
Summary Information for Reasoning About
Hierarchical Plans

Lavindra de Silva1
and Sebastian Sardina2

and Lin Padgham2

Abstract.

Hierarchically structured agent plans are important for ef-
ficient planning and acting, and they also serve (among other
things) to produce “richer” classical plans, composed not
just of a sequence of primitive actions, but also “abstract”
ones representing the supplied hierarchies. A crucial step for
this and other approaches is deriving precondition and effect
“summaries” from a given plan hierarchy. This paper provides
mechanisms to do this for more pragmatic and conventional
hierarchies than in the past. To this end, we formally define
the notion of a precondition and an effect for a hierarchical
plan; we present data structures and algorithms for automati-
cally deriving this information; and we analyse the properties
of the presented algorithms. We conclude the paper by detail-
ing how our algorithms may be used together with a classical
planner in order to obtain abstract plans.

INTRODUCTION

This paper provides effective techniques for automatically ex-
tracting abstract actions and plans from a supplied hierarchi-
cal agent plan-library. Hierarchically structured agent plans
are appealing for efficient acting and planning as they em-
body an expert’s domain control knowledge, which can greatly
speed up the reasoning process and cater for non-functional
requirements. Two popular approaches based on such repre-
sentations are Hierarchical Task Network (HTN) [7, 10] plan-
ning and Belief-Desire-Intention (BDI) [18] agent-oriented
programming. While HTN planners “look ahead” over a sup-
plied collection of hierarchical plans to determine whether a
task has a viable decomposition, BDI agents interleave this
process with acting in the real world, thereby trading off
solution quality for faster responsiveness to environmental
changes. Despite these differences, HTN and BDI systems are
closely related in both syntax and semantics, making it pos-
sible to translate between the two representations [19, 20].

While HTN planning and BDI execution are concerned with
decomposing hierarchical structures (offline and online, re-
spectively), one may perform other kinds of reasoning with
them that do not necessarily require or amount to decom-
positions. For example, [5] and [21, 22] perform reasoning
to coordinate the execution of abstract steps, so as to pre-
empt potential negative interactions or exploit positive ones.

1 Institute for Advanced Manufacturing, University of Nottingham,
Nottingham, UK, e-mail: lavindra.desilva@nottingham.ac.uk

2 RMIT University, Melbourne, Australia, e-mail: {ssardina,
linpa}@cs.rmit.edu.au

In [6], the authors propose a novel application of such hierar-
chies to produce “richer” classical plans composed not just of
sequences of primitive actions, but also of “abstract” steps.
Such abstract plans are particularly appealing in the context
of BDI and HTN systems because they respect and re-use
the domain control knowledge inherent in such systems, and
they provide flexibility and robustness: if a refinement of one
abstract step happens to fail, another option may be tried to
achieve the step.

A pre-requisite for these kinds of reasoning is the availabil-
ity of meaningful preconditions and effects for abstract steps
(i.e., compound tasks in HTN systems or event-goals in BDI
languages). Generally, this information is not supplied explic-
itly, but embedded within the decompositions of an abstract
step. This paper provides techniques for extracting this infor-
mation automatically. The algorithms we develop are built
upon those of [5] and [21, 22], which calculate offline the
precondition and effect “summaries” of HTN-like hierarchi-
cal structures that define the agents in a multi-agent system,
and use these summaries at runtime to coordinate the agents
or their plans. The most important difference between these
existing techniques and ours is that the former are framed
in a propositional language, whereas ours allow for first-order
variables. This is fundamental when it comes to practical ap-
plicability, as any realistic BDI agent program will make use of
variables. A nuance worth mentioning between our work and
that of Clement et al. is that the preconditions we synthesise
are standard classical precondition formulas (with disjunc-
tion), whereas their preconditions are (essentially) two sets of
literals: the ones that must hold at the start of any successful
execution of the entity, and the ones that must hold at the
start of at least one such execution. Yao et al. [25] extend
the above two strands of work to allow for concurrent steps
within an agent’s plan, though still not first-order variables.

Perhaps the only work that computes summaries (“exter-
nal conditions”) of hierarchies specifying first-order variables
is [23]. The authors automatically extract a weaker form of
summary information (what we call “mentioned” literals) to
inform the task selection strategy of the UMCP HTN planner:
tasks that can possibly establish or threaten the applicability
of other tasks are explored first. They show that even weak
summary information can significantly reduce backtracking
and increase planning speed. However, the authors only pro-
vide insights into their algorithms for computing summaries.

We note that we are only concerned here with how to ex-
tract abstract actions (with corresponding preconditions and
effects), and eventually abstract plans, from a hierarchical

ECAI 2016
G.A. Kaminka et al. (Eds.)

© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms

of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1300

1300

know-how structure. Consequently, unlike existing useful and
interesting work [11, 8, 2, 1], our approach does not directly
involve guiding a planner toward finding a suitable primitive
plan. We also do not aim to build new “macro” actions from
sample primitive solution plans, as done in [3], for example.

Thus, the contributions of this paper are as follows. First,
we develop formal definitions for the notions of a precondi-
tion and an effect of an (abstract) event-goal. Second, we
develop algorithms and data structures for deriving precon-
dition and effect summaries from an event-goal’s hierarchy.
Unlike past work, we use a typical BDI agent programming
language framework; in doing so, we allow for variables in
agent programs—an important requirement in practical sys-
tems. Our chosen BDI agent programming language cleanly
incorporates the syntax and semantics of HTN planning as a
built-in feature, making our work immediately accessible to
both communities. Finally, we show how derived event-goal
summaries may be used together with a classical planner in
order to obtain abstract plans (which can later be further
refined, if desired, to meet certain properties [6]).

THE HIERARCHICAL FRAMEWORK

Our definitions, algorithms, and results are based on the for-
mal machinery provided by the CANPlan [20] language and
operational semantics. While designed to capture the essence
of BDI agent-oriented languages, it directly relates to other
hierarchical representations of procedural knowledge, such as
HTN planning [7, 10], both in syntax and semantics.

A CANPlan BDI agent is created by the specification of a
belief base B, i.e., a set of ground atoms, a plan-library Π, i.e.,
a set of plan-rules, and an action-library Λ, i.e., a set of action-
rules. A plan-rule is of the form e(v):ψ ← P , where e(v) is an
event-goal, v is a vector of distinct variables, ψ is the context
condition, and P is a plan-body or program.3 The latter is
made up of the following components: primitive actions (act)
that the agent can execute directly; operations to add (+b)
and remove (−b) beliefs; tests for conditions (?φ); and event-
goal programs (!e), which are simply event-goals combined
with the label “!”. These components are composed using the
sequencing construct P1;P2. While the original definition of
a plan-rule also included declarative goals and the ability to
specify partially ordered programs [24], we leave out these
constructs here and focus only on an AgentSpeak-like [17],
typical BDI agent programming language.

There are also additional constructs used by CANPlan in-
ternally when attaching semantics to constructs. These are
the programs nil , P1 � P2, and �ψ1 : P1, . . . , ψn : Pn�. Intu-
itively, nil is the empty program, which indicates that there is
nothing left to execute; program �ψ1 : P1, . . . , ψn : Pn� repre-
sents the plan-rules that are relevant for some event-goal; and
program P1 � P2 realises failure recovery: program P1 should
be tried first, failing which P2 should be tried. The complete
language of CAN, then, is described by the grammar

P ::= nil | act | ?φ | +b | −b | !e | P1;P2 | P1 � P2 |
�ψ1 : P1, . . . , ψn : Pn�.

The behaviour of a CANPlan agent is defined by a set of
derivation rules in the style of Plotkin’s structural single-step

3 In [20] an event-goal is of the form e(t) where t is a vector of
terms. Here, we replace t with v and assume WLOG that ∀ti ∈
t, ψ ⊃ (ti = vi), where vi ∈ v.

operational semantics [15]. The transition relation on a config-
uration is defined using one or more derivation rules. Deriva-
tion rules have an antecedent and a conclusion: the antecedent
can either be empty, or it can have transitions and auxiliary
conditions; the conclusion is a single transition. A transition
C −→ C′ within a rule denotes that configuration C yields
configuration C′ in a single execution step, where a configu-
ration is the tuple 〈B,A,P〉 composed of a belief base B, a
program P , and the sequence A of actions executed so far.

Construct C
t
−→ C′ denotes a transition of type t, where

t ∈ {bdi, plan}; when no label is specified on a transition both
types apply. Intuitively, bdi-type transitions are used for the
standard BDI execution cycle, and plan-type transitions for
(internal) deliberation steps within a planning context. By
distinguishing between these two types of transitions, certain
rules can be disallowed from being used in a planning context,
such as those dealing with BDI-style failure handling.

We shall describe three of the CANPlan derivation rules.
The rule below states that a configuration 〈B,A, !e〉 evolves
into a configuration 〈B,A, �Δ�〉 (with no changes to B and A)
in one bdi- or plan-type execution step, with �Δ� being the set
of all relevant plan-rules for e, i.e., the ones whose handling
event-goal unifies with e; mgu stands for “most general uni-
fier” [12]. From �Δ�, an applicable plan-rule—one whose con-
text condition holds in B—is selected by another derivation
rule and the associated plan-body scheduled for execution.

Δ = {ψiθ : Piθ | e
′ : ψi ← Pi ∈ Π ∧ θ = mgu(e, e′)}

〈B,A, !e〉 −→ 〈B,A, �Δ�〉

The Plan construct incorporates HTN planning as a built-
in feature of the semantics. The main rule defining the con-
struct states that a configuration 〈B,A,Plan(P)〉 evolves into
a configuration 〈B′,A′,Plan(P ′)〉 in one bdi-type execution
step if the following two conditions hold: (i) configuration
〈B,A,P〉 yields configuration 〈B′,A′,P ′〉 in one plan-type ex-
ecution step, and (ii) it is possible to reach a final config-
uration 〈B′′,A′′,nil〉 from 〈B′,A′,P ′〉 in a finite number of
plan-type execution steps. Thus, executing the single bdi-type
step necessitates zero or more internal “look ahead” steps that
check for a successful HTN execution of P .

Unlike plan-rules, any given action program will have ex-
actly one associated action-rule in the action-library Λ. Like
a STRIPS operator, an action-rule act : ψ ← Φ+;Φ− is such
that act is a symbol followed by a vector of distinct vari-
ables, and all variables free in ψ, Φ+ (the add list) and Φ−

(the delete list) are also free in act. We additionally expect
any action-rule act : ψ ← Φ−;Φ+ to be coherent : that is, for
all ground instances actθ of act, if ψθ is consistent, then
Φ+θ∪{¬b | b ∈ Φ−θ} is consistent. For example, while the rule
R corresponding to an action move(X,Y) with precondition
at(X)∧¬at(Y) (or X 	= Y) and postcondition ¬at(X)∧at(Y)
is coherent, the same rule with precondition true is not, as
there will then be a ground instance of R such that its pre-
condition is consistent but its postcondition is not: both its
add and delete lists contain the same atom.

ASSUMPTIONS

We shall now introduce some of the definitions used in the rest
of the paper and concretise the rest of our assumptions. As
usual, we use x and y to denote vectors of distinct variables,

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans 1301

and t to denote a vector of (not necessarily distinct) terms.
Moreover, since the language of CANPlan allows variables
in programs, we shall frequently make use of the standard
notions related to substitutions [12].

We assume that the plan-library does not have recursion.
Formally, we assume that a ranking exists for the plan-library,
i.e., that it is always possible to give a child a smaller rank
(number) than its parent. We define a ranking as follows.

Definition 1 (Ranking) A ranking for a plan-library Π is a
functionRΠ : EΠ
→ N0 from event-goal types mentioned in Π
to natural numbers, such that for all event-goals e1, e2 ∈ EΠ

where e2 is the same type as some e3 ∈ children(e1,Π), we
have that RΠ(e1) > RΠ(e2).

4
�

In addition, we define the following two related notions:
first, given an event-goal type e, RΠ(e) denotes the rank of
e in Π; and second, given any event-goal e(t) mentioned in
Π, we define RΠ(e(t)) = RΠ(e(x)) (where |x| = |t|), i.e., the
rank of an event-goal is equivalent to the rank of its type. In
order that these and other definitions also apply to event-goal
programs, we sometimes blur the distinction between event-
goals e and event-goal programs !e.

Finally, we assume that context conditions are written with
appropriate care. Specifically, if there is no environmental in-
terference, whenever a plan-rule is applicable it should be pos-
sible to successfully execute the associated plan-body with-
out any failure and recovery; this disallows rules such as
e : true ←?false. Our definition makes use of the notion of
a projection: given any configuration 〈B,A,P〉, we define the
projection of the first component of the tuple as C|B , the
second as C|A, and the third as C|P .

Definition 2 (Coherent Library) A plan-library Π is
coherent if for all rules e : ψ ← P ∈ Π, ground instances eθ
of e, and belief bases B, whenever B |= ψθθ′ (where ψθθ′ is
ground) there is a successful HTN execution C1·. . .·Cn of Pθθ′

(relative to Π) with C1|B = B. A successful HTNexecution of
a program P relative to a plan-library is any finite sequence
of configurations C1 · . . . ·Cn such that C1|P = P , Cn|P = nil ,

and for all 0 < i < n,Ci
plan
−→ Ci+1. �

Intuitively, the term HTN execution simply denotes a BDI
execution in which certain BDI-specific derivation rules asso-
ciated with failure and recovery have not been used.

SUMMARY INFORMATION

We can now start to define what we mean by preconditions
and postconditions/effects of event-goals; some of these def-
initions are also used later in the algorithms. As a first step
we define these notions for our most basic programs.

A basic program is either an atomic program or a primitive
program. Formally, a program P is an atomic program (or
simply atomic) if P =!e | act | +b | −b |?φ, and P is a
primitive program if P is an atomic program that is not an
event-goal program. Then, like the postcondition of a STRIPS

4 We define the function children(ê,Π) = {e | e′ : ψ ← P ∈
Π, ê and e′ are the same type, P mentions !e}, where two event-
goals are the same type if they have the same predicate symbol
and arity. The type of an event-goal e(t) is defined as e(x), where
|x| = |t|.

action, the postcondition of a primitive program is simply the
atoms that will be added to and removed from the belief base
upon executing the program. Formally, the postcondition of a
primitive program P relative to an action-library Λ, denoted
post(P,Λ), is the set of literals post(P,Λ) =

8

>

>

>

>

>

<

>

>

>

>

>

:

∅ if P =?φ,
{b} if P = +b,
{¬b} if P = −b,
Φ+θ ∪ {¬b | b ∈ Φ−θ} if P = act and there exists

an act ′ : ψ ← Φ+;Φ− ∈ Λ
such that act = act′θ.

The postcondition of a test condition is the empty set because
executing a test condition does not result in an update to the
belief base. The postcondition of an action program is the
combination of the add list and delete list of the associated
action-rule, after applying the appropriate substitution.

While this notion of a postcondition as applied to a primi-
tive program is necessary for our algorithms later, we do not
also need the matching notion of a precondition of a primi-
tive program. Such preconditions are already accounted for
in context conditions of plan-rules, by virtue of our assump-
tion (Definition 2) that the latter are coherent. What we do
require, however, is the notion of a precondition as applied to
an event-goal. This is defined as any formula such that when-
ever it holds in some state there is at least one successful HTN
execution of the event-goal from that state.

Definition 3 (Precondition) A formula φ is said to be a
precondition of an event-goal !e (relative to a plan- and an
action-library) if for all ground instances !eθ of !e and belief
bases B, whenever B |= φθ, there exists a successful HTN
execution C1 · . . . · Cn of !eθ, where C1|B = B. �

Unlike the postcondition of a primitive program, the post-
condition of an event-goal program—and indeed any arbitrary
program P—is non-deterministic: it depends on what plan-
rules are chosen to decompose P . There are, nonetheless, cer-
tain effects that will be brought about irrespective of such
choices. We call these must literals: literals that hold at the
end of every successful HTN execution of P .

Definition 4 (Must Literal) Let P be a program and l a
literal where its variables are free in P . Then, l is a must literal
of P (relative to a plan- and action-library) if for any ground
instance Pθ of P and successful HTN execution C1 · . . . · Cn

of Pθ, we have that Cn|B |= lθ. �

A desirable consequence of the two definitions above is that
any given set of must literals of an event-goal, like the post-
condition of an action, is consistent whenever the event-goal’s
precondition is consistent.

Theorem 1 Let e be an event-goal, φ a precondition of e
(relative to a plan-library Π and an action-library Λ), and
Lmt a set of must literals of e (relative to Π and Λ). Then,
for all ground instances eθ of e, if φθθ′ is consistent for some
ground substitution θ′, then so is Lmtθ.

Proof Sketch. We prove this by contradiction. First, note
that since Lmtθ is a set of ground literals (by Definition 4
and because eθ is ground), if Lmtθ is consistent, then for all

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans1302

literals l, l′ ∈ Lmt it is the case that lθ 	= l′θ.5 If we assume
that the theorem does not hold, then there must be a ground
instance eθ of e such that φθθ′ is consistent for some ground
substitution θ′, but lθ = l′θ for some l, l′ ∈ Lmt.

Since φθθ′ is consistent, it is not difficult to show there is
a belief base B such that B |= φθθ′. Then, by Definition 3
there is also a successful HTN execution C1 · . . . · Cn of eθ
with C1|B = B. Moreover, since l, l′ are must literals of e
and eθ is ground, by Definition 4 we know that (i) lθ and l′θ
are also ground, and (ii) Cn|B |= lθ and Cn|B |= l′θ. This

leads to a contradiction of our assumption that lθ = l′θ. �

In addition to must literals, there are two related notions.
The first, called may summary conditions in [5], defines lit-
erals that hold at the end of at least one successful HTN
execution of the program, and the second, weaker notion de-
fines literals that are simply mentioned in the program or in
one of its “descendant” programs; such literals may or may
not be brought about when the program executes. It is this
second notion, called mentioned literals, that we use.

Definition 5 (Mentioned Literal) If P is a program, its
mentioned literals (relative to a plan-library Π and an action-
library Λ), denoted mnt(P), is the set mnt(P) =

8

>

>

>

<

>

>

>

:

post(P,Λ) if P = +b | −b | act | ?φ,
mnt(P1) ∪mnt(P2) if P = P1;P2,
{lθ′ | e ′ : ψ ← P ′ ∈ Π, if P = !e.
e = e′θ, l ∈ mnt(P ′),
θ′ is any substitution}

�

We use this weaker notion because the stronger notion of a
may summary condition in [5] is not suitable for our approach,
which reasons about plans that will not be interleaved with
one another—i.e., plans that will be scheduled as a sequence.
For example, consider the figure below, which shows a plan-
library for going to work on Fridays, possibly one belonging
to a larger library from an agent-based simulation. The ex-
pressions to the left and right sides of actions/plan-rules are
their preconditions and postconditions, respectively.

goToWorkFridays

goToWorkFridaysPlan

−→

travelToWork work haveDrinks intox travelHome

OR
driveHmPlanhaveCar ∧ ¬intox fuelUsed

travelHmByTaxiPlan ¬haveCar

travelHmByBusPlan ¬haveCar

event-goal

plan-rule

action

Observe that fuelUsed is actually never asserted in the con-
text of the hierarchy shown, because literal ¬intox (“not in-
toxicated”) in the context condition of driveHmPlan is con-
tradicted by literal intox . However, the algorithms in [5] will
still classify fuelUsed as a may summary condition of plan
goToWorkFridaysPlan , because some other plan may have a
step asserting ¬intox—perhaps a step that involves staying

5 The complement of a literal l ∈ {a,¬a}, denoted by l, is a if
l = ¬a, and ¬a otherwise.

overnight in a hotel nearby—that can be ordered to occur
between haveDrinks and travelHome .

Since we cannot rely on such steps, we settle for a weaker
notion—mentioned literals—than the corresponding defini-
tion of a may summary condition. By our definition there can
be literals that are mentioned in some plan-body but in fact
can never be asserted, because of interactions that preclude
the particular plan-body which asserts that literal from being
applied. We avoid the approach of disallowing interactions like
the one shown above in order to use the stronger notion of a
may summary condition because such interactions are natu-
ral in BDI and HTN domains: event-goals such as travelHome
are, intuitively, meant to be self-contained “modules” that can
be “plugged” into any relevant part of a hierarchical structure
in order to derive all or just some of their capabilities.

Finally, we conclude this section by combining the above
definitions of must and mentioned literals to form the defini-
tion of the summary information of a program.

Definition 6 (Summary Information) If P is a program,
its summary information (relative to a plan-library and an

action-library) is a tuple 〈P , φ,Lmt ,Lmn〉, where φ is a pre-
condition of P if P is an event-goal program, and φ = ε oth-
erwise; Lmt is a set of must literals of P ; and Lmn is a set of
mentioned literals of P . �

EXTRACTING SUMMARY
INFORMATION

With the formal definitions now in place, in this section we
provide algorithms to extract summary information for event-
goals in a plan-library. Moreover, we illustrate the algorithms
with an example, and analyse their properties.

Basically, we extract summary information from a given
plan-library and action-library by propagating up the sum-
mary information of lower-level programs, starting from the
leaf-level ones in the plan-library, until we eventually obtain
the summary information of all the top-level event-goals.

To be able to identify must literals, we need to be able to
determine whether a given literal is definitely undone, or must
undone, and possibly undone, or may undone in a program.
Informally, a literal l is must undone in a sequence P of atomic
programs if the literal’s negation is a must literal of some
atomic program in P . Formally, then, given a program P and
the set Δ of summary information of all atomic programs
in P , a literal l is must undone in P relative to Δ, denoted
Must-Undone(l, P,Δ), if there exists an atomic program P ′ in
P and a literal l′ ∈ Lmt, with 〈P ′, φ,Lmt ,Lmn〉 ∈ Δ, such that
l = l′, that is, l is the complement of l′.

Similarly, we can informally say that a literal l is may un-
done in a program P if there is a literal l′ that is a mentioned
(or must) literal of some atomic program in P such that l′

may become the negation of l after variable substitutions.
Formally, given a program P and the set Δ of summary infor-
mation of all atomic programs in P , a literal l is may undone
in P relative to Δ, denoted May-Undone(l, P,Δ), if there ex-
ists an atomic program P ′ in P , a substitution θ, and a literal
l′ ∈ Lmn,6 with 〈P ′, φ,Lmt ,Lmn〉 ∈ Δ, such that lθ = l′θ.

Algorithm 1. This is the top-level algorithm for comput-
ing the summary information Δ of event-goal types occurring

6 variables occurring in l′ are renamed to those not occurring in l

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans 1303

Algorithm 1 Summ(Π,Λ)
Require: Plan-library Π and action-library Λ.
Ensure: Set of summary info. of event-goal types in Π.
1: Δ⇐ {〈P , ε, post(P ,Λ), post(P ,Λ)〉 |
P is a primitive program mentioned in Π}

2: E ⇐ {e(x) | e is an event-goal mentioned in Π}
3: for i⇐ min(R) to max(R) where
R = {RΠ(e) | e ∈ E} do // Recall RΠ(e) is the rank of e

4: for each e ∈ E such that RΠ(e) = i do
5: Δ⇐ Δ ∪

{SummPlan(P,Π,Λ,Δ) | e ′ : ψ ← P ∈ Π, e′ = eθ}
6: Δ⇐ Δ ∪ {SummEvent(e,Π,Δ)}
7: return Δ \ {u | u ∈ Δ,
u is not the summary information of an event-goal}

Algorithm 2 SummPlan(P,Π,Λ,Δin)
Require: Plan-body P ; plan-library Π; action-library Λ; and

the set Δin of summary information of primitive programs
and event-goal types mentioned in P .

Ensure: The summary information of P .
1: Δ⇐ Δin ∪ {〈!e(x), φ, Lmt, Lmn〉θ | !e(t) occurs in P,
〈e(x), φ,Lmt, Lmn〉 ∈ Δin, e(t) = e(x)θ}

// We assume variables in Lmn are appropriately renamed

2: Let P = P1;P2; . . . ;Pn where each Pi is atomic
3: Lmt

P ⇐ {l | l ∈ Lmt, 〈Pi , φ,L
mt ,Lmn〉 ∈ Δ,

i ∈ {1, . . . , n},¬May-Undone(l, Pi+1; . . . ;Pn,Δ)}
4: Lmn

P ⇐ {l | l ∈ Lmt ∪ Lmn, 〈Pi , φ,L
mt ,Lmn〉 ∈ Δ,

i ∈ {1, . . . , n},¬Must-Undone(l, Pi+1; . . . ;Pn,Δ)}
5: return 〈P , ε,Lmt

P ,Lmn
P 〉

Algorithm 3 SummEvent(e(x),Π,Δ)

Require: Event-goal type e(x); plan-library Π; and the set
Δ of summary information of plan-bodies of plan-rules
e ′ : ψ ← P ∈ Π such that e′ = e(x)θ.

Ensure: The summary information of e(x).
1: φ⇐ false, Lmt ⇐ ∅, Lmn ⇐ ∅, and S ⇐ ∅

// Lmt, Lmn are sets of literals and S is a set of sets of literals

2: for each e(y):ψ ← P ∈ Π such that e(x) = e(y)θ do
3: φ⇐ φ ∨ ψθ

// Relevant variables in ψ and Lmt
P
, Lmn

P
below are renamed

4: S ⇐ S ∪ {Lmt
P θ}, where 〈P , ε,Lmt

P ,Lmn
P 〉 ∈ Δ

5: Lmn ⇐ Lmn ∪ Lmn
P θ

6: if S 	= ∅ then // Obtain the must literals of e(x)

7: Lmt ⇐
T

S
8: Lmt ⇐ {l | l ∈ Lmt,

variables occurring in l also occur in e(x)}
9: return 〈e(x), φ, Lmt, Lmn〉

in the plan-library. The algorithm works bottom up, by sum-
marising first the leaf-level entities of the plan-library—the
primitive programs (line 1)—and then repetitively summaris-
ing plan-bodies (Algorithm 2) and event-goals (Algorithm 3)
in increasing order of their levels of abstraction (lines 3-6).

Algorithm 2. This algorithm summarises the given plan-
body P by referring to the set Δin containing the summary
information tuples of programs in P . First, the algorithm ob-
tains the summary information of each event-goal program in
the plan-body from the summary information of the corre-
sponding event-goal types in Δin (line 1). This involves sub-
stituting variables occurring in relevant summary information
tuples in Δ with the corresponding terms occurring in the
event-goal program being considered. Second, the algorithm
computes the set of must literals (Lmt

P) and the set of men-
tioned literals (Lmn

P) of the given plan-body P , by determin-
ing, from the must and mentioned literals of atomic programs
in P , which literals will definitely hold and which ones will

only possibly hold on successful executions of P (lines 3 and
4). More precisely, a must literal l of an atomic program Pi

in P = P1; . . . ;Pn is classified as a must literal of P only if
l is not may undone in Pi+1; . . . ;Pn (line 3). Otherwise, l is
classified as only a mentioned literal of P , provided l is not
also must undone in Pi+1; . . . ;Pn (line 4). The reason we do
not summarise literals that are must undone is to avoid miss-
ing must literals in cases where they are possibly undone but
then later (definitely) reintroduced, as we illustrate below.

Suppose, on the contrary, that the algorithm does sum-
marise mentioned literals that are must undone. Then, given
the plan-library below, the algorithm would (hypothetically)
compute the summary information denoted by the two sets
attached to each node, the one on the left being its set of must
literals and the one on the right its set of mentioned literals.

e0

R0

−→
{}{p,¬p,q}

a0 p e1

OR

{}{p,¬p,q}

R1

−→
{p}{p,¬p}

a1 ¬p a2 p

R2 {q}{q}

a3 q

event-goal

plan-rule

action

Observe that literal p asserted by a0 is not recognised as a
must literal of R0 simply because it is may undone by men-
tioned literal ¬p of e1 (asserted by a1), despite the fact that
action a2 of R1 also subsequently adds p. On the other hand,
our algorithm does recognise p as a must literal of R0 by not
including ¬p in the set of mentioned literals of R1 (line 4).

Algorithm 3. This algorithm summarises the given event-
goal type e(x) by referring to the set Δ containing the sum-
mary information tuples associated with the plan-bodies of
plan-rules handling e(x). In lines 2 and 3, the algorithm takes
the precondition of the event-goal as the disjunction of the
context conditions of all associated plan-rules.7 Then, the al-
gorithm obtains the must and mentioned literals of the event-
goal by respectively taking the intersection of the must literals
of associated plan-rules (lines 4 and 7), and the union of the
mentioned literals of associated plan-rules (line 5). Applying
substitution θ in line 4 helps recognise must literals of e(x),
by ensuring that variables occurring in the summary informa-
tion of its associated plan-bodies have consistent names with
respect to e(x).

An illustrative example

We shall illustrate the three algorithms with the example of
a simple agent exploring the surface of Mars. A part of the
agent’s domain is depicted as a hierarchy in Figure 1. The hi-
erarchy’s top-level event-goal is to explore a given soil location
Y from current location X. This is achieved by plan-rule R0,
which involves navigating to the location and then doing a soil
experiment. Navigation is achieved by rules R1 and R2, which
involve moving to the location, possibly after calibrating some
of the rover’s instruments. Doing a soil experiment involves
the two sequential event-goals of getting soil results for Y and

7 We do not need to “propagate up” context conditions as we do
with plan-bodies’ summary information because higher-level con-
text conditions account for lower-level ones due to Definition 2.

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans1304

transmitting them to the lander. Specifically, the former is re-
fined into actions such as determining moisture content and
average soil particle size, and transmitting results involves ei-
ther establishing a connection with the lander, sending it the
results, and then terminating the connection, or if the lander
is not within range, navigating to it and uploading the soil re-
sults. The table in Figure 1 shows the summary information
computed by our algorithms for elements in the figure’s hier-
archy. Below, we describe some of the more interesting values
in the table.

Plan-body P7. Must literals ¬at(Y) and at(L) of P7 are
derived from those of nav(X,Y), after renaming variables X
and Y to respectively Y and L in line 1 of Algorithm 2.

Plan-body P4.While hSS(Y) is a must literal of P4’s prim-
itive action pickSoil(Y), the literal is must undone by P4’s last
primitive action dropSoil (Y). Thus, hSS(Y) is not a must (nor
mentioned) literal of P4. On the other hand, literal ¬hSS (Y)
is indeed a must literal of P4, along with literals hMC (Y)
and hPS(Y), both of which are derived from the summary
information of event-goal analyseSoil (Y).

Plan-body P0. While ¬at(X) is a must literal of event-
goal nav(X,Y), it is only a mentioned literal of P0 because
it is may undone in event-goal doSoilExp(Y); specifically, its
mentioned literal at(L) is such that ¬at(X)θ = ¬at(L)θ for
θ = {X/L}. Similarly, must literal at(Y) of nav(X,Y) is also
may undone in doSoilExp(Y).

Event-goal transmitRes(Y). Since literal rT (Y) is a must
literal of both of the event-goal’s associated plan-bodies P6

and P7, and Y also occurs in the event-goal, the literal is
classified as a must literal of the event-goal. Recall that this
means that for any ground instance transmitRes(Y)θ of the
event-goal, literal rT (Y)θ holds at the end of any successful
HTN execution of transmitRes(Y)θ.

Soundness and Completeness

We shall now analyse the properties of the algorithms pre-
sented. We show that they are sound, and we then discuss
completeness. First, it is not difficult to see that the presented
algorithms terminate, and that they run in polynomial time.

Theorem 2 Algorithm 1 always terminates, and runs in
polynomial time on the number of symbols occurring in Π∪Λ.

Proof Sketch. Since the algorithms presented are non-
recursive, the only non-trivial part of the proof concerns
the procedure for computing a unification when determining
whether May-Undone(l, P,Δ) holds (for a literal l, program
P , and a set Δ of summary information). In [13], one such
unification procedure is presented that is linear on the number
of symbols occurring in the two literals to be unified. �

This result is important when the plan-library changes over
time, e.g. because the agent learns from past experience, and
summary information needs to be recomputed frequently, or
when it needs to be computed right at the start of HTN plan-
ning, as done in [23].

The next result states that whenever Algorithm 1 (Summ)
classifies a literal as a must literal of an event-goal, this is
guaranteed to be the case, and that the algorithm correctly
computes its precondition and mentioned literals. More specif-
ically, any computed tuple, which includes one event-goal type

e, formula φ and must literals Lmt, respects Definitions 3 and
4. Moreover, there is exactly one tuple associated with e.

Theorem 3 Let Π be a plan-library, Λ be an action-library,
e be an event-goal type mentioned in Π, and let Δout =
Summ(Π,Λ). There exists one tuple 〈e, φ,Lmt ,Lmn〉 ∈ Δout,
the tuple is the summary information of e, and Lmn ⊆ mnt(e)
(recall mnt(e) denotes the mentioned literals of e).

Proof Sketch. We prove this by induction on e’s rank in
Π. First, from our ranking function we obtain a new one RΠ

by making event-goal ranks “contiguous” and start from 0.
For the base case, take any event-goal e with RΠ(e) = 0.

According to Definition 1 (Ranking), if RΠ(e) = 0, then
children(e,Π) = ∅. Thus, for all rules e′ : ψ ← P ∈ Π
such that e = e′θ, no event-goals occur in P . Let Pall be
the set of plan-bodies of all such rules. Then, the two main
steps are as follows. First, we show that due to line 1 of
procedure Summ(Π,Λ) there is exactly one summary tuple
〈P ′, ε,Lmt

P ′ ,Lmn
P ′ 〉 ∈ Δ for each primitive program P ′ men-

tioned in each P ∈ Pall. Second, since SummPlan(P,Π,Λ,Δ)
is called in line 5 for each plan-body P ∈ Pall, we show that on
the completion of this line, there is exactly one summary tuple
〈P , ε,Lmt

P ,Lmn
P 〉 ∈ Δ for each plan-body P ∈ Pall. A similar

argument applies to line 6.
For the induction hypothesis, we assume that the theorem

holds if RΠ(e) ≤ k, for some k ∈ N0.
For the inductive step, we show that the theorem holds

for RΠ(e) = k + 1. The main steps are as follows. Let Eall

denote the (non-empty) set of event-goal types mentioned in
all plan-bodies P ∈ Pall, where Pall is as before. By Definition
1, we know that for all e′ ∈ Eall, RΠ(e′) < RΠ(e). Then, by
the induction hypothesis, it follows that for each e′ ∈ Eall,
there is exactly one tuple 〈e ′, φe′ ,L

mt
e′ ,L

mn
e′ 〉 ∈ Δ, and this

tuple is the summary information of e′. Finally, since e
has a higher rank than those of all event-goals e′ ∈ Eall,
Summ(Π,Λ) will only call SummEvent(e, . . .) after the above
tuples are added to Δ, resulting in tuple 〈e, φ,Lmt ,Lmn〉 also
being added to Δ. �

Next, we discuss completeness. The theorem below states
that any precondition computed by Algorithm 3 is complete:
i.e., given any state from where there is a successful HTN
execution of an event-goal, the precondition extracted for the
event-goal will hold in that state. This theorem only concerns
Algorithm 3 because we can compute preconditions of event-
goals without needing to compute preconditions of plans.

Theorem 4 Let Π be a plan-library, Λ an action-library, e
an event-goal type mentioned in Π, and let 〈e, φ,Lmt ,Lmn 〉 ∈
Summ(Π,Λ). For all ground instances !eθ of !e and belief bases
B such that there exists a successful HTN execution C1 ·. . .·Cn

of !eθ with C1|B = B, it is the case that B |= φθ.

Proof Sketch. We prove that if !eθ has a successful HTN
execution, there is also a plan-rule e ′ : ψ ← P ∈ Π associated
with e such that B |= ψ′θ holds, where ψ′ is an appropriate
renaming of variables in ψ. We then show that ψ′ is a
disjunct of φ, from which it follows that B |= φθ. �

There are, however, situations where the algorithms do not
detect all must literals of an event-goal. The underlying reason

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans 1305

explore(X,Y)

R0

−→

nav(X,Y)

or

R1

−→

calib move(X,Y)

R2

move(X,Y)

doSoilExp(Y)

R3

−→

getSoilRes(Y)

R4

−→

pickSoil(Y) analyseSoil (Y)

R5

−→

getMoisture(Y) getSoilSize(Y)

dropSoil (Y)

transmitRes(Y)

or

R6

−→

establishCon sendRes(Y) breakCon

R7

−→

nav(Y,L) uploadRes(Y)

event-goal

plan-rule

action

Program Must Literals Mentioned Literals
calib cal -
move(X, Y) ¬at(X), at(Y) -
pickSoil(Y) hSS (Y) -
dropSoil(Y) ¬hSS (Y) -
getMoisture(Y) hMC (Y) -
getSoilSize(Y) hPS (Y) -
establishCon cE -
sendRes(Y) rT (Y) -
breakCon ¬cE -
uploadRes(Y) rT (Y) -
P1 ¬at(X), at(Y), cal -
P2 ¬at(X), at(Y) -
P5 hMC (Y), hPS (Y) -
P4 hMC (Y), hPS (Y), -

¬hSS (Y) -
P6 rT (Y),¬cE -
P7 ¬at(Y), at(L), cal

rT (Y)
P3 rT (Y), hMC (Y), ¬cE ,¬at(Y), at(L),

hPS (Y),¬hSS(Y) cal
P0 rT (Y), hMC (Y), ¬cE , at(Y),¬at(Y),

hPS (Y),¬hSS(Y) at(L), cal ,¬at(X)
nav(X, Y) ¬at(X), at(Y) cal
analyseSoil(Y) Same as P5 -
getSoilRes(Y) Same as P4 -
transmitRes(Y) rT (Y) ¬cE ,¬at(Y), at(L),

cal
doSoilExp(Y) Same as P3 Same as P3

explore(X, Y) Same as P0 Same as P0

Figure 1: Must and mentioned literals (right) of atomic programs and plan-bodies in the hierarchy (left). The rightmost column
only shows mentioned literals that are not also must literals. Abbreviations in the table are as follows: cal = calibrated , hSS =
haveSoilSample, hMC = haveMoistureContent , hPS = haveParticleSize , cE = connectionEstablished , rT = resultsTransmitted ,
and variable L = Lander. Rule R7’s context condition binds L to the lander’s location. Each plan-body Pi corresponds to rule
Ri in the hierarchy.

for this is that we do not reason about (FOL) precondition for-
mulas; specifically, we do not check entailment, because this
is semi-decidable in general [9]. In what follows, we use ex-
amples to characterise the four cases in which the algorithms
are unable to recognise must literals, and show how some of
the cases can be averted.

The first case was depicted in our example about going to
work on Fridays: by Definition 4, literal ¬haveCar is a must
literal of goToWorkFridaysPlan , but Algorithm 2 classifies it
as only a mentioned literal, as it cannot infer that the context
condition of rule driveHmPlan is contradicted by literal intox ,
and therefore that driveHmPlan can never be applied.

The second case is where a literal is a must literal simply
because it is entailed by a context condition. For example,
take an event-goal mov(P, T, L) that is associated with one
plan-rule, whose context condition checks whether package P
is in truck T , i.e., in(P, T), and whose plan-body moves the
truck to location L. Observe that in(P, T) is a must literal of
mov(P, T, L) by definition, but since in(P, T) does not occur
in the plan-body, Algorithm 2 does not consider the literal.
We do not expect this to be an issue in practice, however,
because such literals are accounted for by the event-goal’s
(extracted) precondition.

The third case is where must literals are “hidden” due to
the particular variable/constant symbols chosen by the do-
main writer when encoding literals. For example, given the
following two plan-rules for an event-goal that sends an email
from F to T , literal sent(T) is only a mentioned literal of
sendMail(F, T) according to Algorithm 3 (line 7 in particu-

lar), but a must literal of it by definition:

sendMail(F ,T) : (F 	= T)← +addedSignature ; +sent(T),
sendMail(F ,T) : (F = T)← +sent(F).

Nonetheless, by changing +sent(F) to +sent(T), which
then mentions the same variable symbol as the first plan-
body, sent(T) is identified by the algorithm as a must literal
of sendMail(F, T). In general, such “hidden” must literals can
be disclosed by choosing terms with appropriate care.

Finally, while Algorithm 2 “conservatively” classifies any
must literal that is may undone as a may literal, it could still
be a must literal by definition. For example, given an event-
goal move(X,Y), suppose that the following plan-rule is the
only one relevant for the event-goal:

move(X ,Y) : at(X) ∧ ¬at(Y)← −at(X) ; +at(Y).

Then, by Definition 4, both ¬at(X) and at(Y) are must liter-
als of the event-goal, but only at(Y) is its must literal accord-
ing to Algorithm 2, because it cannot infer that the context
condition entails X 	= Y .8 While the algorithm does fail to
detect some must literals in such domains, this can sometimes
be averted by encoding the domain differently. For example,
the above rule can be encoded as an action-rule instead, in
which case Algorithm 1 (in line 1) will classify ¬at(X) (and
at(Y)) as a must literal of move(X,Y), under the assumption
that action-rules are coherent.

8 Note that if the context condition is just at(X), then, by defini-
tion, at(Y) would indeed be the only must literal of the event-
goal, because it would then be possible for X and Y to have the
same value, and for at(Y) to “undo” ¬at(X).

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans1306

AN APPLICATION TO PLANNING

One application of the algorithms presented is to create ab-
stract planning operators that may be used together with
primitive operators and a classical planner in order to obtain
abstract (or “hybrid”) plans. While [6] focuses on algorithms
for extracting an “ideal” abstract plan from an abstract plan
that is supplied, here we give the details regarding how a first
abstract plan may be obtained.

To get abstract operators Λa from a plan-library Π and
an action-library Λ, we take the set Δ = Summ(Π,Λ) and
create an (abstract) operator for every summary information
tuple 〈e, φ,Lmt ,Lmn〉 ∈ Δ. To this end, we take the operator’s
name as e, appended with its arity and combined with any ad-
ditional variables occurring in φ; the operator’s precondition
as φ; and its postcondition as the set of must literals Lmt.

Since mentioned literals of event-goals are not included in
their associated abstract operators, it is crucial that we as-
certain whether these literals will cause unavoidable conflicts
in an abstract plan found. For example, consider the classical
planning problem with initial state p and goal state r, and the
abstract plan e1 · e2 consisting of two event-goals (or abstract
operators). Suppose e1 and e2 have the following plan-rules:

e1 : true ← +p; +q e1 : true ← −p; +q e2 : p ∧ q ← +r

Notice that the postconditions (must literals) of abstract
operators e1 and e2 are respectively q and r, and that e1 · e2
is a classical planning solution for the given planning problem.
However, when this plan is executed, if e1 is decomposed using
its second plan-rule, this will cause (mentioned literal) ¬p to
be brought about, thereby invalidating the context condition
of e2 (which requires p).

To check for such cases, we present the following simple
polynomial-time algorithm. Suppose that P = P1; . . . ;Pn is
the program corresponding to a classical planning solution
P ′

1 · . . . · P
′

n for some planning problem, where each (ground)
Pi is either an action or event-goal. Then, we say that P is
correct relative to Δ if for any (ground) literal l occurring in
the precondition of any Pi, the following condition holds: if l
is not must undone and it is may undone (relative to Δ) in the
preceding subplan P1; . . . ;Pi−1 by some mentioned literal l′ of
a step Pk in the subplan,9 then literal l, or its complement, is
also must undone (relative to Δ) in the steps Pk+1; . . . ;Pi−1.
Otherwise, P is said to be potentially incorrect . Interestingly,
the situation where l is must undone in P1; . . . ;Pi−1 is not un-
acceptable because it cannot invalidate the (possibly disjunc-
tive) precondition of Pi, given that P1; . . . ;Pn corresponds to
a solution for some classical planning problem. The following
theorem states that, as expected, a correct program P will
always have at least one successful HTN decomposition.

Theorem 5 Let Π be a plan-library, Λ an action-library,
Δ = Summ(Π,Λ), and P the program corresponding to a
solution for the classical planning problem 〈B,Bg ,Λ ∪ Λa〉,
where B and Bg are belief bases representing respectively ini-
tial and goal states. Then, if P is correct (relative to Δ), there

9 We rely here on a slightly extended version of the definition of
may undone from before, to have the exact step (Pk) and literal
(l′) responsible for the “undoing”. Moreover, observe that literals
l and l′ are obtained by applying the same substitution that the
planner applied to obtain P ′

i and P ′

k
, respectively.

is a successful HTN execution C1 · . . . · Cn of P such that
C1|B = B, C1|P = P and Cn|B |= Bg.

Proof Sketch. If there is no such successful execution, since
P = P1; . . . ;Pn is a classical planning solution, there must
be a mentioned literal of some Pi that intuitively “conflicts”
with a literal occurring in the precondition of some Pj , with
j > i. The classical planner will not have taken such conflicts
into account, but according to the definition of what it means
for P to be correct, such a mentioned literal cannot exist. �

If we find that P is potentially incorrect, we then deter-
mine whether it is definitely incorrect, i.e., whether there are
conflicts that are unavoidable. To this end, we look for a suc-
cessful HTN decomposition of P , failing which the plan is
discarded and the process repeated with a new abstract plan.

DISCUSSION & FUTURE WORK

We have presented definitions and sound algorithms for sum-
marising plan hierarchies which, unlike past work, are defined
in a typical and well understood BDI agent-oriented program-
ming language. By virtue of its syntax and semantics being
inherently tied to HTN planning, our work straightforwardly
applies to HTN planners such as SHOP [14]. Our approach is
closely related to [5], the main differences being that we sup-
port variables in agent programs, and we reason about non-
concurrent plans. While these do make a part of our approach
incomplete, we have shown how this can sometimes be averted
by writing domains with appropriate care. Crucially, we have
handled variables “natively”, without grounding them on a
finite set of constants. We concluded with one application of
our algorithms, showing how they can be used together with
a classical planner in order to obtain abstract plans.

We expect that the summaries we compute will be useful in
other applications that rely on similar information, such as co-
ordinating the plans of single [21, 22] and multiple [5] agents,
and particularly in improving HTN planning efficiency [23].
There is also potential for using such information as guidance
when creating agent plans manually [25].

Interestingly, the application we presented mitigates our
restriction that plan-libraries cannot be recursive, as the clas-
sical planner can, if necessary, repeat an event-goal in an ab-
stract plan. Nonetheless, allowing recursive plan-libraries is
still an interesting avenue for future work. Another useful im-
provement would be to allow partially ordered steps in plan-
bodies (i.e., the construct P ‖ P ′). Given a plan-library Π, one
potential approach to that end is to obtain the plan-library Π′

consisting of all linear extensions of plan-rules in Π, and then
use Π′ as the input into Algorithm 1 (Summ). We could use
existing, fast algorithms to generate linear extensions [16], or
consider simpler plan-rules corresponding to restricted classes
of partially ordered sets [4]. Finally, it would be interesting to
formally characterise the restricted class of domains in which
the presented algorithms are complete.

ACKNOWLEDGEMENTS

This work was supported by Agent Oriented Software and the
Australian Research Council (grant LP0882234). We thank
Brian Logan for useful discussions relating to the work pre-
sented, and the anonymous reviewers for helpful feedback.

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans 1307

REFERENCES

[1] R. W. Alford, U. Kuter, and D. Nau. Translating HTNs to
PDDL: A small amount of domain knowledge can go a long
way. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI-09), pages 1629–1634, 2009.

[2] J. A. Baier, C. Fritz, and S. A. McIlraith. Exploiting proce-
dural domain control knowledge in state-of-the-art planners.
In Proceedings of the International Conference on Automated
Planning and Scheduling (ICAPS-07), pages 26–33, 2007.

[3] A. Botea, M. Enzenberger, M. Müller, and J. Schaeffer.
Macro-FF: Improving AI planning with automatically learned
macro-operators. Journal of Artificial Intelligence Research
(JAIR), 24:581–621, 2005.

[4] V. Bouchitte and M. Habib. The calculation of invariants
for ordered sets. In I. Rival, editor, Algorithms and Order,
volume 255, pages 231–279. Springer Netherlands, 1989.

[5] B. J. Clement, E. H. Durfee, and A. C. Barrett. Abstract
reasoning for planning and coordination. Journal of Artificial
Intelligence Research (JAIR), 28:453–515, 2007.

[6] L. de Silva, S. Sardina, and L. Padgham. First Principles
Planning in BDI systems. In Proceedings of the Interna-
tional Joint Conference on Autonomous Agents and Multi-
agent Systems (AAMAS-09), pages 1105–1112, 2009.

[7] K. Erol, J. Hendler, and D. S. Nau. HTN planning: Complex-
ity and expressivity. In Proceedings of the National Confer-
ence on Artificial Intelligence (AAAI-94), pages 1123–1128,
1994.

[8] C. Fritz, J. A. Baier, and S. A. McIlraith. ConGolog, Sin
Trans: Compiling ConGolog into Basic Action Theories for
planning and beyond. In Proceedings of the International
Conference on Principles of Knowledge Representation and
Reasoning (KR-08), pages 600–610, 2008.

[9] D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors.
Handbook of Logic in Artificial Intelligence and Logic Pro-
gramming. Oxford University Press, 1994.

[10] M. Ghallab, D. S. Nau, and P. Traverso. Automated Plan-
ning: Theory and Practice. Morgan Kaufmann Publishers
Inc., 2004.

[11] S. Kambhampati, A. D. Mali, and B. Srivastava. Hybrid
planning for partially hierarchical domains. In Proceedings
of the National Conference on Artificial Intelligence (AAAI-
98), pages 882–888, 1998.

[12] J. W. Lloyd. Foundations of Logic Programming; (2nd Ex-
tended Ed.). Springer-Verlag New York, Inc., 1987.

[13] A. Martelli and U. Montanari. An efficient unification algo-
rithm. ACM Transactions on Programming Languages and
Systems, 4(2):258–282, 1982.

[14] D. S. Nau, T.-C. Au, O. Ilghami, U. Kuter, J. W. Murdock,
D. Wu, and F. Yaman. SHOP2: An HTN planning system.
Journal of Artificial Intelligence Research (JAIR), 20:379–
404, 2003.

[15] G. D. Plotkin. A structural approach to operational seman-
tics. Technical Report DAIMI FN-19, Computer Science De-
partment, University of Aarhus, Denmark, 1981.

[16] G. Pruesse and F. Ruskey. Generating linear extensions fast.
SIAM Journal on Computing, 23(2):373–386, 1994.

[17] A. S. Rao. AgentSpeak(L): BDI agents speak out in a log-
ical computable language. In Proceedings of the European
workshop on Modelling Autonomous Agents in a Multi-Agent
World : agents breaking away (MAAMAW-96), pages 42–55.
Springer, 1996.

[18] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to
practice. In Proceedings of the International Conference on
Multiagent Systems (ICMAS-95), pages 312–319, 1995.

[19] S. Sardina, L. de Silva, and L. Padgham. Hierarchical plan-
ning in BDI agent programming languages: A formal ap-
proach. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
06), pages 1001–1008, 2006.

[20] S. Sardina and L. Padgham. A BDI agent programming lan-
guage with failure handling, declarative goals, and planning.
Autonomous Agents and Multiagent Systems, 23(1):18–70,
2011.

[21] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting
and avoiding interference between goals in intelligent agents.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI-03), pages 721–726, 2003.

[22] J. Thangarajah, L. Padgham, and M. Winikoff. Detect-
ing and exploiting positive goal interaction in intelligent
agents. In Proceedings of the International Joint Conference
on Autonomous Agents and Multiagent Systems (AAMAS-
03), pages 401–408, 2003.

[23] R. Tsuneto, J. Hendler, and D. Nau. Analyzing external con-
ditions to improve the efficiency of HTN planning. In Pro-
ceedings of the National Conference on Artificial Intelligence
(AAAI-98), pages 913–920, 1998.

[24] M. Winikoff, L. Padgham, J. Harland, and J. Thangarajah.
Declarative and procedural goals in intelligent agent systems.
In Proceedings of the International Conference on Principles
of Knowledge Representation and Reasoning (KR-02), pages
470–481, 2002.

[25] Y. Yao, L. de Silva, and B. Logan. Reasoning about the
executability of goal-plan trees. In Engineering Multi-Agent
Systems Workshop (EMAS-16), pages 181–196, 2016.

L. de Silva et al. / Summary Information for Reasoning About Hierarchical Plans1308

