
Solving Multi-Agent Knapsack Problems
Using Incremental Approval Voting

Nawal Benabbou and Patrice Perny1

Abstract. In this paper, we study approval voting for multi-agent
knapsack problems under incomplete preference information. The
agents consider the same set of feasible knapsacks, implicitly de-
fined by a budget constraint, but they possibly diverge in the utilities
they attach to items. Individual utilities being difficult to assess pre-
cisely and to compare, we collect approval statements on knapsacks
from the agents with the aim of determining the optimal solutions by
approval voting. We first propose a search procedure based on mixed-
integer programming to explore the space of utilities compatible with
the known part of preferences in order to determine or approximate
the set of possible approval winners. Then, we propose an incremen-
tal procedure combining preference elicitation and search in order to
determine the set of approval winners without requiring the full elic-
itation of the agents’ preferences. Finally, the practical efficiency of
these procedures is illustrated by various numerical tests.

1 INTRODUCTION

Collective decision making on a combinatorial domain appears in
various contexts such as investment planning, resource allocation
or group configuration. Due to strategic aspects often surrounding
group decision-making and the possible divergences in individual
values, developing formal methods and tools for modeling prefer-
ences and solving multi-agent combinatorial optimization problems
is a critical issue. This has motivated a lot of work in the recent years,
in the field of computational social choice [9]. We focus here on the
multi-agent knapsack problem which consists of determining, given
a finite set of items, a subset of maximal utility under a budget con-
straint. This is a standard example of combinatorial problem with
many potential applications such as project selection, portfolio man-
agement or committee election, see e.g. [22, 16, 27, 31] for examples
of recent contributions in AI.

In combinatorial optimization problems, the agents cannot be ex-
pected to provide extensive preference models. Compact represen-
tations are needed to handle individual and collective preferences.
Usually, in knapsack problems, preference over subsets of items are
represented by additive utility functions. More precisely, the utility of
a subset of items for an agent is defined as the sum of the utilities of
its elements. Individual utilities are difficult to assess, especially on
a combinatorial domain. Although the elicitation task is simplified
when utilities are decomposable, elicitation methods based on sys-
tematic pairwise comparisons are practically unfeasible due to the
large amount of feasible subsets and their implicit definition. Hence
we are interested in designing incremental elicitation procedures, in

1 Sorbonne Universités, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4
Place Jussieu, 75005 Paris, France, email:name.surname@lip6.fr

which preference queries are selected iteratively, to be as informa-
tive as possible at every step, so as to progressively reduce the set of
admissible utility profiles until the set of optimal knapsacks can be
determined. This approach has been successfully used in AI for ad-
ditive utility elicitation on explicit sets [12, 33, 7], but also on com-
binatorial solution spaces [17, 3, 4].

Remark that, even if numerical representations of individual pref-
erences are accessible under the form of utility functions, they are
generally constructed independently for each agent. Hence, it is un-
likely that such representations allow the welfare of individuals to be
compared. In this context, the definition of a social utility as the sum
of individual utilities (utilitarism), for example, would be meaning-
less. Assuming that utilities of items are expressed on the same scale
or that utilities are normalized would not be sufficient to overcome
the problem, as shown by the following example:

Example 1. Consider a multi-agent knapsack problem involving
3 items and 2 agents with utilities: u1 = u1

1x1 + u1
2x2 + u1

3x3

and u2 = u2
1x1 + u2

2x2 + u2
3x3 to be maximized under the con-

straint x1 + x2 + x3 ≤ 2, where xi ∈ {0, 1}, i = 1, 2, 3, are
the decision variables and ui

j represents the utility of item j for
agent i. This problem could appear to elect a committee of size
2, given 3 candidates and 2 voters. Assume that individual prefer-
ence orders over committees have been elicited, and are equal to
{2, 3} �1 {1, 3} �1 {1, 2} and {1, 2} �2 {1, 3} �2 {2, 3} for
agents 1 and 2 respectively. One possible numerical representation
of these preferences (using the same utility scale for the two agents)
is given by: (u1

1, u
1
2, u

1
3) = (1, 2, 4) and (u2

1, u
2
2, u

2
3) = (4, 2, 1)

which leads to the following utilities for solutions of size 2:

{1, 2} {2, 3} {1, 3}
u1 3 6 5
u2 6 3 5

Note that these individual values are consistent with preference or-
ders �1 and �2. Now, if we are utilitarian, we could be tempted to
deduce that {1, 3} is the optimal knapsack because it maximizes the
total utility (5+5 = 10). However, such a conclusion would be mean-
ingless, it is only due to the particular numerical representation cho-
sen for individual utilities. Let us change the initial numerical scale
by replacing numbers (1, 2, 4) by (0, 3, 4). In this case we obtain
two new utility functions characterized by (u1

1, u
1
2, u

1
3) = (0, 3, 4)

and (u2
1, u

2
2, u

2
3) = (4, 3, 0) which leads to the following utilities for

solutions of size 2:

{1, 2} {2, 3} {1, 3}
u1 3 7 4
u2 7 3 4

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1318

1318

Note that these new individual values are still consistent with prefer-
ence orders �1 and �2. Yet, with the same utilitarian principle, we
should admit now that {1, 3} is the least preferred knapsack. There-
fore, choosing the solution maximizing the sum of individual utilities
would not be a good procedure. It would merely be a consequence of
arbitrary choices of numerical representations of preferences rather
than a robust conclusion derived from the observed preference pro-
file. Note that the problem persists if we normalize u1 and u2 utilities
to obtain value 1 for set {1, 2, 3}. Other examples could be found for
other aggregators (e.g. the minimum for an egalitarian aggregation).

In order to be able to compare the solutions of a knapsack problem
when individual utility scales are not commensurate and/or not rich
enough to allow the construction of a social utility, it seems natural to
resort to a voting rule. The main advantage of a voting rule is indeed
to perform an ordinal aggregation procedure. There is no need to
know how the welfare of individuals should be compared, we only
need to elicit individual preference orders. Some recent contributions
consider voting rules in a very different perspective, for example, by
investigating their ability to approximate the winner with respect to
the utilitarian criterion [29, 11, 6].

Preference elicitation can be performed incrementally so as to de-
termine the winner with a reduced amount of preference queries. Var-
ious incremental elicitation procedures have been proposed and stud-
ied in the context of single-winner elections with incomplete pref-
erences [18, 23, 14]. In this setting, several contributions study the
determination of possible and necessary winners from a partial pref-
erence profile, e.g., [20, 34, 21, 15], when the set of candidates is
defined explicitly.

In knapsack problems however, solutions are numerous and de-
fined implicitly, which is an additional challenge for the winner de-
termination. This explains the current interest for incremental voting
procedures on combinatorial domains and the purpose of this paper.
Our aim here is to propose an incremental voting rule in which in-
dividual preferences are progressively revealed until a collective de-
cision can be made, and to apply this procedure on the multi-agent
knapsack problem, taking advantage of the fact that individual pref-
erences are representable by additive utilities.

It is important to note that implementing a voting rule is not in
contradiction with the representation of individual values by utilities.
Individual utility functions are indeed seen as convenient representa-
tions of individual preference orders, and their use will significantly
contribute to relieve the preference elicitation burden. In the standard
knapsack problem, due to the linearity of preferences, the set of all
preference orders compatible with a given partial order can be char-
acterized by a convex polyhedron in the utility space. This makes it
possible to resort to mathematical programming to explore all pos-
sible completions of any partially known preference profile, but also
to look for possible winners, and to develop an efficient incremental
elicitation procedure for the determination of all winners, as it will
be seen later in the paper.

Implementing a voting rule for the knapsack problem with a par-
tially specified preference profile could be related to multi-winner
voting rules studied in the field of computational social choice. Most
approaches recently proposed for multi-winner elections assume that
individual preferences over items are sufficient to explain preference
over subsets because they derive satisfaction from their most pre-
ferred candidate (see e.g., [13, 26, 28, 30, 25, 22, 5, 16, 32], and see
[24] for incremental elicitation of voter preferences). This assump-
tion is well-suited to the election of representatives. However, for any
agent, it may happen that the selection of the most preferred candi-

date is not sufficient to counterbalance the presence of multiple least
preferred candidates in the elected committee. This limitation also
applies to the selection of items in multi-agent knapsack problems.

In this paper, we focus on approval voting because this is a simple
rule that can be decisive even if only a part of the preference profile
is known. Approval voting is the voting method which allows each
agent to approve of (vote for) as many solutions as she wishes, and
the solution with the most approval votes is the winner of the election
[8]. In approval voting, we only need to learn, for every agent, which
are the approved or disapproved subsets, so as to elect a solution
receiving the maximal support. We therefore investigate incremental
procedures for approval voting and their application to the knapsack
problem. This work differs from multi-winner approval voting [19,
2, 1] which only collects approval statements over items instead of
feasible subsets of items.

The paper is organized as follows: we introduce the multi-agent
knapsack problem in Section 2 and study computational issues for
this problem. In Section 3, we propose a search procedure for the
determination of the possible winners. Then, an incremental voting
procedure to determine the set of approval winners is proposed in
Section 4. Finally, numerical tests are provided in Section 5.

2 THE GENERAL FRAMEWORK

We consider a collective decision problem where a set of agents
N = {1, . . . , n} has to jointly select a set of items (e.g., candidates,
projects, objects) in a set P = {1, . . . , p}. Any subset of items can
be represented by a solution vector x = (x1, . . . , xp) ∈ {0, 1}p
where xj = 1 if item j is in the subset and xj = 0 otherwise.
Some linear constraints on variables xj , j ∈ P , are imposed to de-
fine the admissible solution vectors. For instance, one may want to
impose cardinality constraints to control the size of the subset and/or
to ensure gender parity in the elected committee; there may also exist
budget constraints (e.g., when the decision is subject to a maximum
total cost) or capacity constraints as in knapsack problems, making
some subsets of items unfeasible. For the simplicity of the presenta-
tion, we will only consider the standard knapsack constraint of the
form

∑
j∈P wjxj ≤ W where wj is the (positive) weight of item

j and W is a positive value representing the maximum total weight;
the set of feasible solutions will be denoted by X in the sequel. Our
purpose and the algorithms proposed in the paper also apply when
additional (linear) feasibility constraints are considered.

We assume that the preferences of agent i, i ∈ N , can be repre-
sented by a function ui : {0, 1}p → R measuring the overall utility
of any solution. Hence, given two solutions x, y representing two
subsets of items, x is at least as good as y for agent i ∈ N when-
ever ui(x) ≥ ui(y). Here ui(x) =

∑
j∈P ui

jxj , where ui
j ∈ R

represents the utility of item j for agent i. The profile (u1, . . . , un)
of utility functions will be denoted by u. Note also that ui, as a nu-
merical representation of a preference order, is generally not unique
and any transform preserving inequalities of type ui(x) ≥ ui(y) for
all solutions x, y could be considered as well.

Nevertheless, numerical representations of individual preferences
by utility functions ui, i ∈ N , can be used in approval voting. Un-
der the assumption that individual preferences are represented by
utility functions ui, i ∈ N , a solution x is approved by agent i
if and only if ui(x) ≥ δi where δi ∈ R is an approval (or util-
ity) threshold that separates approved and non-approved solutions.
The profile of thresholds (δ1, . . . , δn) will be denoted by δ in the
sequel. The pair (u, δ) characterizes approved and non-approved
solutions for all agents and enables the computation of approval

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting 1319

scores for any feasible solution x. This approval score is given by
f(x, u, δ) = |{i ∈ N, ui(x) ≥ δi}|, and the winner of the elec-
tion is a feasible solution maximizing this score (various tie-breaking
rules can be considered). In this paper, we consider the approval
multi-agent knapsack problem defined as follows:

APPROVAL MULTI-AGENT KNAPSACK PROBLEM (AMKP)
Input: A finite set P of items; a positive integer W ; for each j∈P ,
a weight wj ; a finite set N of agents; a positive integer K; for each
i ∈ N , an approval threshold δi, for each j ∈ P , a utility value ui

j .
Question: Is there a subset X ⊆ P such that

∑
j∈X wj ≤ W and

|{i ∈ N,
∑

j∈X ui
j ≥ δi}| ≥ K?

Proposition 1. AMKP is NP-complete.

Proof. The proof is quite straightforward due to a simple reduction
from the knapsack decision problem. Testing the existence of an ad-
missible knapsack having a utility greater or equal to a given value
K′ is indeed equivalent to solving an instance of the AMKP prob-
lem involving a single agent with the same utilities over items, an
approval threshold equal to K′ and with K = 1.

There are obvious tractable cases when W is a constant and con-
sidering integer weights, for example, committee election problems
(wj = 1 for all j ∈ P) such that the committee size is a constant
(W) specified explicitly. Indeed, we have:

Proposition 2. When W is constant and wj ∈ N\{0} for all j ∈ P ,
AMKP is in P .

Proof. Since wj is a non-zero positive integer for all j ∈ P , then
we know that all feasible knapsacks necessarily include at most W
items. The number of knapsacks of size at most W is equal to:

W∑
k=0

(
p

k

)
=

W∑
k=0

p!

k!(p− k)!

This number is obviously polynomial in p when W is a constant.
Therefore, the result can be easily obtained by considering the fol-
lowing naive procedure: for all sets X ⊆ P of size at most W , we
test whether

∑
j∈X wj ≤ W (feasibility condition), and if the test

succeeds, we compute |{i ∈ N,
∑

j∈X ui
j ≥ δi}| (approval score).

This procedure is polynomial in p and n when W is a constant.

Proposition 1 shows that finding the knapsack maximizing the
approval score is NP-hard in the general case. Moreover, well-
known pseudo-polynomial solution methods proposed for the stan-
dard knapsack problem (based on dynamic programming) are not
easily transposable to the approval winner determination problem, as
shown in Example 2.

Example 2. Consider a collective decision problem where 2 agents
have to choose 2 representatives from a pool of 3 candidates, i.e.
N = {1, 2} and P = {1, 2, 3}. Assume that utilities and approval
thresholds are the following:

u1
1 u1

2 u1
3 δ1 u2

1 u2
2 u2

3 δ2

0.5 0.3 0.2 0.5 0.1 0.5 0.3 0.7

In this case, we have f({1}, u, δ) = 1 > 0 = f({2}, u, δ) but
f({1, 3}, u, δ) = 1 < 2 = f({2, 3}, u, δ). We observe a preference
reversal because {1} is preferred to {2} whereas {2, 3} is preferred
to {1, 3}. Thus, preferences induced by the approval score are not
additive with respect to union with disjoint items. This precludes to
construct the optimal knapsack from optimal subsets of items.

Nevertheless, the winner can be obtained by solving the following
mixed integer program (MIP1):

max
∑

i∈N ai

s.t.

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∑
j∈P

ui
jxj − δi ≥ M(ai − 1), ∀i ∈ N

∑
j∈P

wjxj ≤ W

xj ∈ {0, 1}, ai ∈ {0, 1}, ∀i ∈ N, ∀j ∈ P

In this program, M is a constant greater than max{δi−ui(x), i∈N}
that allows the introduction of boolean variables ai which will be
equal to 1 if and only if agent i approves solution x. Moreover, the
second Equation is the knapsack constraint.

However, in practice, the full elicitation of individual utilities and
approval thresholds is too expensive. Usually, we can observe simple
preference statements of type “I prefer solution x to solution y”, and
in the case of approval voting, “I approve solution x”, or “I don’t ap-
prove solution y”. These preference statements enable to restrict the
sets of possible utility functions but generally do not allow to derive
a precise utility function for each agent (see Example 1). Instead,
uncertainty sets representing all possible utility functions compatible
with the preference information obtained so far must be considered.
The same observation applies to approval thresholds. Under utility
uncertainty, we study now the determination of possible winners.

3 POSSIBLE WINNERS DETERMINATION

In this section, we propose an algorithm that enables to compute the
set of possible approval winners given some partial knowledge of
the agents’ preferences. More precisely, the input of the algorithm
consists of three sets of preference information for each i∈N : a set
Ai (resp. Āi) of solutions that are known to be approved (resp. not
approved) by agent i, and a set Pi of pairs (y, z) such that solution y
is known to be preferred to solution z by agent i. The elements of Pi

are not explicit approval statements, but they can be used to derive
new positive or negative approval statements from those included in
Ai and Āi.

For each agent i ∈N , let U i (resp. Δi) denotes the set of utility
functions (resp. approval thresholds) compatible with the available
preference statements Ai, Āi and Pi. Formally, (U i,Δi) is the set
of all pairs (ui, δi) such that:

∀y∈Ai, ui(y)≥δi; ∀y∈Āi, ui(y)<δi; ∀(y, z)∈Pi, ui(y)≥ui(z)

where ui is of the form ui(x) =
∑

j∈P ui
jxj and δi ∈ R.

Let U (resp. Δ) be the cartesian product U1 × . . . × Un (resp.
Δ1 × . . . × Δn). Given such uncertainty sets, the set of possible
approval winners is defined as follows:

Definition 1. The set PW (X , U,Δ) of possible approval winners
is the set of all solutions x∈X that maximize the approval score for
some utility profile u∈U and some approval threshold vector δ∈Δ.
More formally: PW (X , U,Δ) =

⋃
u∈U,δ∈Δ

argmax
x∈X

f(x, u, δ).

Recall that Example 2 shows that standard dynamic programming
procedures cannot be used to determine the approval winners when
utilities and approval thresholds are known. This difficulty remains
when utilities and/or approval thresholds are partially known.

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting1320

The branch and bound approach is the most commonly used
tool for solving NP-hard optimization problems. We propose here
a branch and bound procedure to compute the set PW(X , U,Δ),
where nodes of the search tree represent partial instances of the
decision variable vector x = (x1, . . . , xp). More precisely, each
node η of the tree is characterized by a pair (P 0

η , P
1
η) where

P k
η = {j ∈ P, xj = k}, k = 0, 1. Let Pη = P \ (P 0

η ∪ P 1
η) denote

the set of all undecided variables at node η. Thus, each node η is
associated with a region of the solution space as follows: solution
x = (x1, . . . , xp) is attached to node η if and only if xj = k for all
j ∈ P k

η , k = 0, 1. The set of feasible solutions attached to node η is
denoted by Sη hereafter. The main features of our search procedure
are the following:

Initialization. Using a heuristic, a branch and bound procedure de-
termines some feasible solutions before performing the search so as
to define an initial bound on candidate solutions.

In order to obtain such a bounding set for the knapsack problem,
denoted by S0 hereafter, we propose to initially ask the agents to
rank all the items by preference order. Let ri(j) denote the rank of
item j in the preference order provided by agent i. We can define the
score αi(j) = p−ri(j)

wj
for each agent i ∈ N and each item j ∈ P

representing the tradeoff achieved between preference and weight.
Hence, for each agent i, a “good” solution to the knapsack problem
can be obtained by a greedy algorithm selecting items one by one,
by decreasing order with respect to scoring function αi, skipping
elements whose weight is greater than the residual weight capacity.
The resulting solution is inserted in S0 for initialization because it
represents a good solution from the point of view of agent i. This
process is repeated for all agents i ∈ N .

Moreover, a similar procedure is used with the average scoring
function defined by α(j) = 1/n

∑n
i=1 α

i(j), to complete S0 with a
solution which is likely to be more consensual. This solution will be
denoted by s̄ in the sequel.

Evaluation and pruning. Let S be the set of solutions found so far
(initially S = S0) and O be the current set of nodes to be explored.
Our pruning rule is based on the notion of setwise max regret defined
as follows: the setwise max regret SR(A,B,U,Δ) of a set A ⊆ X
with respect to a set B ⊆ X is the maximal feasible approval score
difference between the best solution in B and the best solution in A.
More formally:

SR(A,B,U,Δ) = max
u∈U,δ∈Δ

{
max
b∈B

f(b, u, δ)−max
a∈A

f(a, u, δ)
}

If SR(A,B,U,Δ) < 0, then we know that B does not contain
any possible approval winner; it indeed induces that, for all solu-
tions b ∈ B, for all u ∈ U and for all δ ∈ Δ, there exists a ∈ A
such that f(b, u, δ) < f(a, u, δ). Therefore, we propose to prune a
node η ∈ O if the setwise max regret SR(S, Sη, U,Δ) of set S with
respect to set Sη is strictly negative. Note that SR(S, Sη, U,Δ) =
maxx∈Sη maxu∈U,δ∈Δ mins∈S{f(x, u, δ)−f(s, u, δ)}. This al-
ternative formulation of setwise max regrets enables to compute
SR(S, Sη, U,Δ) as the optimal value of the mixed-integer quadratic
program (denoted by MIQPη) given in Figure 1. In this program,
ξ > 0 is an arbitrary small value enabling to model strict inequal-
ities. Equations (2e-2g) enable to restrict utility functions and ap-
proval thresholds to those compatible with the available preference
information. Then, since the preferences of agent i, for any i∈N , are
invariant by positive affine transformations jointly applied to func-
tion ui and threshold δi, we can assume without loss of generality

max t

s.t.

⎧⎪⎪⎨
⎪⎪⎩

t ≤
∑
i∈N

ai −
∑
i∈N

ai
s, ∀s ∈ S

∑
j∈P1

η

ui
j+

∑
j∈Pη

ui
jxj − δi ≥ M(ai − 1), ∀i∈N

∑
j∈P

ui
jsj − δi + ξ ≤ Mai

s, ∀s∈S, ∀i∈N

∑
j∈Pη

wjxj +
∑
j∈P1

η

wj ≤ W

∑
j∈P

ui
j = M, ∀i ∈ N

∑
j∈P

ui
jyj ≥ δi, ∀i ∈ N, ∀y ∈ Ai

∑
j∈P

ui
jyj ≤ δi − ξ, ∀i ∈ N, ∀y ∈ Āi

∑
j∈P

ui
jyj ≥

∑
j∈P

ui
jzj , ∀i ∈ N, ∀(y, z) ∈ Pi

xj ∈{0, 1}, ∀i∈N, ∀j∈Pη

ai∈{0, 1}, ai
s∈{0, 1}, ∀i∈N, ∀s∈S

ui
j ≥ 0, δi ≥ 0, ∀i∈N, ∀j∈P

(2a)

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)

Figure 1. MIQPη

that utilities are positive and bounded above by a constant M > 0
(see Equation (2d)). Moreover, ai is a boolean variable that will be
equal to 1 iff agent i approves solution x, and ai

s is a boolean variable
that will be equal to 1 iff agent i approves solution s, s ∈ S. Finally,
Equation (2a) introduces variable t∈R representing the smallest ap-
proval score difference between solution x and a solution s, s ∈ S.

Note that constraints given in Equation (2b) include quadratic
terms of type ui

jxj , j ∈ Pη , since ui
j are also variables of the op-

timization problem. In order to linearize theses constraints, we intro-
duce positive variables vij , i ∈ N, j ∈ Pη, representing the product
ui
jxj and Equation (2b) is replaced by the following constraints:⎧⎪⎪⎨

⎪⎪⎩

∑
j∈P1

η
ui
j +

∑
j∈Pη

vij − δi ≥ M(ai − 1), ∀i∈N

vij ≤ ui
j , ∀i ∈ N, ∀j ∈ Pη

vij ≤ Mxj , ∀i ∈ N, ∀j ∈ Pη

vij − ui
j ≥ M(xj − 1), ∀i ∈ N, ∀j ∈ Pη

The resulting mixed-integer linear program will be denoted by MIPη .

Branching. Setwise max regrets SR(S, Sη, U,Δ) available for all
nodes η ∈ O are also used to select the next node to be explored.
More precisely, we select here a node η ∈ O which maximizes
SR(S, Sη, U,Δ). This branching strategy aims to maximally
improve the current solution set S. The optimal solution of MIPη

indeed maximizes the gap f(x, u, δ) − maxs∈S f(s, u, δ) over all
u ∈ U , all δ ∈ Δ and all x ∈ ⋃

η′∈O Sη′ . Then, Sη is split in two by
considering possible instantiations of a variable xj , j ∈ Pη chosen
among the variables equal to 1 in the optimal solution of MIPη .

Filtering. As we will see in Proposition 3, the proposed Branch and
Bound outputs, in general, a superset of the set of possible approval

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting 1321

winners. To remove undesirable elements, we use a final filtering
process, named FILTER hereafter, which iteratively deletes all
solutions s′ ∈ S such that SR(S\{s′}, {s′}, U,Δ) < 0, using a
simplified version of MIPη .

The algorithm implementing these principles is referred to AS
(Approval-based Search) in the sequel and it is summarized by Al-
gorithm 1.

Algorithm 1: Approval-based Search
Input: S0: initial solutions; U,Δ: uncertainty sets
Output: PW(X , U,Δ): the set of possible approval winners

1 S ← S0

2 η ← [∅, ∅]
3 O ← {η}
4 while O �= ∅ do

5 Select a node η in argmaxη′∈O SR(S, Sη′ , U,Δ)
6 if Pη = ∅ then

7 S ← S ∪ Sη

8 else

9 Select j∈Pη s.t. xj =1 in the optimal solution of MIPη

10 Generate η0=[P 0
η ∪ {j}, P 1

η] and η1=[P 0
η , P

1
η ∪ {j}]

11 forall η′ ∈ {η0, η1} do

12 if Sη′ �= ∅ and SR(S, Sη′ , U,Δ) ≥ 0 then

13 O ← O ∪ {η′}
14 end

15 end

16 end

17 O ← O \ {η}
18 end

19 S ← FILTER(S)
20 return S

This algorithm is justified by the following proposition:

Proposition 3. AS returns the set PW(X , U,Δ).

Proof. Since, the pruning rule only prunes nodes including no possi-
ble approval winner (by definition of setwise max regrets), we know
that S is a superset of PW(X , U,Δ) at the end of the while loop.
Let x be an element inserted in S such that x �∈ PW(X , U,Δ), if it
exists. Since x is not a possible winner, we know that, for all u ∈ U
and for all δ ∈ δ, there exists x′ ∈ PW(X , U,Δ) ⊆ S such that
f(x, u, δ) < f(x′, u, δ). Therefore, x is necessarily removed from
S during the filtering (by definition of the filtering process).

Depending on the uncertainty sets (U and Δ) implicitly defined
by the available preference information, possible approval winners
might be too numerous to be enumerated efficiently. In order to save
time, one may be interested in approximating the set of possible
approval winners with performance guarantees. We propose below
a variant of Algorithm AS for approximating possible winners with
some guarantees on the quality of the output.

Approximation. Given a constant ε > 0, a set X ⊆ X is an (1+ε)-
approximation of the set of possible winners if, for all x ∈ X , all
u ∈ U and all δ ∈ Δ, there exists x′ ∈ X such that f(x, u, δ) ≤
(1 + ε)f(x′, u, δ). In order to compute an (1 + ε)-approximation of
the set of possible winners, we introduce an approximate version of
the setwise max regret. The setwise max ε-regret SRε(A,B,U,Δ)
of a set A ⊆ X with respect to a set B ⊆ X is defined as follows:

SRε(A,B,U,Δ)= max
u∈U,δ∈Δ

{
max
b∈B

f(b, u, δ)−max
a∈A

(1+ε)f(a, u, δ)
}

If SRε(A,B,U,Δ) ≤ 0, then we know that, for all b ∈ B, all
u ∈ U and all δ ∈ Δ, there exists a ∈ A such that f(b, u, δ) ≤
(1 + ε)f(a, u, δ). Therefore, we propose a variant of AS where a
node η ∈ O is pruned if SRε(S, Sη, U,Δ) ≤ 0. This pruning rule
is sharper than the previous one and is more likely to prune nodes in
the search tree. The implementation is simple within Algorithm AS:
computations of SR values must simply be replaced by computations
of SRε values. Moreover, the value SRε is obtained using MIPη in
which Equation (2a) is simply replaced by:

t ≤
∑
i∈N

ai − (1 + ε)
∑
i∈N

ai
s, ∀s ∈ S

The resulting algorithm is denoted by ASε in the sequel. Then, the
following proposition holds.

Proposition 4. ASε returns an (1 + ε)-approximation of the set
PW(X , U,Δ).

Proof. Let x be a solution that does not belong to S at the end of
the search procedure. Let u ∈ U and δ ∈ Δ. We want to prove that
f(x, u, δ) ≤ (1 + ε)f(s, u, δ) for some s ∈ S.

If x was inserted in S at some step, then x has necessarily been
deleted during the filtering of S. In that case, by definition of the
filtering, we know that there exists s ∈ S such that f(x, u, δ) ≤
f(s, u, δ); hence, f(x, u, δ) ≤ f(s, u, δ) ≤ (1 + ε)f(s, u, δ).

Assume now that x was pruned at some step without ever be-
longing to S. In that case, we know that, at this step, there exists
s ∈ S such that f(x, u, δ) ≤ (1 + ε)f(s, u, δ). If solution s be-
longs to S at the end of the procedure, then we can directly infer
the result. If solution s is deleted during the filtering, then we know
that there exists s′ ∈ S such that f(s, u, δ) ≤ f(s′, u, δ). Therefore,
f(x, u, δ) ≤ (1+ε)f(s, u, δ) ≤ (1+ε)f(s′, u, δ) which completes
the proof (note that there is no chaining of errors).

4 ELICITATION FOR WINNER
DETERMINATION

In Section 3, we have introduced a procedure for the determination
of possible approval winners. It can be used in situations where a
significant part of approval judgements is available. However, with
incomplete preference information, the number of possible winners
remains often very large, due to the combinatorial nature of the knap-
sack problem. Actually, the notion of possible winner (even its ap-
proximate version) is not sufficiently discriminating to support effi-
ciently a collective decision making process. A more discriminating
concept is the notion of necessary winner defined as follows:

Definition 2. The set NW (X , U,Δ) of necessary approval winners
is the set of all solutions x ∈ X that maximize the approval score for
all utility profiles u ∈ U and all approval threshold vectors δ ∈ Δ.
More formally : NW (X , U,Δ) =

⋂
u∈U,δ∈Δ

argmax
x∈X

f(x, u, δ).

However, given the uncertainty sets U and Δ, it might be the case
that no necessary winner exists. In this situation, we need to collect
more preference information so as to be able to make a collective
decision. For this reason, we focus now on preference elicitation for
the approval winners determination.

One may consider a two stage procedure that consists first in elic-
iting the entire set of approval judgements and then in applying the

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting1322

approval voting method. However, the exhaustive elicitation, prior to
preference aggregation, is unfeasible due to the combinatorial nature
of the problem. Collecting all approval statements would indeed re-
quire O(n2p) queries, for n agents and p items. We propose instead
to combine preference elicitation and search so as to quickly focus
the search on the relevant subsets of items and to concentrate the elic-
itation burden on the useful part of preferences. Our proposal is to
collect approval statements from individuals during the search so as
to progressively reduce the uncertainty attached to approval scores
until determining the actual winners, i.e. the solutions maximizing
the approval score.

Note that the number of possible winners reduces with the uncer-
tainty about the agents’ preferences. More precisely, for any U ′ ⊆ U
and any Δ′ ⊆ Δ, we have PW(X , U ′,Δ′) ⊆ PW(X , U,Δ). More-
over, if U reduces to a single utility profile and Δ to a single approval
threshold vector, then the possible winners become the actual win-
ners of the election. More generally, if we consider an incremental
elicitation procedure that iteratively collects preference information
so as to progressively reduce sets U and Δ, we will necessarily reach
a point where all possible winners are necessary winners. This will
generally happen long before reducing U and Δ to singletons. At
that point, we know that the possible winners are the actual winners.

Therefore, we propose now an incremental elicitation procedure
progressively reducing uncertainty sets to U ′ and Δ′ such that
PW(X , U ′,Δ′) = NW(X , U ′,Δ′). Our incremental elicitation al-
gorithm consists in inserting preference queries in Algorithm AS
(see the previous section) so as to discriminate between the current
best solutions (those that were stored in S). In practice, S is now re-
stricted to the most approved solutions found so far. Within this set,
we can arbitrarily select a representant, named the incumbent. Ini-
tially, the incumbent may be any feasible solution to the knapsack
problem (e.g., solution s̄, see the initialization in Section 3). Each
time a new solution (or a challenger) is found (line 6, Algorithm 1),
it is now compared to the incumbent in terms of approval scores.

Note that, given the current uncertainty sets U and Δ, a solution
x ∈ X is necessarily approved by an agent i, i ∈ N, if and only
if ui(xj) ≥ δi holds for all u ∈ U and all δ ∈ Δ. This can be
checked by testing whether the optimum of the following linear pro-
gram is positive: min

∑
j∈P ui

jxj − δi subject to Equations (2d-2g)
and δi ≥ 0, ui

j ≥ 0 ∀j ∈ P . Similarly, testing whether a solution
x ∈ X is necessarily disapproved by an agent or not can be per-
formed using linear programming. Thus, each time a new solution is
found, we can efficiently determine the agents - if they exist - that
necessarily approve/disapprove it. Then, a natural query generation
strategy, denoted by σ0 hereafter, consists in questioning all the other
agents to know whether they approve this solution or not. The chal-
lenger will be inserted in S if it has the same approval score than
the incumbent. If the challenger is strictly better than the incumbent,
then S is reinitialized to include only the challenger. This strategy
provides an incremental search algorithm, named Algorithm IAS (In-
cremental Approval-based Search) in the sequel, that determines the
set of approval winners, as shown by the following proposition:

Proposition 5. IAS returns the exact set of approval winners.

Proof. To prove this result, it is sufficient to prove the following: for
any initial uncertainty sets U and Δ, Algorithm IAS terminates with
uncertainty sets U ′ ⊆ U and Δ′ ⊆ Δ such that PW(X , U ′,Δ′) =
NW(X , U ′,Δ′). Let s ∈ S be any solution returned by IAS. For
all x ∈ X , we want to prove that we have f(s, u, δ) ≥ f(x, u, δ)
for all u ∈ U ′ and all δ ∈ Δ′ at the end of the search procedure.
First, whenever a node η is pruned at some step k of IAS using the

current incumbent sk, we know that, for all x ∈ Sη , f(x, u, δ) ≤
f(sk, u, δ) for all u ∈ Uk and all δ ∈ Δk where Uk and Δk are
the current uncertainty sets at step k. Since U ′ ⊆ Uk and Δ′ ⊆ Δk,
we have f(x, u, δ) ≤ f(sk, u, δ) for all u ∈ U ′ and all δ ∈ Δ′.
Then, according to strategy σ0, solution sk is such that f(sk, u, δ) ≤
f(s, u, δ) for all u ∈ U ′ and all δ ∈ Δ′. The result is obtained by
transitivity.

Algorithm IAS can be interrupted at any time to obtain the best
solution found so far (the incumbent). Assume that IAS is interrupted
at some step k, and let sk denote the incumbent at the end of this
step. It is worth noting that the quality of sk can be measured by
considering the following notion of maximum regret:

MR(sk,X , Uk,Δk) = max
x∈X

max
u∈Uk

max
δ∈Δk

{f(x, u, δ)− f(sk, u, δ)}

where Uk,Δk and Ok respectively denote U , Δ and O at the end
of step k. This maximum regret is indeed an upper bound on the
gap to optimality: it represents the worst-case regret of choosing the
incumbent instead of any other solution in terms of approval scores.
This regret can be easily obtained using the available setwise max
regrets SR({sk}, Sη, Uk,Δk) computed to evaluate nodes η ∈ Ok

during the search. More precisely, the following proposition holds:

Proposition 6. At any iteration step k of IAS, we have:

MR(sk,X , Uk,Δk) = max
η∈Ok

SR({sk}, Sη, Uk,Δk)

Proof. We want to prove that maxx∈X R(sk, x, Uk,Δk) is equal
to maxη∈Ok SR({sk}, Sη, Uk,Δk), where R(sk, x, Uk,Δk) =
maxu∈Uk maxδ∈Δk{f(x, u, δ) − f(sk, u, δ)}. Let Y be the set of
solutions defined by Y = {x ∈ Sη, η ∈ Ok}. Note that Y is not
empty since Algorithm IAS has been interrupted. Then, by definition
of setwise max regrets, we have:

SR({sk}, Sη, Uk,Δk)=max
u∈Uk

max
δ∈Δk

max
x∈Sη

{f(x, u, δ)−f(sk, u, δ)}

=max
x∈Sη

max
u∈Uk

max
δ∈Δk

{f(x, u, δ)−f(sk, u, δ)}

=max
x∈Sη

R(sk, x, Uk,Δk)

for any η ∈ Ok. Therefore, maxη∈Ok SR({sk}, Sη, Uk,Δk) =
maxx∈Y R(sk, x, Uk,Δk). Moreover, by definition of the pruning
rule, we know that SR({sk}, Sη, Uk,Δk) ≥ 0 for any η ∈ Ok, and
so maxx∈Y R(sk, x, Uk,Δk) ≥ 0. As a consequence, to establish
the result, it is sufficient to prove that R(sk, x, Uk,Δk) ≤ 0 for any
solution x ∈ X\Y . Three cases may occur:

• For x = sk, we can easily infer R(sk, x, Uk,Δk) = 0.
• For x ∈ S, since sk is the incumbent, we know that f(x, u, δ)≤

f(sk, u, δ) for all u ∈ Uk and δ ∈ Δk (by definition of strategy
σ0). Therefore, we can infer R(sk, x, Uk,Δk)≤0.

• For x ∈ Sη , where η is a node that has been pruned during
the search, we know that SR({sk}, Sη, Uk,Δk) < 0 (by defi-
nition of the pruning rule). Then, since we have just proved that
SR({sk}, Sη, Uk,Δk) = maxx′∈Sη R(sk, x

′, Uk,Δk), we nec-
essarily have R(sk, x, Uk,Δk) < 0.

Hence maxx∈X R(sk, x, Uk,Δk) = maxx∈Y R(sk, x, Uk,Δk).
This establishes the result.

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting 1323

5 NUMERICAL TESTS

Since finding the knapsack that maximizes the approval score is NP-
hard, even when all functions ui and thresholds δi are known (see
Proposition 1), a Branch and Bound for this problem may obviously
have bad running time (in the worst case, all solutions may be enu-
merated). Usually, the efficiency of a Branch and Bound method is
evaluated in an empirical way, analysing instances with a large num-
ber of solutions. It is also evaluated by the quality of the returned
solutions. We show below the practical efficiency of our algorithms.

5.1 Approval-based Search (AS)

In this subsection, we report numerical tests aiming at evaluating the
computation times (given in seconds) of possible winners calcula-
tion using AS and ASε (linear optimizations are performed using the
Gurobi solver). In these experiments, instances of the multi-agent
knapsack problem with p = 12 are generated as follows: weights
wj , j ∈ P, are uniformly drawn in {1, . . . , 100}. Then, capacity W
is set to d × ∑

j∈P wj where d = 0.3, 0.4 and 0.5 so as to vary
the number of solutions: the number of maximal (w.r.t. set inclusion)
feasible subsets is approximatively equal to 500, 1000 and 2000 re-
spectively. Moreover, to evaluate the impact of the uncertainty sets,
we randomly generate q = 10, 20 preference statements per agent
before running the algorithms. The computation times obtained by
averaging over 50 runs for instances with n = 20 are reported in
Table 1. We also report #S the average number of possible winners.

d = 0.3 d = 0.4 d = 0.5

method q time #S time #S time #S

AS 10 26.6 19.8 71.8 29.8 614.4 111.4
AS 20 25.2 17.4 55.7 23.9 442.3 90.3

AS0.1 10 1.1 1.9 2.7 3.8 13.9 8.3
AS0.1 20 1.0 1.6 2.3 2.7 9.4 5.0

Table 1. Computations of possible winners.

As expected, we can see that computation times increase with
the size of the problem, and decrease as the number of available
preference statements increase. Moreover, we observe that AS0.1 is
drastically faster than AS. More precisely, AS0.1 determines an 1.1-
approximation of possible winners in a few seconds while AS needs
a few minutes on average.

5.2 Incremental Approval-based Search (IAS)

In this subsection, we report various numerical experiments aiming at
evaluating the performance of IAS (presented in Section 4). In these
experiments, only the preference ranking over single items is initially
available for each agent. Then, answers to approval queries are sim-
ulated using approval thresholds and utility functions randomly gen-
erated with negative correlations so as to obtain difficult instances.

The first series of tests aims to evaluate the performance of its
pruning rule in terms of average number of explored nodes (which
corresponds to the average size of the search tree). For a basic com-
parison, we also report the number of nodes explored by exhaustive
enumeration (this basic procedure is named S0 hereafter). Due to the
possibility of collecting preference information during the search,
algorithm IAS is significantly faster than AS and can solve much

larger instances. For example, we report here the results obtained for
p = 12, 15, 18 and 20 (with d = 0.4), which approximatively repre-
sents 1000, 8500, 60000 and 250000 maximal (w.r.t. set inclusion)
feasible solutions respectively. Results obtained by averaging over
30 runs are reported in Table 2 for problems involving 30 agents.

p S0 IAS

12 3024 109
15 21468 238
18 152415 289
20 647834 440

Table 2. Number of explored nodes.

Table 2 shows that the average number of nodes explored by IAS
remains quite low when increasing the number of solutions, whereas
it drastically increases with an exhaustive enumeration. For example,
our regret-based pruning rule reduces the average size of the search
tree by a factor of 30 for instances with p = 12 (1000 feasible so-
lutions), while reducing this number by a factor of 1600 for p = 20
(250000 feasible solutions).

The second series of experiments aims to evaluate the performance
of IAS in terms of computation times (given in seconds) and average
number of queries per agent (denoted by #Q hereafter). Results ob-
tained by averaging over 50 runs are reported in Table 3 for instances
involving 10, 20 and 30 agents.

p = 15 p = 18 p = 20

n time #Q time #Q time #Q

10 9.2 10.5 29.8 12.2 48.7 14.3
20 17.7 9.8 42.2 10.1 162.1 14.9
30 29.7 10.9 154.0 11.8 225.7 13.1

Table 3. Computations of necessary winners.

In Table 3, we can see that IAS is very efficient both in terms of
number of queries per agent and computation times; for instance, for
problems with 10 agents and 20 items (250000 feasible solutions),
IAS determines the set of optimal knapsacks in less than 50 sec-
onds with less than 15 queries per agent on average, whereas the full
elicitation of approval statements would require 250000 queries per
agent. Moreover, although the number of feasible solutions increases
exponentially with p the number of items, we can see that the average
number of queries increases very slowly. This shows that the compact
numerical representation of individual preferences is well exploited
by IAS during the resolution. Finally, when comparing Tables 1 and
3, we observe that combining elicitation and search is more efficient
than asking preference queries prior to the search; for example, with
20 agents, IAS determines the approval winners with no more than
15 queries per agent for problems with 250000 solutions, whereas
asking 20 queries per agent prior to the search leaves us with 90 pos-
sible winners for smaller problems (2000 solutions) while doubling
computation times. This shows that elicitation driven by resolution
enables us to save both computation times and preference queries
needed to determine the optimum.

We focus now on the evaluation of the branching strategy of IAS.
The branching strategy is of crucial importance for the efficiency of

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting1324

the query generation strategy proposed in Section 4. This elicitation
strategy indeed consists in asking agents whether they approve or not
some solutions found during the search; these solutions are obviously
dependent on the branching strategy. For comparison, we also con-
sider the interactive branch and bound procedure (named Random
hereafter) that differs from IAS only on the branching strategy as
follows: the next node to be explored and the next variable to be in-
stantiated are both selected at random. For both branching strategies,
we compute the maximum regret (MR) attached to the incumbent
(using Proposition 6) each time an agent answers an approval query
during the resolution. Recall that this regret gives an upper bound
on the regret of choosing the incumbent instead of any other solu-
tion in terms of approval scores. Whenever this value equals zero,
the incumbent is necessarily an approval winner. Regrets are here
expressed on a normalized scale assigning value 1 to the initial maxi-
mum regret (computed before collecting any preference information)
and value 0 when the maximum regret is 0. Figure 2 shows the results
obtained by averaging over 30 runs.

Figure 2. Maximum regret attached to the incumbent with respect to the
total number of queries (p = 12, d = 0.4, n = 30).

In Figure 2, we can see that the maximum regret reduces much
more quickly with IAS than with Random. For instance, after 240
queries (i.e. 8 queries per agent) on average, the regret of choosing
the incumbent instead of any true approval winner is under 10% of
the initial regret, whereas it remains above 65% with the random
branching strategy. Hence, the elicitation strategy seems to be much
more informative using our regret-based branching strategy instead
of the random branching strategy.

Finally, we estimate the performance of IAS as an anytime algo-
rithm by computing the maximum regret attached to the incumbent
at each iteration step of IAS. This regret indeed provides a guarantee
on the gap to optimality at any step of the branch and bound pro-
cedure. For comparison, we consider here also the random branch
and bound procedure (named Random). The results reported in Fig-
ure 3 are obtained by averaging over 30 runs. We observe that the
maximum regret decreases much more quickly with IAS than with
Random, as the number of iteration steps increases. For instance, af-
ter 200 iteration steps on average, the maximum regret is under 10%
with our procedure while remaining above 70% for the random strat-
egy. Moreover, we observe that this regret drops drastically from the
very beginning of IAS. This shows that IAS provides (very quickly)
a good solution before the end of the search.

Figure 3. Maximum regret attached to the incumbent at each step of the
branch and bound procedures (p = 15, d = 0.5, n = 30).

6 CONCLUSION

We have presented a new approach for incremental approval voting
on combinatorial domains, illustrated on the knapsack problem. The
first specificity of this approach is to exploit compact numerical rep-
resentations of individual preferences (additive utilities) to propose
more efficient elicitation sequences. Thus, learning that agent i ap-
proves or not solution x is no longer an isolated preference infor-
mation; it induces a constraint on the utility space possibly reducing
the set of weak-orders consistent with the observed preferences. This
contributes to derive implicitly other approval judgements on other
knapsacks, which saves many preference queries.

The second specificity of our approach is to interleave preference
elicitation and search. This makes it possible to elicit preferences on a
combinatorial set implicitly defined with a twofold benefit in view of
winner determination: on the one hand, working on partial instances
of feasible solutions in the search tree facilitates the identification
of relevant queries and relieves the elicitation burden. On the other
hand, the search is earlier focused on the relevant part of the solution
space due to the integration of new preference information at decisive
steps of the search algorithm, which saves a significant part of the
computational effort. This enables to solve large instances for which
the systematic elicitation of all approval statements is not feasible.

We see several directions to extend this work. The first one is to re-
lax the additivity of individual utilities so as to be able to model inter-
actions between items. In this line, it seems natural to use generalized
additive utilities functions (GAI) that could also be elicited incremen-
tally [10]. Another direction would be to consider alternative voting
rules using possibly more information than approval statements. For
example, positional scoring rules may be worth investigating under
the assumption that individual preferences are representable by ad-
ditive utilities. This is a challenging issue because, when preferences
are only partially known, the ranges of possible ranks in individual
rankings is generally too large to be decisive.

ACKNOWLEDGEMENTS

We wish to thank Jérôme Lang for stimulating discussions during the
preparation of this paper. This work is supported by the ANR project
14-CE24-0007-01- Cocorico-CoDec.

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting 1325

REFERENCES

[1] Haris Aziz, Markus Brill, Vincent Conitzer, Edith Elkind, Rupert Free-
man, and Toby Walsh, ‘Justified representation in approval-based com-
mittee voting’, in Proceedings of AAAI’15, pp. 784–790, (2015).

[2] Haris Aziz, Serge Gaspers, Joachim Gudmundsson, Simon Mackenzie,
Nicholas Mattei, and Toby Walsh, ‘Computational aspects of multi-
winner approval voting’, in Proceedings of AAMAS’15, pp. 107–115,
(2015).

[3] Nawal Benabbou and Patrice Perny, ‘Incremental Weight Elicitation
for Multiobjective State Space Search’, in Proceedings of AAAI’15, pp.
1093–1099, (2015).

[4] Nawal Benabbou and Patrice Perny, ‘On possibly optimal tradeoffs in
multicriteria spanning tree problems’, in Proceedings of ADT’15, pp.
322–337, (2015).

[5] Nadja Betzler, Arkadii Slinko, and Johannes Uhlmann, ‘On the compu-
tation of fully proportional representation’, Journal of Artificial Intelli-
gence Research, 475–519, (2013).

[6] Craig Boutilier, Ioannis Caragiannis, Simi Haber, Tyler Lu, Ariel D
Procaccia, and Or Sheffet, ‘Optimal social choice functions: A utili-
tarian view’, Artificial Intelligence, 227, 190–213, (2015).

[7] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans,
‘Constraint-based Optimization and Utility Elicitation using the Min-
imax Decision Criterion’, Artifical Intelligence, 170(8–9), 686–713,
(2006).

[8] Steven J. Brams and Peter C. Fishburn, ‘Approval voting’, The Ameri-
can Political Science Review, 72(3), 831–847, (1978).

[9] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jérôme Lang, and Ariel D.
Procaccia, Cambridge University Press, 2016. In press.

[10] Darius Braziunas and Craig Boutilier, ‘Minimax regret based elicitation
of generalized additive utilities’, in Proceedings of UAI’07, pp. 25–32,
(2007).

[11] Ioannis Caragiannis and Ariel D Procaccia, ‘Voting almost maximizes
social welfare despite limited communication’, Artificial Intelligence,
175(9), 1655–1671, (2011).

[12] Urszula Chajewska, Daphne Koller, and Ronald Parr, ‘Making rational
decisions using adaptive utility elicitation’, in Proceedings of AAAI’00,
pp. 363–369, (2000).

[13] John R Chamberlin and Paul N Courant, ‘Representative deliberations
and representative decisions: Proportional representation and the Borda
rule’, American Political Science Review, 77(03), 718–733, (1983).

[14] Lihi Naamani Dery, Meir Kalech, Lior Rokach, and Bracha Shapira,
‘Reaching a joint decision with minimal elicitation of voter prefer-
ences’, Information Sciences, 278, 466–487, (2014).

[15] Ning Ding and Fangzhen Lin, ‘Voting with partial information: what
questions to ask?’, in Proceedings of AAMAS’13, pp. 1237–1238,
(2013).

[16] Edith Elkind, Piotr Faliszewski, Piotr Skowron, and Arkadii Slinko,
‘Properties of multiwinner voting rules’, in Proceedings of AAMAS’14,
pp. 53–60, (2014).

[17] M. Gelain, M. S. Pini, F. Rossi, K. B. Venable, and T. Walsh, ‘Elici-
tation strategies for soft constraint problems with missing preferences:
Properties, algorithms and experimental studies’, Artificial Intelligence
Journal, 174(3-4), 270–294, (2010).

[18] Meir Kalech, Sarit Kraus, and Gal A. Kaminka, ‘Practical voting rules
with partial information’, Autonomous Agents and Multi-Agent Sys-
tems, 22(1), 151–182, (2010).

[19] D Marc Kilgour, ‘Approval balloting for multi-winner elections’, in
Handbook on approval voting, 105–124, Springer, (2010).

[20] Kathrin Konczak and Jérôme Lang, ‘Voting procedures with incomplete
preferences’, in Proceedings of IJCAI-05 Multidisciplinary Workshop
on Advances in Preference Handling, volume 20, (2005).

[21] Jérôme Lang, Maria Silvia Pini, Francesca Rossi, Domenico Salvagnin,
Kristen Brent Venable, and Toby Walsh, ‘Winner determination in vot-
ing trees with incomplete preferences and weighted votes’, Autonomous
Agents and Multi-Agent Systems, 25(1), 130–157, (2012).

[22] Tyler Lu and Craig Boutilier, ‘Budgeted social choice: From consen-
sus to personalized decision making’, in Proceedings of IJCAI’11, vol-
ume 11, pp. 280–286, (2011).

[23] Tyler Lu and Craig Boutilier, ‘Robust approximation and incremental
elicitation in voting protocols’, in Proceedings of IJCAI’11, pp. 287–
293, (2011).

[24] Tyler Lu and Craig Boutilier, ‘Multi-winner social choice with incom-
plete preferences’, in Proceedings of IJCAI’13, pp. 263–270, (2013).

[25] Reshef Meir, Ariel D Procaccia, Jeffrey S Rosenschein, and Aviv Zohar,
‘Complexity of strategic behavior in multi-winner elections.’, Journal
of Artificial Intelligence Research (JAIR), 33, 149–178, (2008).

[26] Burt L Monroe, ‘Fully proportional representation’, American Political
Science Review, 89(04), 925–940, (1995).

[27] Joel Oren and Brendan Lucier, ‘Online (budgeted) social choice’, Pro-
ceedings of AAAI’14, 1456–1462, (2014).

[28] Richard F Potthoff and Steven J Brams, ‘Proportional representation
broadening the options’, Journal of Theoretical Politics, 10(2), 147–
178, (1998).

[29] Ariel D Procaccia and Jeffrey S Rosenschein, ‘The distortion of car-
dinal preferences in voting’, in Proceedings of the Tenth Interna-
tional Workshop on Cooperative Information Agent, 317–331, Springer,
(2006).

[30] Ariel D Procaccia, Jeffrey S Rosenschein, and Aviv Zohar, ‘On the
complexity of achieving proportional representation’, Social Choice
and Welfare, 30(3), 353–362, (2008).

[31] Piotr Skowron, Piotr Faliszewski, and Jérôme Lang, ‘Finding a collec-
tive set of items: From proportional multirepresentation to group rec-
ommendation’, in Proceedings of AAAI’15, pp. 2131–2137, (2015).

[32] Piotr Skowron, Lan Yu, Piotr Faliszewski, and Edith Elkind, ‘The com-
plexity of fully proportional representation for single-crossing elec-
torates’, Theoretical Computer Science, 569, 43–57, (2015).

[33] T. Wang and C. Boutilier, ‘Incremental Utility Elicitation with the Min-
imax Regret Decision Criterion’, in Proceedings of IJCAI-03, pp. 309–
316, (2003).

[34] Lirong Xia and Vincent Conitzer, ‘Determining possible and necessary
winners given partial orders’, Journal of Artificial Intelligence Research
(JAIR), 41, 25–67, (2011).

N. Benabbou and P. Perny / Solving Multi-Agent Knapsack Problems Using Incremental Approval Voting1326

