ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.

1327

This article is published online with Open Access by 10S Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/978-1-61499-672-9-1327

Propositional Abduction with Implicit Hitting Sets

Alexey Ignatiev 2 and Antonio Morgado' and Joao Marques-Silva !

Abstract. Logic-based abduction finds important applications in
artificial intelligence and related areas. One application example is
in finding explanations for observed phenomena. Propositional ab-
duction is a restriction of abduction to the propositional domain,
and complexity-wise is in the second level of the polynomial hier-
archy. Recent work has shown that exploiting implicit hitting sets
and propositional satisfiability (SAT) solvers provides an efficient
approach for propositional abduction. This paper investigates this
earlier work and proposes a number of algorithmic improvements.
These improvements are shown to yield exponential reductions in
the number of SAT solver calls. More importantly, the experimental
results show significant performance improvements compared to the
the best approaches for propositional abduction.

1 Introduction

Logic-based abduction finds relevant applications in artificial intelli-
gence and related areas [9, 12, 18-20, 25-27, 33, 49-52, 54, 58—-60].
Given a background theory, a set of manifestations and a set of
hypotheses, abduction seeks to identify a cost-minimum set of hy-
potheses which explain the manifestations and are consistent given
the background theory. Propositional abduction is hard for the sec-
ond level of the polynomial hierarchy, but finds a growing num-
ber of applications [58, 60]. Noticeable examples of where propo-
sitional abduction algorithms can be applied include abductive infer-
ence [15-17,55], logic programming [34, 36,41], knowledge bases
updates [35, 59], security protocols verification [1], and constraint
optimization [21,22], among many others.

Given the complexity class of propositional abduction, it is con-
ceptually simple to solve the problem with a linear (or logarithmic)
number of calls to a X5-oracle, e.g. a oracle for quantified Boolean
formulas (QBF) with one quantifier alternation. Unfortunately, in
practice QBF solvers are not as efficient as SAT solvers, and do not
scale as well. As a result, recent work [58] on solving propositional
abduction focused on using calls to SAT oracles instead of QBF ora-
cles, following a trend also observed for solving QBF [28,29,31,32].
This recent work on solving propositional abduction is motivated by
the practical success of implicit hitting set algorithms in a number of
different settings [4,10,11,13,23,24,28,29,31,32,37-39,45,53,58,
61].

The contributions of this paper can be summarized as follows.
The paper revisits QBF models for solving propositional abduc-
tion and proposes a Quantified MaxSAT (QMaxSAT) [23, 24]
model for propositional abduction. Moreover, the paper notes that
the MaxHS [13] approach for MaxSAT can be readily applied to
QMaxSAT by replacing the oracle used. The paper then investigates
the application of implicit hitting sets to solving propositional abduc-

1 LaSIGE, Faculty of Science, University of Lisbon, Portugal, email:
{aignatiev,ajmorgado,jpms } @ciencias.ulisboa.pt
2 ISDCT SB RAS, Irkutsk, Russia

tion [58] and identifies a number of algorithmic improvements. This
leads to a new algorithm, Hyper, for solving propositional abduction.
This new algorithm is shown to significantly outperform the current
state of the art, solving a large number of instances that could not
be solved with existing solutions. More importantly, the paper shows
that the algorithmic improvements proposed can save an exponen-
tial number of iterations when compared with the current state of the
art [58].

The paper is organized as follows. Section 2 introduces the defi-
nitions used throughout the paper, and also overviews related work.
Section 3 revisits a QBF model for abduction, which is then used for
developing a number of alternative approaches for solving proposi-
tional abduction. Among these, the paper proposes improvements to
recent work [58], which are shown to yield exponential reductions
on the number of SAT oracle calls. Section 4 analyzes the experi-
mental results, running existing and the proposed algorithms on ex-
isting problem instances [58]. Section 4 also provides experimental
evidence that the proposed algorithms for propositional abduction
can save an exponential number of oracle calls in different settings.
Section 5 concludes the paper, and identifies possible research direc-
tions.

2 Preliminaries

This section introduces the notation and definitions used throughout
the paper.

2.1 Satisfiability

Standard propositional logic definitions apply (e.g. [7]). CNF formu-
las are defined over a set of propositional variables. A CNF formula
(or theory) T is a propositional formula represented as a conjunc-
tion of clauses, also interpreted as a set of clauses. A clause is a
disjunction of literals, also interpreted as a set of literals. A literal is
a variable or its complement. The set of variables of a theory 7' is
denoted X £ var(T). The dependency of T on X can be made ex-
plicit by writing 7'(X'). Where convenient, a formula can be rewrit-
ten with a fresh set of variables, e.g. we can replace X by Y, writ-
ing T'(Y"). Conflict-driven clause learning (CDCL) SAT solvers are
summarized in [7]. Throughout the paper, SAT solvers are viewed
as oracles. Given a CNF formula F', a SAT oracle decides whether
F is satisfiable, and returns a satisfying assignment p if F' is satis-
fiable. A SAT oracle can also return a subset of the clauses (i.e. an
unsatisfiable core U C F) if F' is unsatisfiable.

CNF formulas are often used to model overconstrained problems.
In general, clauses in a CNF formula are characterized as hard, mean-
ing that these must be satisfied, or soft, meaning that these are to be
satisfied, if at all possible. A weight can be associated with each soft
clause, and the goal of maximum satisfiability (MaxSAT) is to find an
assignment to the propositional variables such that the hard clauses
are satisfied, and the sum of the satisfied soft clauses is maximized.

1328 A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

Branch-and-bound algorithms for MaxSAT are overviewed in [7].
Recent work on MaxSAT investigated core-guided algorithms [3,46]
and also the use of implicit hitting sets [13].

In the analysis of unsatisfiable CNF formulas, a number of defi-
nitions are used. Given an unsatisfiable CNF formula ', a minimal
unsatisfiable subset (MUS) M C F' is both unsatisfiable and irre-
ducible. Given an unsatisfiable CNF formula F', a minimal correc-
tion subset (MCS) C' C F' is both irreducible and its complement
is satisfiable. Given an unsatisfiable CNF formula I, a maximal sat-
isfiable subset (MSS) S is the complement of some MCS of F'. A
largest MSS is a solution to the MaxSAT problem.

Additionally, it is well-known [40,56] that MUSes and MCSes are
connected by a hitting set duality. Given a collection I of sets from a
universe U, a hitting set i for I is a set such that V.S € I', hN.S # (.
A hitting set h is minimal if none of its subsets is a hitting set. It is
straightforward to extend the previous definitions to the case where
there are hard clauses.

Quantified Boolean formulas (QBFs) are an extension of propo-
sitional logic with existential and universal quantifiers (V, 3) [7].
A QBF can be in prenex closed form Qix1...Qnxn. @, Where
Q; € {V,3}, x; are distinct Boolean variables, and ¢ is a Boolean
formula over the variables x; and the constants O (false), 1 (true). The
sequence of quantifiers in a QBF is called the prefix and the Boolean
formula the matrix. The semantics of QBF is defined recursively.
A QBF 321Q2x2. . .Qnn. ¢ is true iff Q222...QnTn. @|a =1 OF
Q2%2. . .QnTn. ©|z,=0 is true. A QBF Vz1Q2z2. . .Qnxn. @ is true
iff both Q223. . .Qnn. Y|z, =1 and Q222. . .QnTn. Y|z, =o are true.
To decide whether a given QBF is true or not, is known to be
PSPACE-complete [7].

2.2 Propositional Abduction

A propositional abduction problem (PAP) is a S-tuple P =
(V,H,M,T,c).V is a finite set of variables. H, M and T are CNF
formulas representing, respectively, the set of hypotheses, the set of
manifestations, and the background theory. c is a cost function asso-
ciating a cost with each clause of H, ¢ : H — R™.

Given a background theory T, aset S C H of hypotheses is an ex-
planation (for the manifestations) if: (i) .S entails the manifestations
M (given T'); and (ii) S is consistent (given T"). The propositional ab-
duction problem consists in computing a minimum size explanation
for the manifestations subject to the background theory.

Definition 1 (Explanations for P [58]) Ler P = (V,H,M,T,c)
be a PAP. The set of explanations of P is given by the set Expl(P) =
{SCH|TANSELTASEM}. The minimum-cost solutions of
P are given by Expl,(P) = argming g, py (c(E)).

The complexity of logic-based abduction has been investigated in
a number of works [9, 18], and is surveyed in [58]. Checking whether
S C H is an explanation for a PAP is D”-complete. Deciding the
existence of some explanation is X5-complete. Finding a minimum-
size explanation can be achieved with a linear number of calls to a 35
oracle or, if the costs are polynomially bounded, with a logarithmic
number of calls to a X5 oracle.

Example 1 (Example abduction instance.) Consider the proposi-
tional abduction problem instance P = (V, H, M, T, c) with the set
of variables V', the set of hypotheses H, the manifestations M, and

Input: ' WCNF formula
Output: (4, Cost(p)) MaxSAT assignment and cost

1 begin

2 K+ 9§

3 while true do

4 h < MinimumHS(K)
5 (st,p) < SAT(F \ h)

// If st, then p is an assignment
// Otherwise, u is a core

6 if st then return (u, Cost(u))
K+ Ku{u}

8 end
Algorithm 1: The MaxHS algorithm [13]

the background theory T' given by,

V= {z1,22,23,24}

H={(z1),(22), (z3)}

M= {0} M
T = {(—LT1 \/LE4),(—‘LI}2V_‘Z’3V$4)}

The (propositional) abduction problem for this example is to find a
minimum cost subset S of H, such that (i) S is consistent with T (i.e.
T NSEL) and (ii) S and T entail M (i.e. T N SE M). For this
instance of propositional abduction, the minimum cost explanation
is then S = {(z1)}.

2.3 Related Work

This paper builds on recent work on algorithms for propositional ab-
duction [58], which builds on earlier work on solving maximum sat-
isfiability with implicit hitting set algorithms [13]. This work is also
tightly related to the body of work on handling hitting sets implic-
itly [10,11,13,37,45,58], which is also tightly related with implicit
hitting set dualization [4, 38,39, 53,61], but also with abstraction re-
finement in QBF solving and optimization [23,24,28,29,31,32].
The use of implicit hitting sets for solving MaxSAT is embodied
by MaxHS [13], which is summarized in Algorithm 1. The algorithm
computes minimum hitting sets of a set of sets, each of which repre-
sents an unsatisfiable subformula of the target formula. This essen-
tially exploits Reiter’s [56] well-known hitting set relationship be-
tween MCSes and MUSes [6, 8, 40], where an MCS is a minimal
hitting set of the MUSes and vice-versa. Moreover, since a minimum
hitting set is being computed, we are in search of the smallest MCS,
i.e. the MaxSAT solution. In case there are hard clauses, MaxHS
needs to take this into consideration, including checking the consis-
tency of the hard clauses. Besides MaxHS, recent work on MaxSAT
solving is based on iterative unsatisfiable core identification [3,46].
Recent work on propositional abduction builds on MaxHS and
proposes a novel algorithm, AbHS/AbHS+. AbHS mimics MaxHS
in that the algorithm iteratively computes minimum cost hitting sets,
which identify a subset S C H. This set S is then used for checking
whether it represents an explanation of the propositional abduction
problem. Since it is a minimum hitting set then, if the conditions
hold, it is a minimum-cost explanation. AbHS is summarized in Al-
gorithm 2. As in MaxHS, the algorithm iteratively computes mini-
mum hitting sets using an ILP solver (line 13). The outcome is a sub-
set S of H. The abduction conditions are checked with two distinct
SAT oracle calls. One oracle call checks whether TAS A (—M) is in-
consistent, i.e. whether T" A S'= M. If the formula is satisfiable, then
the set of sets to hit (K) is updated with another set, of the clauses in
H falsified by the computed satisfying assignment. If T'A S A (= M)

A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets 1329

Input: PAP P = (V,H, M, T, c)
Output: Minimum cost explanation S

1 begin

2 K<+

3 S0

4 (st,p) < SAT(T AN H A (-M))

5 if st then return

6 while S # H do

7 (st,p) <= SAT(T' AS A (-M))

8 if stthen K +— KU{{h € H|u(h)=0}}
9 else

10 (st,u) < SAT(T A S)

11 if not st then K «<— K U {(H \ S)}
12 else return S

13 S < MinimumHS(K)

14 return ()

15 end
Algorithm 2: The AbHS/AbHS+ abduction algorithm [58]

is inconsistent, then a second oracle call checks whether 7" A S is
consistent. If it is, then a minimum-cost explanation has been iden-
tified. Otherwise, AbHS creates a hitting set by requiring that some
non-selected clause of H be selected in subsequently computed min-
imum hitting sets. For the AbHS+ variant [58], the set added can be
viewed as the complements of the literals selecting each clause in S,
i.e. at least some clause in .S must not be picked.

There is a vast body of work on exploiting implicit hitting sets. The
concept of exploiting implicit hitting sets is intended to mean that,
instead of starting from an explicit representation of the complete
set of hitting sets, hitting sets are computed on demand, as deemed
necessary by the problem being solved. An earlier example of ex-
ploiting implicit hitting sets is the work of Bailey and Stuckey [6],
in the concrete application to hitting set dualization. The concept
was re-introduced more recently [10, 13,37], and then applied in a
number of different settings. Among this vast body of work, as will
become clear throughout the paper, our work can be related with
abstraction refinement ideas used in recent expansion-based QBF
solvers, namely RAReQS [24,28,31] and quantified optimization ex-
tensions [23,29], but now in the context of handling implicit hitting
sets.

3 Algorithms for Propositional Abduction

This section overviews different algorithms for solving propositional
abduction, all of which are based on reducing the problem to QBF.

3.1 QBF Model for Abduction

Given aPAP P = (V, H, M, T, c), the problem of deciding whether
some set S is an explanation can be reduced to QBF. .S C H is an
explanation of P iff:

IxT(X) A S(X) Ay ~(T(Y)ASY)A-M(Y)) (2)

is true. (Observe X and Y denote sets of variables, thus highlight-
ing that different sets of variables are used.) (2) can be rewritten as
follows:

Ixp(X) Ay Y(Y), 3)
where g =T ASandy = (T NS A-M).

As indicated in Section 2, the goal of propositional abduction is
to find a minimum cost explanation, i.e. to pick a minimum cost set
S C H that is an explanation of P.

The problem of finding a minimum cost explanation of P can be
reduced to quantified maximum satisfiability [24] (QMaxSAT). As-
sociate a variable r; with each clause C; € H, and create a set H’
where each clause C; € H is replaced by (r; V C;), to enable relax-
ing the clause. Let R denote the set of the r; (relaxation) variables,
with |R| = |H|. H' serves to create a modified QBF:

ArIXT(X)ANH' (R, X)AVy~(T(Y)ANH' (R,Y)A-M(Y)) (4)
As before, (4) can be rewritten as follows:
JrIAx (X, R) AVy (Y, R) ©)

The above QBF can be transformed into prenex normal formal, and
represents the hard part of the QMaxSAT problem. Moreover, the
fact that the goal is to compute a minimum cost explanation of P
is modeled by adding a soft clause (—r;), with cost ¢(C5), for each
r; € R. Each soft clause denotes a preference not to include the
associated clause in H in the computed explanation.

Example 2 With respect to the PAP from example 1, the QBF asso-
ciated with the hard part of the QMaxSAT problem is:

Fr1,ra,r3 Tt w0 ,23,24
(—\:El V $4) A (—\mz V x3 V :E4)/\
(T1 \Y ml) A (7‘2 V 272) A (7‘3 \Y 273)
Vy1,y2,93,54
(Y1 Vya) A (my2 V —ys Voya) A
(riVyi) A(r2 Vyz) Ars Vys) A (—ya)]

(6)

with the soft clauses being {(—r1), (=r2), (—r3) }.

The QMaxSAT formulation can be used to develop a number of al-
ternative approaches for solving PAP. These approaches are detailed
in the next sections.

Observe that, if the propositional abduction problem is not trivial
to solve, then the QBF (2) is false for S =) and S = H.

3.2 Abduction with QMaxSAT

Similarly to MaxSAT, a number of algorithms can be envisioned for
solving QMaxSAT. These are analyzed in the subsections below, tak-
ing into account the specific structure of the reduction of proposi-
tional abduction to QMaxSAT.

3.2.1 [Iterative QBF Solving

A standard approach for solving MaxSAT is iterative SAT solv-
ing [46]. Similarly, we can use iterative QBF solving for QMaxSAT.
At each step, and given cost k, the following pseudo-Boolean con-
straint is used:

PB(R, k)£ | Y c(Ciri <k ©)

C;,eH

For some positive k, the QBF (5) can be used for iteratively QBF
solving as follows:

3rPB(R, k) A 3x (X, R) AVyh(R,Y) ®)

1330 A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

Clearly, binary search can be used to ensure a linear (or logarith-
mic, depending on whether the costs are bounded) number of 35
oracle calls [18]. In practice, most QBF solvers expect clausal rep-
resentations. Clausification introduces one additional level of quan-
tification. Typically, each quantification level makes a QBF formula
harder to decide. And thus in practice, QBF solvers scale worse than
SAT solvers, and so this approach is unlikely to scale for large propo-
sitional abduction problem instances.

3.2.2 Core-Guided QBF Solving

Core-guided algorithms [3,46] represent another approach for solv-
ing QMaxSAT. Many variants of core-guided MaxSAT algorithms
have been proposed in recent years [3,46].

Given the reduction of propositional abduction to QMaxSAT,
any core-guided MaxSAT algorithm can be used, provided a core-
producing QBF solver is used [24,42].

Nevertheless, for the abduction problem the use of alternative
MaxSAT solving approaches, based on MaxHS [13] is amenable to
efficient optimizations, which solely use SAT solvers [58].

3.2.3 Exploiting MaxHS

A recent approach for MaxSAT solving is MaxHS [13], which ex-
ploits integer linear programming (ILP) solving, resulting in sim-
pler SAT oracle calls, at the cost of a possibly exponentially larger
number of oracle calls. Recall that the MaxHS approach for solving
MaxSAT is outlined in Algorithm 1.

A straightforward solution for solving QMaxSAT is to replace the
SAT oracle by a QBF oracle in MaxHS. This approach is referred to
as QMaxHS, and it was implemented on top of DepQBEF, the known
QBF solver which is capable of reporting unsatisfiable cores if the
input QBF is false [42]. It should be noted (and it is also mentioned
in Section 4) that the implementation of QMaxHS performs quite bad
(it cannot solve any benchmark instances considered in Section 4). A
possible explanation of this is that the QBF formulas, which are iter-
atively solved by the QBF solver, are too hard even though the orig-
inal idea of MaxHS-like algorithms is to get (many) simple calls to
the oracle. This suggests that implementing core-guided QMaxSAT
algorithms would not pay off as well since the QBF formulas in core-
guided QMaxSAT are much harder to deal with. Recent work on
propositional abduction [58] proposed a MaxHS-like approach, but
the QBF oracle call was replaced by two SAT solver calls, which is
expected to outperform QMaxHS.

3.3 Exploiting Implicit Hitting Sets

The use of implicit hitting sets for abduction was proposed in recent
work [58]. This work can be viewed as extending the MaxHS algo-
rithm for MaxSAT [13], which is based on implicit enumeration of
hitting sets. In contrast to MaxHS, instead of one SAT oracle call,
ADbHS [58] uses two SAT oracle calls, one to check entailment of M
by T'A S and another to check the consistency of T'A S. A variant of
ADbHS, AbHS+, differs on which sets are added to the hitting set rep-
resentation. Whereas the connection of MaxHS and AbHS with im-
plicit hitting sets is clear, the approach used in AbHS+ can be viewed
as adding both only positive clauses and only negative clauses to hit,
and so the connection with hitting sets is less evident. An alternative
way of explaining AbHS/AbHS+ is to consider (5). The ILP solver is
used for computing some minimum cost hitting set, which represents
a set of clauses S C H. Then, one SAT oracle call checks Ix ¢(X),
given S, and another SAT oracle call checks Vy ¢ (Y), also given S.

(Observe that this second formula corresponds to checking unsatisfi-
ability.) This explanation of how AbHS/AbHS+ works is investigated
in greater detail below.

In the following, an alternative approach for propositional abduc-
tion is developed which, similarly to AbHS/AbHS+, is also based on
handling implicit hitting sets, but which is shown to yield exponential
reductions on the number of oracle calls in the worst case. The new
algorithm, Hyper, shares similarities with MaxHS and AbHS/AbHS+
in that minimum hitting sets are also computed, and an implicit rep-
resentation of the hitting sets is maintained. However, and in contrast
with AbHS/AbHS+, Hyper analyzes the structure of the problem for-
mulation, and develops a number of optimizations that exploit that
formulation.

The propositional abduction problem formulation can be pre-
sented in a slightly modified form, i.e. to find a smallest cost set
S C H, consistent with 7" (i.e. a T-consistent set S), which, together
with 7T, entails M. Consider a T-consistent candidate set S C H. If
T NS¥ M, then the formula T'A S A (= M) is satisfiable and the sat-
isfying assignment returned by the SAT oracle is a counterexample
explaining why the selected set S is such that " A S¥ M. More-
over, this satisfying assignment can be used for revealing a (possibly
subset-minimal) set of clauses in H \ S which are falsified. Clearly,
one of these falsified clauses must be included (i.e. hif) in any 7'-
consistent set S C H which, together with 7', will entail M. Thus,
from each T-consistent candidate set S C H which, together with
T, does not entail M, we can identify a set of clauses, from which
at least one must be picked, in order to pick another 7'-consistent set
S C H, such that eventually T' A S E M.

The approach outlined in the paragraph above, although appar-
ently similar to the description of AbHS/AbHS+, reveals a number of
significant insights. First, checking the consistency of S with T can
be carried out concurrently with the selection of S itself. This is also
apparent from the QBF formulation (2), in that all existential quanti-
fiers can be aggregated and handled simultaneously. Thus, each min-
imum hitting set S is computed while guaranteeing that 7" A S holds.
More importantly, after each set .S is picked, it is only necessary to
check whether T' A S E M, and this can be done with a single SAT
oracle call.

Concretely, the next minimum cost hitting set, given the already
identified sets to hit, is computed guaranteeing that the existential
part of (4) is satisfied:

3rIxT(X) A H'(R, X) 9)

The selected set S, identified by the assignment to the R variables, is
then used for checking the satisfiability of the second component of
QBF (2):

Yy o(T(Y)ASY) A=M(Y)) (10)

Observe that this can be decided with a SAT oracle call.

Thus, a careful analysis of the problem formulation enables im-
proving upon AbHS/AbHS+, specifically by eliminating one SAT
oracle call per iteration. However, as shown in the next section, the
new algorithm can save an exponentially large number of SAT oracle
calls when compared with AbHS/AbHS+.

Besides the aggregation of the existential quantifiers, additional
optimizations can be envisioned. Propositional abduction seeks a
minimum cost set S C H such that " A S M. Ideally, one would
prefer not to select a set S C H such that T" A S ¥ M. Observe that
T N SE M implies that " A S A M holds, but the converse is in
general not true. Thus, M can be added to (9), resulting in requiring
that T'A S A M be consistent when selecting the set S. The inclusion
of M when picking a minimum hitting set can also reduce the num-

A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets 1331

Input: PAP P = (V,H, M, T, c)
Output: Minimum cost explanation S
1 begin

2 (H',R) + RelaxCls(H)

3 B+« TANMAH

4 A+

5 while true do

6 (st,h) < MinimumHS(A, B)

7 if not st then return ()

8 S<—{C¢€H’|meh}

9 (st,p) < SAT(T AS A (-M))
10 if not st then return S

11 W + PickFalseCls(H \ S, u)
12 Y + GetRelaxationVars(W)
13 A+ AUY

14 end

Algorithm 3: Organization of Hyper

ber of oracle calls exponentially. This is also investigated in the next
section.

The new Hyper algorithm for propositional abduction is shown
as Algorithm 3. Clauses in H are relaxed, to allow each clause C; €
H to be picked when the associated relaxation variable r; is assigned
value 1. The minimum hitting sets are computed for the set of sets
A, subject to a background theory B, which conjoins 7', M and the
relaxed clauses of H. In Hyper minimum hitting sets are computed
with a MaxSAT solver [47], since the hard part (containing 1T', M
and H') plays a significant role in deciding consistency. If all hitting
sets have been (implicitly) tried unsuccessfully, then the algorithm
terminates and returns {). If not, and if T'A S = M, then the algorithm
terminates and returns the computed set S. Otherwise, a subset of
the clauses in H \ S, which are falsified by the computed satisfying
assignment u, is identified, and the associated relaxation variables
are used to create another set to hit, i.e. one of those clauses must be
included in any selected set S.

3.3.1 Additional Optimizations

A few additional optimizations are possible, which can be expected
to have some impact on the performance of Hyper. These are dis-
cussed next. The first two optimizations are implemented in a variant
of Hyper, Hyper*. The other optimizations are analyzed to explain
why performance improvements are not expected to be significant.

One optimization is to perform partial reduction of the counterex-
amples computed in lines 11-12 of Algorithm 3. Recall that coun-
terexamples, i.e. sets that need to be hit next time, comprise clauses
of H \ S that are falsified by a model p of T A S A (—=M). Thus,
the counterexamples can be seen as correction subsets for the partial
CNF formula T'A H A (—M), where T' A (—M) is the hard part and
H is the soft part. Observe that instead of computing any correction
subset, one may want to reduce it to get a subset-minimal correc-
tion subset (an MCS), i.e. to try to minimize the number of falsified
clauses in H \ S. In Hyper™ this is done using the standard linear
search algorithm [44], which iterates through the falsified clauses and
tries to satisfy them. In order not to spend too much time on doing
the reduction, the version of Hyper” presented here iterates only over
0.2 x m falsified clauses of the initial counterexample starting from
the clauses of the smallest weight, where m is the size of the initial
counterexample.

A second optimization is to start by computing a fixed number of
minimum hitting sets. Given that 7' A H A (—M) is inconsistent, one

can enumerate MCSes of this formula, which must be hit, so that one
can eventually prove that there exists some set S with A S'= M. In
Hyper, 100 MCSes of TAH A(—M) are computed before starting the
process of generating candidate sets S. These MCSes are computed
by size, using MaxSAT-based MCS enumeration [40, 48].

A third optimization respects the clauses in M. Any C; € M,
such that T'F C}, can be removed from M. In a preprocessing step,
each clause in M is checked for entailment with respect to 7. Any
entailed clause is removed. This technique reduces the practical hard-
ness of the formulas checked for unsatisfiability. Since most of the
running time of Hyper is spent on computing minimum hitting sets,
the impact of the technique is expected to be marginal.

A fourth, and final optimization respects the clauses in H. Any
C; € H that T E C}, can also be removed from H, as it will not be
included in any minimum cost hitting set. It should be noted that the
gains of this technique should be also marginal. Since by construc-
tion T' A S is consistent, and the only computed counterexamples
satisfy T' A S A (=M), then any clause C; € H with T'=C; will
also be satisfied. Since, the counterexamples only consider falsified
clauses, then any clause C; € H entailed by T" will never be included
in a set to be hit.

3.3.2 Exponential Reductions in Oracle Calls

This section argues that the new Hyper algorithm for solving propo-
sitional abduction can save an exponentially larger number of itera-
tions when compared with the AbHS/AbHS+ algorithm proposed in
earlier work [58].

Consider a PAP P, = (V, H, M, T, c), with:

V= {t17$17y17m17-~~’tn,$mymmn}
H={(-z1), (z1 Vi), (=y1), (g1 Vi), ...,
(5n), (Tn Vtn), (7yn), (Yn V tn)}

M= {(ma),(ma), .. (mn)} (o
T= {(-tiV-tzV...V-ty,),
(‘\tl V ml), . ("tn V mn)}

and ¢(C;) = 1 for C; € H. Clearly, P1 has no solution. For M to
be entailed, .S must imply all variables ¢; to 1; but this causes 7' A S
to become inconsistent. Moreover, there are exponentially many sets
S, which are not consistent with 7. AbHS+ will have to enumerate
all of these sets .S and, for each such set .S, it will use one additional
SAT oracle call to conclude that 7" A S is inconsistent. Since AbHS+
(or AbHS) selects all falsified clauses when blocking counterexam-
ples of T'A S A (=M), all subsets of .S inconsistent with 7" will be
eventually enumerated. In contrast, since Hyper ensures consistency
between S and 7" when selecting a minimum hitting set, this expo-
nentially large number of oracle calls is not observed. (These dif-
ferences between AbHS/AbHS+ and Hyper are experimentally vali-
dated in Section 4.)

It should be clear that the exponentially large reduction in the num-
ber of oracle calls obtained with Hyper are hidden in the minimum
hitting set extractor. However, in Hyper the minimum hitting set ex-
tractor is based on MaxSAT (concretely core-guided MaxSAT), and
so this hidden complexity is handled (most often efficiently) by the
SAT solver.

The inclusion of M to find each set S can also potentially save
exponentially many iterations. Consider the following PAP P> =

1332 A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

(V,H,M,T,c):

V= {mti,z1,...,tn,Tn}
H= {(mV-z1),(mVaVt),
(mV —zn),(mVa, Vin)} (12)
M= {(m)}
T= A(tiV...V-t,)}

In contrast with the previous example, P, has a solution, i.e. there
exists a subset S of H (with S = H) such that T'A S E M. Until the
solution is found, all computed models of " A S A (=M) will also
falsify T A S A M. Any of these models might be filtered out if any
candidate set S is such that 7' A S A M is consistent. It should be
noted that in this case there is no formal guarantee that the number of
SAT oracle calls must be exponential. This depends on the solutions
provided by the minimum hitting set algorithm used. Essentially, tak-
ing M into account when selecting .S guarantees that the picked set
S will not be such that T'A S'E =M. As the results in the next section
confirm, in practice AbHS/AbHS+ can generate exponentially many
candidates S for which T'A S E - M.

4 Experimental Results
4.1 Experimental Setup

All the conducted experiments were performed in Ubuntu Linux on
an Intel Xeon E5-2630 2.60GHz processor with 64GByte of mem-
ory. The time limit was set to 1800s and the memory limit to 10GByte
for each process to run. A prototype of the Hyper algorithm proposed
above was implemented in C++ and consists of two interacting parts.
One of them computes minimum size hitting sets of the set of coun-
terexamples, also satisfying T'A S A M. This is achieved with the use
of an incremental implementation of the algorithm based on soft car-
dinality constraints [2,47], which is a state-of-the-art MaxSAT algo-
rithm that won several categories in the MaxSAT Evaluation 2015°.
The other part of the prototype checks satisfiability of TAS A (—M),
where S is a candidate hitting set reported by the hitting set solver.
Note that both parts of the solver were implemented on top of the
well-known SAT solver Glucose 3.0* [5]. Besides the basic version
of Hyper, we also implemented an improved version, which is be-
low referred to as Hyper® and contains the first two improvements
described in Section 3.3.1. Namely, the first improvement does par-
tial reduction of counterexamples by traversing and trying to satisfy
0.2 x m clauses of each counterexample, where m is the size of the
counterexample. The second improvement used in Hyper* consists
in bootstrapping the hitting set solver with 100 MCSes of MaxSAT
formula A H A (—M). It should be noted that bootstrapping the
algorithm is not necessary but in some cases it can boost the perfor-
mance of the main algorithm. Also note that the MaxSAT solver in
both Hyper and Hyper™ trims unsatisfiable cores [47] detected during
the solving process at most 5 times.

Hyper and Hyper* were compared to recent state-of-the-art algo-
rithms AbHS and AbHS+’ [58]. Additionally, we also implemented
the QMaxHS approach described in Section 3.3. The implementation
was done on top of DepQBF?®, the known QBF solver which is capa-
ble or reporting unsatisfiable cores [42]. However, the performance
of QMaxHS is poor (i.e. in our evaluation it did not solve any instance
from the considered benchmark suite) and we decided to exclude it
from consideration.

3 See results for MSCG15b at http://www.maxsat .udl.cat/15/
4 http://www.labri.fr/perso/lsimon/glucose
5http://cs.helsinki.fi/group/coreo/abhs/

S http://lonsing.github.io/depgbf/

4.2 Abduction Problem Suite

In order to assess the efficiency of the new approach to propositional
abduction, the following benchmark suite was used, which was pro-
posed and also considered in [58]. According to [58], the benchmark
instances were generated based on crafted and industrial instances
from MaxSAT Evaluation 2014 with the use of the MaxSAT solver
LMHS’ [57] and the backbone solver minibones® [30]. The reader is
referred to [58] for details. The resulting benchmark suite contains
6 benchmarks sets: pms-5, pms-10, pms-15, wpms-5, wpms-10, and
wpms-15, where the number indicates the number of manifestations.
In the conducted experimental evaluation, benchmark sets were ag-
gregated based on their type (weighted or unweighted) and resulted
in two benchmark sets: PMS and WPMS, having 847 and 795 in-
stances, respectively. The total number of instances is 1642.

The cactus plots reporting the performance of the considered al-
gorithms measured for the considered problem instances is shown in
Figure 1. As one can see in Figure 1a, for PMS benchmark instances,
Hyper and Hyper” perform significantly better than both AbHS and
AbHS+. More precisely, Hyper* solves 321 instances (out of 847),
which is 76 more (> 31%) than the number of instances solved by
AbHS+ (245). The second best competitor is Hyper, which solves
318 instances being 3 instances behind Hyper*. Finally, the worst
performance is shown by AbHS, which solves 174 instances. In
contrast to the unweighted problem instances, the performance of
the new algorithm for weighted instances is penalized by the use
of MaxSAT for computing minimal hitting sets. The reason is that
the MaxSAT solver used in Hyper does not exploit any modern and
widely used heuristics to efficiently deal with weights, e.g. Boolean
lexicographic optimization [43] or stratification [3].° This can ex-
plain a similar performance shown by Hyper and Hyper* compared
to AbHS+. More precisely, Hyper™ is able to solve 398 instances (out
of 795). AbHS+ comes second solving 389 instances while Hyper is
2 instances behind AbHS+ (387 solved). The worst performance is
shown again by AbHS, which solves 252 instances.

Regarding the performance of the virtual best solver (VBS), the
data for both sets of benchmarks can be seen in Figure 1 and it
is the following. For PMS, the VBS aggregating Hyper, Hyper* as
well as AbHS+'? is able to solve 328 instances, which is 7 more in-
stances than what Hyper™ can solve alone. In contrast, for the WPMS
instances the picture is different: the VBS solves 425 instances,
which is 27 and 36 more instances than what Hyper* and AbHS+
can solve separately. This indicates that Hyper* and AbHS+ com-
plement each other in this case, which suggests building a portfolio
of the solvers for weighted instances. The performance comparison
between AbHS+ and Hyper™ is detailed in the scatter plots shown
in Figure 2 and also confirms this conclusion. Although the exper-
imental results for the abduction problem suite show clear perfor-
mance gain of the proposed Hyper algorithm over the state-of-the-
art in propositional abduction (AbHS+), it is important to mention
that the benchmark suite was generated (see [58]) from the MaxSAT
instances by filtering out those of them that are hard for MaxHS-
like MaxSAT solvers, i.e. MaxHS [13, 14] and LMHS [57]. This fact
suggests that applying similar ideas for generating problem instances
by targeting MaxSAT formulas that are easier for another family of

7" http://www.cs.helsinki.fi/group/coreo/lmhs/

8 http://sat.inesc-id.pt/~mikolas/sw/minibones/

9 This conjecture is also suggested by the average numbers of iterations done
by Hyper* and AbHS+ for the WPMS benchmarks, which are 69 and 229,
respectively. Since Hyper* does significantly fewer iterations (on average)
and solves around the same number of instances as AbHS+ does, we as-
sume that the calls to the MaxSAT oracle are harder (on average).

10 AbHS is excluded from the VBS since it does not contribute to its perfor-
mance.

http://www.maxsat.udl.cat/15/
http://www.labri.fr/perso/lsimon/glucose
http://cs.helsinki.fi/group/coreo/abhs/
http://lonsing.github.io/depqbf/
http://www.cs.helsinki.fi/ group/coreo/lmhs/
http://sat.inesc-id.pt/~mikolas/sw/minibones/

A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

1800

o—o VBS
1600 |- A—A Hyper*

*—x Hyper
+—— ADbHS+
AbHS

1400 |

1200

1000

800

CPU time (s)

600 b..enn... |
400 feeeeee CRTTN SRR e T

200k--cnn- L L e

M i e 1
150 200 250 300
instances

(a) PMS instances

CPU time (s)

1800

1333

1600

1400

1200

1000

800

600

400

200

instances

(b) WPMS instances

Figure 1: Performance of Hyper, Hyper*, AbHS, and AbHS+ for the Abduction Problem Suite benchmarks.

10* f ; f ; f S

1800 se¢. timeout * L
................................. L G 6 @D GBS]

AbHS+

i i i i L
1073 1072 107! 109 10! 102 103 104
Hyper*

(a) PMS instances

AbHS+

1800 se(f: timeout
............. ® -0

103 fevemneedn, O TETIRTRI RN

10% |-
10' |
100
107k

102 s

10-3 [

104 T T T T T o

Hyper*

(b) WPMS instances

Figure 2: Hyper” vs AbHS+.

MaxSAT algorithms, e.g. the core-guided algorithms based on soft
cardinality constraints [47] (recall that the MaxSAT solver in Hy-
per is one of them), would result in even better performance of Hy-
per. Moreover, the results for the weighted benchmarks emphasize
the importance of applying modern techniques (e.g. Boolean lexico-
graphic optimization and stratification). With such improvements, we
expect Hyper to perform significantly better for problem instances

with weights.

4.3 Oracle Calls in AbHS+

i i i i :
103 1072 107! 10° 10! 102 103

This section studies the number of iterations for the considered ap-
proaches for the families of examples described in Section 3.3.2. For
both examples (11) and (12) we generated 10 instances varying size

1334

A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

Table 1: The number of iterations and running time per solver for example family (11). Additionally, for AbHS/AbHS+ the number of iterations

of type 2 is also shown (in parentheses). Value n varies from 1 to 10.

1 2 3 4 5 6 7 8 9 10
AbHS 11(7) 59@49) 363(343) 2401 (829) — — — — — —
0.0s 0.1s 3.4s 166.2s >1800s >1800s >1800s >1800s >1800s >1800s
AbHS+ 6(2) 14 (4) 28 (8) 51 (16) 125 (32) 388 (64) 978 (128) 2242 (256) — —
0.0s 0.0s 0.0s 0.0s 0.3s 2.8s 24.3s 180.3s >1800s >1800s
6 14 17 19 27 32 32 35 39 48
Hyper
0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s

Table 2: The number of iterations and running time per solver for example family (12). Value n varies from 1 to 10.

1 2 3 4 5 6 7 8 9 10
AbHS / 5 11 21 54 133 350 878 1995 — —
AbHS+ 00s O0.1s 0.1s 02s 03s 2.0s 155s 168.8s >1800s >1800s
16 17 14 20 29 18 27 30 37
Hyper
0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s 0.0s

n of the instance from 1 to 10 in order to show how the number of
iterations grows with the growth of size n for each approach.'!
Recall that example (11) aims at showing the importance of adding
the theory clauses into the hitting set solver by saving an exponential
number of iterations related to candidates that are not consistent with
the theory. In AbHS/AbHS+ the consistency check is done through
the second SAT call and results in a counterexample blocking the
candidate (AbHS+ also blocks its supersets). The idea of proposing
example family (11) is, thus, to show that the number of iterations
of this type (let us call them iterations of type 2 because they are
related with the 2nd SAT call) in AbHS and AbHS+ can be exponen-
tially larger than the number of iterations done by Hyper'?. Indeed,
Table 1 confirms this conjecture indicating that the number of itera-
tions of type 2 in AbHS+ grows exponentially with the growth of n,
i.e. it is exactly 2" (see the values in parentheses), while the num-
ber of iterations done by Hyper is negligible. The situation gets even
more dramatic for AbHS. (As one can see, the total number of iter-
ations performed by AbHS and AbHS+ grows even faster.) The run-
ning time spent by AbHS and AbHS+ also grows significantly with
the growth of n. As a result, AbHS and AbHS+ cannot solve any
instances for n > 4 and n > 8, respectively, within 1800 seconds.
Observe that Hyper reports the result for each n immediately.
Regarding example (12), it shows the importance of adding M into
the hitting set solver. Table 2 confirms that it can save an exponential
number of iterations. As one can observe, the number of iterations

11 1t should be noted that the pseudo-code in Algorithm 2 (taken from [58]),
as well as the actual source code, needs to be modified for AbHS+ to
produce correct results when a PAP does not have a solution, as is the
case with example (11). When blocking previously computed hitting sets,
ADbHS+ can generate clauses both with positive literals and clauses with
negative literals and, for a PAP without solution, it will eventually com-
pute an empty hitting set, denoting that there is no solution to the con-
straints added as sets to hit. As a result, the pseudo-code (and the source)
needs to test for the case when the minimum hitting set returned is empty,
in which case it must return ‘no solution’. This fix was added to AbHS+ to
get the results presented in this section.

12 To test the number of iterations, the basic version Hyper was considered.

grows exponentially with growing value n for AbHS and AbHS+.
Note that in this case AbHS and AbHS+ behave similarly to each
other, which is why Table 2 does not have a separate row for AbHS+.
Analogously to the previous case, the performance of the solver (i.e.
its running time) is severely affected by the number of iterations.
Analogously to the previous example and in contrast to AbHS and
ADbHSH+, the basic version of Hyper does significantly fewer iterations
and spends almost no time for each of the considered instances.

5 Conclusions

Abduction finds many applications in Artificial Intelligence, with a
large body of work over the years. Recent work investigated propo-
sitional abduction, and proposed the use of a variant of the implicit
hitting set algorithm MaxHS for solving the problem [58].

This paper identifies several sources of inefficiency with earlier
work, and proposes a novel, implicit hitting set inspired, algorithm
for propositional abduction. The novel algorithm, Hyper, is shown
to outperform the recently proposed algorithms AbHS and AbHS+
on existing problem instances. In addition, the paper demonstrates
that the proposed improvements can result in exponential savings on
the number of SAT oracle calls, which helps explain the observed
performance improvements.

In a broader context, this paper contributes to the recent body of
work on implicit hitting set algorithms, and identifies algorithmic
optimizations that can be significant in other contexts.

A number of research directions can be envisioned. These include
improvements to the MaxSAT solver used for computing minimum
hitting sets, as this represents the main bottleneck of the Hyper algo-
rithm. Additional work will involve applying Hyper to a larger range
of problem instances.

Acknowledgments

This work was partially supported by FCT from MCTES Portugal
throught the scholarship with reference SFRH/BPD/103609/2014.

A. Ignatiev et al. / Propositional Abduction with Implicit Hitting Sets

References

(1

(2]

(3]
[4]

[3]

(6]

(71
[8]

[9]

[10]

[11]

[12]

[13]
[14]
[15]
[16]

[17]

[18]
[19]

[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]

[28]

[29]

Marco Alberti, Federico Chesani, Marco Gavanelli, Evelina Lamma,
Paola Mello, and Paolo Torroni, ‘Security protocols verification in ab-
ductive logic program.: A case study’, in ESAW, pp. 106-124, (2005).
Benjamin Andres, Benjamin Kaufmann, Oliver Matheis, and Torsten
Schaub, ‘Unsatisfiability-based optimization in clasp’, in ICLP, pp.
211-221, (2012).

Carlos Ansétegui, Maria Luisa Bonet, and Jordi Levy, ‘SAT-based
MaxSAT algorithms’, Artif. Intell., 196, 77-105, (2013).

M. Fareed Arif, Carlos Mencia, and Joao Marques-Silva, ‘Efficient
MUS enumeration of horn formulae with applications to axiom pin-
pointing’, in IJCAI pp. 324-342, (2015).

Gilles Audemard, Jean-Marie Lagniez, and Laurent Simon, ‘Improving
Glucose for incremental SAT solving with assumptions: Application to
MUS extraction’, in SAT, pp. 309-317, (2013).

James Bailey and Peter J. Stuckey, ‘Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization’, in PADL, pp. 174—
186, (2005).

Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, eds.
Handbook of Satisfiability. I0S Press, 2009.

Elazar Birnbaum and Eliezer L. Lozinskii, ‘Consistent subsets of incon-
sistent systems: structure and behaviour’, J. Exp. Theor. Artif. Intell.,
15(1), 25-46, (2003).

Tom Bylander, Dean Allemang, Michael C. Tanner, and John R.
Josephson, ‘The computational complexity of abduction’, Artif. Intell.,
49(1-3), 25-60, (1991).

Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-
Centeno, and Santosh Vempala, ‘Algorithms for implicit hitting set
problems’, in SODA, pp. 614-629, (2011).

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani, ‘A modular approach to MaxSAT modulo theories’,
in SAT, pp. 150-165, (2013).

Nadia Creignou and Bruno Zanuttini, ‘A complete classification of the
complexity of propositional abduction’, SIAM J. Comput., 36(1), 207—
229, (2006).

Jessica Davies and Fahiem Bacchus, ‘Solving MAXSAT by solving a
sequence of simpler SAT instances’, in CP, pp. 225-239, (2011).
Jessica Davies and Fahiem Bacchus, ‘Postponing optimization to speed
up MAXSAT solving’, in CP, pp. 247-262, (2013).

Isil Dillig and Thomas Dillig, ‘Explain: A tool for performing abductive
inference’, in CAV, pp. 684-689, (2013).

Isil Dillig, Thomas Dillig, and Alex Aiken, ‘Automated error diagnosis
using abductive inference’, in PLDI, pp. 181-192, (2012).

Isil Dillig, Thomas Dillig, Boyang Li, and Kenneth L. McMillan, ‘In-
ductive invariant generation via abductive inference’, in OOPSLA, pp.
443-456, (2013).

Thomas Eiter and Georg Gottlob, ‘The complexity of logic-based ab-
duction’, J. ACM, 42(1), 3-42, (1995).

Thomas Eiter and Kazuhisa Makino, ‘Abduction and the dualization
problem’, in Discovery Science, pp. 1-20, (2003).

Béchir el Ayeb, Pierre Marquis, and Michaél Rusinowitch, ‘Preferring
diagnoses by abduction’, IEEE Trans. Systems, Man, and Cybernetics,
23(3), 792-808, (1993).

Marco Gavanelli, Marco Alberti, and Evelina Lamma, ‘Integrating ab-
duction and constraint optimization in constraint handling rules’, in
ECAI pp. 903-904, (2008).

Marco Gavanelli, Marco Alberti, and Evelina Lamma, ‘Integrat. of ab-
ductive reason. and const. opt. in SCIFF’, in ICLP, pp. 387-401, (2009).
Alexey Ignatiev, Mikolds Janota, and Joao Marques-Silva, ‘Quantified
MaxSAT: A core-guided approach’, in SAT, pp. 250-266, (2013).
Alexey Ignatiev, Mikolds Janota, and Joao Marques-Silva, ‘Quantified
MaxSAT’, Constraints, 21(2), 277-302, (2016).

Katsumi Inoue, ‘Automated abduction’, in Computational Logic: Logic
Programming and Beyond, Essays in Honour of Robert A. Kowalski,
Part 11, pp. 311-341, (2002).

Katsumi Inoue, Andrei Doncescu, and Hidetomo Nabeshima, ‘Com-
pleting causal networks by meta-level abduction’, Machine Learning,
91(2), 239-277, (2013).

Katsumi Inoue, Taisuke Sato, Masakazu Ishihata, Yoshitaka Kameya,
and Hidetomo Nabeshima, ‘Evaluating abductive hypotheses using an
EM algorithm on BDDs’, in IJCAI, pp. 810-815, (2009).

Mikolas Janota, William Klieber, Joao Marques-Silva, and Edmund M.
Clarke, ‘Solving QBF with counterexample guided refinement’, in SAT,
pp. 114-128, (2012).

Mikolas Janota, William Klieber, Joao Marques-Silva, and Edmund M.

[30]

[31]
[32]
[33]
[34]
(35]
[36]
[37]
[38]

(391

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
(48]
[49]
[50]

[51]
[52]
[53]
[54]1

[55]

[56]
(571
(58]
[591
[60]

[61]

1335

Clarke, ‘Solving QBF with counterexample guided refinement’, Artif.
Intell., 234, 1-25, (2016).

Mikolds Janota, Inés Lynce, and Joao Marques-Silva, ‘Algorithms for
computing backbones of propositional formulae’, AI Commun., 28(2),
161-177, (2015).

Mikolds Janota and Joao Marques-Silva, ‘Abstraction-based algorithm
for 2QBF’, in SAT, pp. 230-244, (2011).

Mikolds Janota and Joao Marques-Silva, ‘Solving QBF by clause se-
lection’, in IJCAI, pp. 325-331, (2015).

Eugene Santos Jr., ‘A linear constraint satisfaction approach to cost-
based abduction’, Artif. Intell., 65(1), 1-28, (1994).

Antonis C. Kakas, Robert A. Kowalski, and Francesca Toni, ‘Abductive
logic programming’, J. Log. Comput., 2(6), 719-770, (1992).

Antonis C. Kakas and Paolo Mancarella, ‘Database updates through
abduction’, in VLDB, pp. 650-661, (1990).

Antonis C. Kakas and Fabrizio Riguzzi, ‘Learning with abduction’, in
ILP, pp. 181188, (1997).

Richard M. Karp, ‘Implicit hitting set problems and multi-genome
alignment’, in CPM, p. 151, (2010).

Mark H. Liffiton and Ammar Malik, ‘Enumerating infeasibility: Find-
ing multiple MUSes quickly’, in CPAIOR, pp. 160-175, (2013).

Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-
Silva, ‘Fast, flexible MUS enumeration’, Constraints, 21(2), 223-250,
(2016).

Mark H. Liffiton and Karem A. Sakallah, ‘Algorithms for comput-
ing minimal unsatisfiable subsets of constraints’, J. Autom. Reasoning,
40(1), 1-33, (2008).

Fangzhen Lin and Jia-Huai You, ‘Abduction in logic programming: A
new definition and an abductive procedure based on rewriting’, Artif.
Intell., 140(1/2), 175-205, (2002).

Florian Lonsing and Uwe Egly, ‘Increment. comput. min. unsat. cores
of QBFs via a clause group solver API’, in SAT, pp. 191-198, (2015).
Joao Marques-Silva, Josep Argelich, A. Sofia Graca, and Inés Lynce,
‘Boolean lexicographic optimization: algorithms & applications’,
AMAI 62(3-4), 317-343, (2011).

Joao Marques-Silva, Federico Heras, Mikolds Janota, Alessandro
Previti, and Anton Belov, ‘On computing min. cs’, in IJCAI (2013).
Erick Moreno-Centeno and Richard M. Karp, ‘The implicit hitting set
approach to solve combinatorial optimization problems with an appli-
cation to multigenome alignment’, OR, 61(2), 453—468, (2013).
Anténio Morgado, Federico Heras, Mark H. Liffiton, Jordi Planes, and
Joao Marques-Silva, ‘Iterative and core-guided maxsat solving: A sur-
vey and assessment’, Constraints, 18(4), 478-534, (2013).

Antonio Morgado, Alexey Ignatiev, and Joao Marques-Silva, ‘MSCG:
Robust core-guided MaxSAT solving’, JSAT, 9, 129-134, (2015).
Anténio Morgado, Mark H. Liffiton, and Joao Marques-Silva,
‘MaxSAT-based MCS enumeration’, in HVC, pp. 86-101, (2012).
Gustav Nordh and Bruno Zanuttini, “What makes propositional abduc-
tion tractable’, Artif. Intell., 172(10), 1245-1284, (2008).

Andreas Pfandler, Reinhard Pichler, and Stefan Woltran, ‘The complex-
ity of handling minimal solutions in logic-based abduction’, J. Log.
Comput., 25(3), 805-825, (2015).

Reinhard Pichler and Stefan Woltran, ‘The complexity of handling min-
imal solutions in logic-based abduction’, in ECAI, pp. 895-900, (2010).
David Poole, ‘Probabilistic horn abduction and bayesian networks’, Ar-
tif. Intell., 64(1), 81-129, (1993).

Alessandro Previti and Joao Marques-Silva, ‘Partial MUS enumera-
tion’, in AAAI (2013).

Oliver Ray and Katsumi Inoue, ‘A consequence finding approach for
full clausal abduction’, in Discovery Science, pp. 173-184, (2007).
James A Reggia, Barry T Perricone, Dana S Nau, and Yun Peng, ‘An-
swer justification in diagnostic expert systems-Part I: Abductive infer-
ence and its justification’, IEEE T. Bio. Eng., (4), 263-267, (1985).
Raymond Reiter, ‘A theory of diagnosis from first principles’, Artif.
Intell., 32(1), 57-95, (1987).

Paul Saikko, Jeremias Berg, and Matti Jarvisalo, ‘LMHS: A SAT-IP
hybrid MaxSAT solver’, in SAT, (2016).

Paul Saikko, Johannes P. Wallner, and Matti Jérvisalo, ‘Implicit hitting
set algorithms for reasoning beyond NP’, in KR, (2016).

Chiaki Sakama and Katsumi Inoue, ‘An abductive framework for com-
puting knowledge base updates’, TPLP, 3(6), 671-713, (2003).

Ken Satoh and Takeaki Uno, ‘Enumerating minimal explanations by
minimal hitting set computation’, in KSEM, pp. 354-365, (2006).
Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M.
Provan, ‘Exploring the duality in conflict-directed model-based diag-
nosis’, in AAAI (2012).

	Introduction
	Preliminaries
	Satisfiability
	Propositional Abduction
	Related Work

	Algorithms for Propositional Abduction
	QBF Model for Abduction
	Abduction with QMaxSAT
	Iterative QBF Solving
	Core-Guided QBF Solving
	Exploiting MaxHS

	Exploiting Implicit Hitting Sets
	Additional Optimizations
	Exponential Reductions in Oracle Calls

	Experimental Results
	Experimental Setup
	Abduction Problem Suite
	Oracle Calls in AbHS+

	Conclusions

