
ps

(1)

Suppose that penag = penps, in this case the inequality becomes:
1
2
.(σb

ps −
√∑

ps∈Coop(σb
ps)

2
∑

ps∈Coop f(xps,yps,z)
) < σb

ps

σb
ps

2
−

√∑
ps∈Coop(σb

ps)
2

2.
∑

ps∈Coop f(xps,yps,z)
< σb

ps

−
√∑

ps∈Coop(σb
ps)

2

2.
∑

ps∈Coop f(xps,yps,z)
<

σb
ps

2

−
√∑

ps∈Coop(σb
ps)

2
∑

ps∈Coop f(xps,yps,z)
< σb

ps√∑
ps∈Coop(σ

b
ps)2 ≥ 0 and σb

ps ≥ 0 by definition of standard

deviation.
∑

ps∈Coop f(xps, yps, z) ≥ 1 because f(xps, yps, z) = 1
for prosumer agent psu. The negative sign in front of the ration of
two positive numbers guarantees the inequality. Joining the third
property encourage agents to exchange energy in the cooperative
before requesting the grid.

6.4 Volatility minimisation

According to function (3), the tariff applied by a provider pvf is con-
stant and equal to tropt if its requested amount of energy qtotpv = poptpv .
Thus, in case of any pricing signal that encourages consumers to re-
quest an amount of energy equal to the optimal production of produc-

ers, we have the sum
∑24

i=1

√
(qtotpv − poptpv )2 which is minimising.

This leads to
∑24

i=1

√
(tripv − trpv)2 → 0, with trpv the mean tar-

iff, due to (3). The volatility is the standard deviation of the price. As∑24
i=1

√
(tripv − trpv)2 is the standard deviation of the price we can

say that the volatility is going toward 0.

7 EMPIRICAL EVALUATION

In this section, we first describe the initialization of our data. Then,
we present and discuss the results of our evaluation. Our goal is to
show the price evolution according to the tariff scheme we propose.
Thus, we look at the tariff evolution according to the demand evolu-
tion (shifting and use of storage capacity to store) and the level of the
penalties inside a cooperative which may add volatility in the final
price paid by the prosumer.

7.1 Experimental setup

We begin by considering a scenario where each agent is in a cooper-
ative and has a generator, a storage capacity, some loads, some shift-
ing possibilities, some forecast capacities and expected consumption
limits.
Consumption limits : Qmax (resp. Qmin) is drawn randomly in
[Qmin,2.Qmin] (resp. [6.5, 11.5]) as in [11].
Generator : Each agent is equipped with a generator with a maximal
production drawn randomly in [1, 6] 6 KW is the maximum delivery
power for suitable domestic6 wind turbine or solar panel.
Storage capacity : Each agent is equipped with a storage capacity
which is drawn randomly in [0; 6, 4], the 6.4 KWh correspond to the
powerwall storage capacity7. At the beginning of the simulation the
storage capacity starts with an amount of energy which is drawn ran-
domly in [0, sps].
Loads : At each slot, the forecast consumption of a consumer is
drawn randomly in [0,Qmax] . Then the real consumption is drawn
randomly following the law N (qpred, σb), so the real consumption
can be higher than Qmax.
Forecast capacities : σb is randomly drawn between 3.59 and 17.9
percent of Qmax, 3.59 represents poor predictors and 17.9 good pre-
dictors in [13]. σp is randomly drawn between 0 and 5 percent of
Pmax.
Shifting possibilities : For each slot, the shifting possibility of the
slot is drawn randomly between 0 and 50 percent of the forecast con-
sumption of the slot.
Number of agents : We begin by testing the model with one cooper-
ative. The number of agents in the cooperative is set to 10.
LP Solver : For the different linear programs we use the glpk solver
[1].

7.2 Empirical results

Figure 3 shows the deviation harmonization effect. We can observe
that the deviation is lower when the agents are in a cooperative than
when they are alone. The harmonization effect leads to a reduc-
tion of 63% of the deviation, i.e. the under-consumption (or over-
consumption) of some agents is compensated at 63% of the over-
consumption (or under-consumption) of the others. Thus, this abates
the level of penalties, and so doing, the volatility of the rate paid by
the prosumers. The mechanism uses the combination of storage ca-
pacities and shifting possibilities. The use of this combination allows
to shift the demand of the cooperative towards slots where tariffs are
low. As figure 2a shows at slot 8, we can observe a peak of demand
from the cooperative. At the same slot on figure 2b, we can observe
that this peak of demand is in part due to a shift of demand, agents
move their shiftable needs and store energy on this slot. On figure 2c,
we can note that at slot 8, tariff is not moving so much far from the

6 http://www.energysavingtrust.org.uk/domestic/wind-turbines
7 http://www.teslamotors.com/powerwall
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Figure 2. Evolution of the demand of a cooperative and the associated prices

Figure 3. The harmonization effect on consumer deviation

mean price (81.7 for a mean of 84.17). On a more global vision, Fig-
ure 2a and 2b show quite high flows in the cooperative management
of energy. The demand of the cooperative moves between 50 and 200
kWh/slot during a day. On the shifting side, they evolve from 30 to
-90 kWh/slot in the day (-90 denotes that the consumption is sched-
uled earlier in the day). Against that, figure 2c shows that the range
of price is quite low, moving between 81.7 and 86.7 per slot. The
volatility of the price in the day is 1.92 (standard deviation) with a
mean of 84.17. For comparaison, in 2014, a report8 outlines a volatil-
ity of 11.51 between the beginning of 2009 and the end of 2012.

8 CONCLUSION

In this paper, we attack the problem of designing a sustainable mech-
anism to limit the pricing volatility in smart grids energy market
where lot of agents are willing to buy and sell energy. The mecha-
nism we present extends on three time scales; at the first level nego-
tiations provide pareto-optimal solutions where energy bands and tar-
iff bands are defined. We introduce a new tariff scheme which takes
place at the two lowest levels to incentive agents to make and respect
their forecast consumption a day ahead. We propose the algorithms
of prosumer agents to minimise their cost in the context of bounded
prices and demand. We show that our mechanism keeps some prop-
erties of POU tariff scheme (individual rationality and monotonicity
on price w.r.t the consumption) and reduces the price volatility. Fi-
nally, we present an experiment evaluation that shows, in the case of
our parameters, that the price progresses in a narrow window. This
work is developed in collaboration with an industrial partner in build-
ing construction. Further works will focus on island of prosumers

8 http://www.wec-france.org/DocumentsPDF/RECHERCHE/79rapportfinal.pdf

(in a building for example) which can be autonomous and discon-
nected from the grid (in some slot). The goal is to reduce or lower
the provider’s need and incentives the exchange between prosumer
or between islands of prosumers.
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