
Learning the Structure of Dynamic Hybrid Relational
Models

Davide Nitti12 and Irma Ravkic12 and Jesse Davis2 and Luc De Raedt2

Abstract. Typical approaches to relational MDPs consider only dis-
crete variables or else discretize the continuous variables prior to in-
ference or learning. In contrast, we consider hybrid relational MDPs,
which are represented as probabilistic programs and specify the prob-
ability density function of the continuous variables. Our key contri-
bution is that we introduce a technique for learning their structure
(and parameters) from data. The learned models contain rich rela-
tional descriptions as well as mathematical equations. We demon-
strate the utility of our approach by learning a model that accurately
predicts the effects of robot-arm actions. The learned model is then
used for planning tasks.

1 Introduction

Markov Decision Processes (MDPs) are the standard representation
used in probabilistic planning and reinforcement learning [19, 24,
22]. Relational MDPs integrate these processes with principles of
statistical relational artificial intelligence [6], resulting in models that
make abstraction of sets of states, transitions and can compactly rep-
resent and generalize across states having a variable number of ob-
jects through the use of relations. While relational MDPs are popular
in planning and learning and there has been steady progress, their ap-
plication to domains such as robotics is still severely limited by the
emphasis on purely symbolic representations and the lack of gen-
eral methods for dealing with subsymbolic (e.g., numeric) informa-
tion. Approaches that have combined relational MDPs and robotics
include learning probabilistic relational planning rules [17, 16], rela-
tional reinforcement learning [20, 13, 3], imitation learning [12], in-
verse reinforcement learning [11], and learning relational affordance
models in multi-object manipulation tasks [10]. However, in all these
cases the low-level numeric information had to be converted into a
symbolic representation, often prior to learning and inference, lead-
ing to a loss of information, potentially affecting the quality of the
obtained solutions. In another case, the approach required experts to
provide partial code for the relational MDP [9].

We propose a different “hybrid” approach to relational MDPs in
which numeric features are first-class citizens and the models are
fully learned from data. Rather than discretizing numeric features
and relations, we explicitly represent their probability density in an
expressive probabilistic programming language, the dynamic distri-
butional clauses (DDCs) [15], which has already been used in a
robotics context and for which a planner, called HYPE [14], ex-
ists. Specifically, we address the problem of learning a state tran-
sition model from a set of trajectories collected from a robot-arm
performing actions. Our central contribution is an algorithm to learn

1 These authors contributed equally to this work.
2 Department of Computer Science, KU Leuven, Belgium

the structure and the parameters of a DDC model representing a hy-
brid relational MDP. In order to realize this, we leverage statistical
relational learning (SRL) techniques for learning hybrid probabilistic
relational models (e.g., [23, 5, 18]). One novelty from an SRL per-
spective is that the learned DDCs include expressive features defined
as mathematical equations involving the continuous variables, which
is useful for finding, for instance, the object closest to the moved
one. We demonstrate the utility of our DDC-TL algorithm (DDC
Tree Learner) by applying the learned model to perform planning
with HYPE [14] in a simple robotics scenario.

By making continuous features first class citizens in relational
MDPs, we hope to contribute towards bridging the gap between sym-
bolic and numeric approaches and to facilitate the application of re-
lational MDPs to robotics.

2 Background

Next we introduce the necessary background needed to explain our
learner of hybrid dynamic relational models and how the learned hy-
brid models are used for planning.

2.1 MDP

The problem of planning under uncertainty can be modeled as a
Markov decision process (MDP). In an MDP, an agent interacts with
its environment, described using a set of states S, a set of actions A
that the agent can perform, a transition function p : S × A × S →
[0, 1], and a reward function R : S × A → R. That is, when in
state st and performing action at, the probability of reaching st+1

is given by p(st+1|st, at), for which the agent receives the reward
R(st, at). It is assumed that the agent operates over a finite number
of time steps t = 0, 1, . . . , T , with the goal of maximizing the ex-
pected reward: E[

∑T
t=0 γ

tR(st, at)], where s0 is the start state, a0

the first action, and γ ∈ [0, 1] is a discount factor. In this paper we
consider goal-oriented MDPs where there is a goal g ⊂ S to reach,
and the reward is high if we reach the goal, and low otherwise.

For planning, we shall use HYPE [14], a recently proposed planner
for hybrid relational MDPs. It is a sample-based planner that exploits
the model to simulate action effects and to determine the action in
each state that maximizes the expected total reward. As input, HYPE
requires both the starting state s0 and the MDP specification of the
domain described using DDCs. That is, it must be given the state
transition model and the reward function.

2.2 Distributional Clauses

We assume some familiarity with standard terminology of statisti-
cal relational learning and logic programming [4]. Briefly, in logic

ECAI 2016
G.A. Kaminka et al. (Eds.)
© 2016 The Authors and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms
of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).
doi:10.3233/978-1-61499-672-9-1283

1283



programming symbols can be terms and predicates (often called
relations). A term is a constant, a logical variable (logvar) or an
n-ary functor f applied to a tuple of terms t1, t2, ..., tn, that is,
f(t1, t2, ..., tn). A constant term refers to a single object in the do-
main of interest. A logical variable (logvar) X is a variable ranging
over terms x ∈ C, where C is the set of possible ground terms (Her-
brand universe). An atom is of the form P(t1, ..., tn) where P/n is a
predicate with arity n and each ti is a term. For example near(1, 2)
is an atom that describes that objects 1 and 2 are close to each other.
A ground atom (or expression) does not contain logvars. A literal is
an atom or its negation.

In distributional clauses (DCs) [5, 15], an interpretation I assigns
a value I(a) to each random variable a. While in logic programming
that value of ground atoms will be true or false, in DCs the values can
also be discrete or numeric. A substitution θ = {v1/t1, ..., vn/tn}
assigns terms ti to variables. A substitution θ can be applied to an
expression E yielding the expression Eθ where all variables vi in E

are simultaneously replaced by the corresponding terms ti in θ. A
grounding substitution for an expression maps each logvar occurring
in that expression to a term without logvars. The set of all grounding
substitutions for an expression E is denoted grsub(E).

Formally, a distributional clause (DC) is a formula of the form
h ∼ D ← b1, . . . , bn, where the bi are literals and ∼ is a binary
predicate written in infix notation. The name of the random variable
h and the distribution D are formally terms. The intended meaning
of a distributional clause is that each ground instance of the clause
(h ∼ D ← b1, . . . , bn)θ defines the random variable hθ with distri-
bution Dθ whenever all the biθ are true, where θ is a substitution.
A distributional clause is a template to define conditional probabili-
ties: p(hθ|(b1, . . . , bn)θ) = Dθ. The term D can be nonground, i.e.,
values, probabilities, or distribution parameters can be related to con-
ditions in the body. Furthermore, given a random variable r, the term
�(r) constructed from the reserved functor �/1 represents the value
of r.

Dynamic distributional clauses (DDCs) associate a time index to
each random variable to capture temporal information. It is easy to
specify an MDP using DDC as described in [14].

Example 1. Let us consider a scenario of pushing an object, where
there is an object on the table and the robot has to move it in a given
region. This scenario is modeled with the following MDP:

pos(ID)t+1∼ gaussian(�(pos(ID)t)+(DX, DY), Σ)←
push(ID, (DX, DY)). (1)

stopt← dist(�(pos(ID)t), (0.6, 1.0))<0.1. (2)

reward(100)t← stopt. (3)

reward(−1)t← not(stopt). (4)

The DDC clause (1) defines the state transition model, i.e. the next
position pos(ID)t+1 of an object ID after a push action with dis-
placement (DX, DY). The deterministic clause (2) defines when the
goal is reached (e.g., an object is close to point (0.6, 1.0)) and the
remaining clauses define the reward function.

Note that pos(1)t+1 represents a random variable, i.e., the posi-
tion of object 1 at time t + 1, with predicate-like notation. But un-
like standard relational representations, a random variable can have
a continuous (or categorical) range. Thus, in DCs and DDCs an in-
terpretation assigns each random variable a value in its range.

Static inference in DCs is performed using importance sampling,
while filtering in dynamic models is performed using particle filter-
ing methods [15].

This paper explores how to learn a DDC program that describes
the state-transition model by using DDC-TL, a relational tree learner
inspired by learner of local models (LLM) [18] for hybrid relational
dependency networks.

3 Learning State Transition Models

We propose an algorithm (DDC-TL) for learning a state-
transition model, expressed as a DDC, from data described
by continuous variables, discrete variables, and relations (e.g.,
nextTo). Concretely, given a set of discrete-time trajectories
(s0, a0, s1, a1, ..., sT−1, aT−1, sT ), where st is the state (i.e., an in-
terpretation that could describe object properties and relations such
as position, orientation, type, and color) and at is an action at time t,
the goal is to learn DDCs that define a state transition model of the
following form:

Qt+1 ∼ D(fc(st)) ← bodyt (5)

Each such clause defines the distribution D(fc(st)) of a relational
random variable Qt+1 ∈ st+1 in terms of a set of (continuous) rela-
tional features fc(st) whenever bodyt holds, where bodyt is a con-
junction of literals (discrete conditions) that refer to the current state
st and action at. The relational features are essentially the random
variables defined in the DDC. Note that DDCs defined in this man-
ner result in a stratification where predicates at time t+1 only depend
on predicates from the previous time step t. Stratification is required
for DDCs to be well-defined [5].

In this paper, we consider a robot arm that moves objects on a
table. The actions considered are grasping followed by a vertical or
horizontal movement, pushing or tapping, while the features will be
positions of objects and all the derived relationships. However, unlike
related work, concepts like rightOf, closeTo or aboveOf are not
manually defined, but are indirectly learned with equational features,
which we will describe later. We assume inverse kinematics and a
motion planner are available to execute the described actions.

3.1 The Learned Model

The key insight to develop an algorithm for learning DDCs is that we
can leverage ideas from the learner of local models (LLM) approach
for learning hybrid relational dependency networks (HRDNs) [18].
HRDNs are able to model dependencies in relational domains that
have both continuous and discrete variables. Like DDCs, HRDNs
use a variant of first-order logic as a template language for defining
conditional probability distributions. An HRDN uses a set of local
distributions to approximate a joint distribution over a set of random
variables defined by grounding atoms constructed over a set of predi-
cates P and terms in C. In this paper, we are interested in learning the
dependencies that represent Formula (5). Hence, Qt+1 denote the set
of predicates for which we learn dependencies. We use Pt to denote
the set of predicates describing the previous time step, which are used
to construct the features that appear in Parents(Qt+1). Each local
distribution is quantified by a dependency Qt+1 | Parents(Qt+1),
where Qt+1 ∈ Qt+1 is a predicate and Parents(Qt+1) is a set of
relational features that describe how Qt+1 depends on the other pred-
icates in the domain. Such local distributions can be learned using
relational regression trees [2], but unlike standard (relational) regres-
sion trees, each leaf does not contain a constant but instead has a lin-
ear or logistic regression model. The key observation is that the dis-
tribution modeled by a relational regression tree can be represented
with DDCs. Therefore, techniques for learning relational regression

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models1284



trees can be adapted for learning (certain classes of) distributional
clauses.

Figure 1. A simplified snapshot of a relational regression tree for
predicting pos(ID)t+1. Ellipses represent internal nodes corresponding to
learned relational features, and rectangles represent density functions for

pos(ID)t+1 as defined in Example 2.

Example 2. Figure 1 shows a simplified example of a relational
regression tree learned by DDC-TL. Each root-to-leaf path can be
mapped onto one DDC, where each internal node defines a condition
bi that appears in the body of the rule or a numerical feature f ∈ fc,
and the leaf contains the probability distribution (density) D(fc) that
defines the random variable Qt+1 in terms of the features f along the
path.

The example tree in Figure 1 corresponds to the following set of
DDCs (some clauses are omitted):

L1 : posx(ID)t+1∼ gaussian(P+ DX, .02)← (6)

F1 : P is �(posx(ID)t),
F2-Tap : action(ID, tap, DX, DY)t.

L2 : posx(ID)t+1∼ gaussian(P, .004)← (7)

F1 : P is �(posx(ID)t),
F2-None : not(action(ID, Action, DX, DY)t),

F3-False : not(min{(�(posy(ID)t)− �(posy(ID2)t)),
ID �= ID2} < 0.07).

L3 : posx(ID)t+1∼ gaussian(P+ DX2, .03)← (8)

F1 : P is �(posx(ID)t),
F2-None : not(action(ID, Action, DX, DY)t),

F3-True : min{(�(posy(ID)t)− �(posy(ID2)t)),
ID �= ID2} < 0.07,

F4-True : min{(�(posy(ID)t)− �(posy(ID2)t)),
ID �= ID2} > −0.07,

F5-Tap : action(ID2, tap, DX2, DY2)t.

L4 : posx(ID)t+1∼ gaussian(P, .004)← (9)

F1 : P is �(posx(ID)t),
F2-None : not(action(ID, Action, DX, DY)t),

F3-True : min{(�(posy(ID)t)− �(posy(ID2)t)),
ID �= ID2} < 0.07,

F4-False : not(min{(�(posy(ID)t)− �(posy(ID2)t)),
ID �= ID2} > −0.07).

The aggregation function min{U, C}, where U is a mathematical
equation, returns the minimum of the U’s values obtained by applying
all possible substitutions θ for the unbound logvars in U (i.e., logvars
not in the target) such that the condition Cθ holds.

In a nutshell, this program models that the next x position is the
current position plus the action displacement of a tap action if one
occurred (clause (6)). If there is no tap action on the object and if its
y position is 7 cm higher (or lower) than that of any other object,
then the object’s x position will basically not change (clauses (7) and
(9)). If the object is close to another object that is tapped, then its
position will be affected as well (clause (8)).

One advantage of using relational regression trees to learn DDCs is
that they satisfy the mutual exclusiveness property required by DCs,
which states that if there are two distributional clauses defining the
same continuous random variable, their bodies must be mutually ex-
clusive. This is guaranteed by relational regression trees.

We shall now first introduce the type of features and distributions
used by our learning algorithm, and then provide a description of the
relational regression tree learning algorithm.

3.2 Relational Features

Each learned DDC will have the form shown in Formula (5) and will
correspond to a root-to-leaf path in a relational regression tree. There
are two types of internal nodes in such a tree:

• logical conditions which are tests that evaluate to true or false as
in standard decision trees. These nodes contribute a condition to
bodyt; and

• continuous features which specify a parameter that appears in the
conditional distribution D(fc(st)) contained in all leaf nodes be-
low this node.

In contrast to standard decision and regression trees, nodes contain-
ing a continuous feature do not specify a test. Hence, they do not split
the data and only have one child in the tree.

We now define the distributions and features used in our DDC-TL
algorithm.

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models 1285



Distributions. Leaf nodes, and hence D(fc(st)) in Formula (5),
contains one of the following distributions:

• A linear Gaussian distribution defining D(fc(st)) = N (μ, σ)
where μ = α+

∑
f∈fc(st)

f · βf if Qt+1’s range is continuous
• A softmax or normalized exponential model defining D(fc(st))

as a softmax(α(j) +
∑

f∈fc(st)
f · β(j)

f ) if Qt+1 ranges over dis-

crete values j, where the β
(j)
f are the weights for the features

f ∈ fc(st) and value j in Qt+1’s range.

The set fc(st) contains the numeric (continuous) features encoun-
tered on the root-to-leaf path. Notice that these distributions degen-
erate into a N (α, σ) and a probability mass function when there are
no numeric features, that is, when fc(st) = ∅.

Features. Given the (target) random variable Qt+1(A0, ..., An) with
logical variables A = {A0, ..., An}, any term U representing a ran-
dom variable with logical variables Bi such that ∀Bi ∈ A, can be
used as a feature in a distributional clause. For example, given the
target random variable posx(ID)t+1, any random variable with log-
ical variable ID is an admissible feature in fc (if continuous) or in
bodyt (if discrete), e.g., posx(ID)t, posy(ID)t, color(ID). Contin-
uous features can be discretized and added as conditions in bodyt,
e.g., posx(ID)t > 2.

If the random variable U has some logical variable Bi that does not
appear in A, then we allow aggregations of the form:

agg(U, C)

where agg is an aggregation function, U is a term representing a ran-
dom variable, and C is a conjunction of atoms that evaluates to true or
false (i.e., a condition). The feature computes the specified aggregate
agg over values returned as the result of aggregation over all possible
groundings of Uθ that satisfy Cθ. Sometimes the aggregation might
not be defined. For example, if there are no objects satisfying a spe-
cific condition C, then aggregation is over an empty set. In case the
node represents discretization of an aggregation feature applied to an
empty set, the discretized feature is assumed to be false as, for ex-
ample, F3-False in Example 2. If at some node a continuous feature
evaluates to undefined during learning, that feature is discarded
from the set of candidate features for that node and all its children.

Constructing high-level concepts from low-level numeric sensor
data often requires performing mathematical operations (e.g., addi-
tion, multiplication, etc.) on the raw data. As our goal is to enable
automated discovery of these types of concepts, we allow features
involving two atoms U1 and U2 that both have numeric ranges. These
features have the following form:

agg{(U1 op U2), C}
where op is a mathematical operator (+,−, ∗, /), and agg and C are
defined as before.

Note that an admissible aggregation over U needs at least one
logical variable Bi bound with a logical variable in the target
Qt+1(A0, ..., An), i.e. ∃i, j : Bi = Aj.

Example 3. An example of feature that includes an equation is:

min{(posy(ID)t − posy(ID2)t), ID �= ID2}
For a specific grounding of ID bound with the target, this feature
calculates the minimum distance in the y-plane between that object
and other objects around it. By placing a threshold on this feature, we

could distinguish when two objects are close. Thus, these features
can represent important concepts that are not explicitly encoded in
the raw data.

The condition C can also be a conjunction, for example:

min{(posy(ID)t − posy(ID2)t),

(ID �= ID2, action(ID2, push, DX, DY)t)},
which calculates the minimum distance between two distinctive ob-
jects if the pushing action is performed on the object ID2. If the con-
dition is not satisfied, the feature’s value is false.

Logical Conditions. Features can easily be turned into logical
conditions. If a feature f is discrete, the condition f = v (with a
value v in the range of f ) can serve as an atom in the body of a
distributional clause. When a discrete feature is included in a node,
there will be one subtree for each possible value v of that node in
the decision tree, as usual. If f is continuous, we can discretize it
by picking some threshold v in the range of f and building a feature
such as f > v or f ≤ v.

3.3 Learning Relational Regression Trees

Algorithm 1 DDC-TL
1: function FEATURESPACE(Qt+1, data, P, op, aggrs)
2: FQt+1 ← CONSTRUCT(Qt+1, data,P, op, aggrs)
3: end function

4: function GROWTREE(tree,Qt+1, data, score, FQt+1 )
5: f, scoref ← FINDBESTFEATURE(Qt+1, data, FQt+1 )
6: if stopcond(scoref ) then

7: ADDLEAF(tree)
8: end if

9: if is continuous(f ) then � Continuous range
10: tree ← ADDNODE(f, tree)
11: GROWTREE(tree, Qt+1, data, score, FQt+1 \ f )
12: else

13: tree ← ADDNODE(f, tree) � Discrete range
14: for each a in domain(f ) do

15: filtered ←filter(data, f, a) � data such that f = a
16: GROWTREE(tree[a], Qt+1,filtered,score,FQt+1\f )
17: end for

18: end if

19: end function

Algorithm. For each predicate Qt+1 occurring in a state, we learn
a relational regression tree that defines the distribution according to
a set of clauses of the form defined in Formula (5). Algorithm 1
outlines a top-down procedure for learning the tree. First, the func-
tion FEATURESPACE constructs a set of candidate relational features
FQt+1 that can appear in the internal nodes when learning the tree
for a target predicate Qt+1 (legal features will be described in detail
later). Starting from the empty tree, it adds internal nodes as follows.
It calls FINDBESTFEATURE which iterates through the set of candi-
date features and tries using each feature as the current internal node.
It calculates the difference in score between the new tree and the old
tree using five fold internal cross validation on the training data (the
score function is discussed in detail later). If no feature improves the
score (that is, stopcond(scoref) is true), then a leaf node is added.
Otherwise, the algorithm greedily selects the highest scoring feature

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models1286



f to include as the internal node. The selected feature is removed
from the set of candidate features. If the selected feature has a con-
tinuous range and never evaluates to undefined in the current branch,
the procedure recurses and passes all data to the next node. If the se-
lected feature has a discrete range, one branch is constructed for each
value of the discrete feature (yielding a logical condition). The data
is divided over the branches according to the feature’s value, and the
procedure recurses along each branch. When no feature improves the
score, the recursion stops, a leaf node is added, and the parameters of
the leaf’s probability distribution or density function are estimated.

Defining Legal Features. We now describe in more detail the
CONSTRUCT function in Algorithm 1, which receives as input
a target predicate Qt+1, a set of aggregation functions (aggrs), math-
ematical operators op, and data from which the ranges of predicates
are extracted. The features of the form agg(U, C) are constructed by
exhaustively enumerating all combinations of agg ∈ aggrs, U, and
C that meet the following constraints. The atom U does not appear in
C, and C is a conjunction with fewer than k ≤ N conjuncts. Each
conjunct in C is either a randvar-value test or an (in)equality con-
straint between two logvars. Each condition in C is “linked” to U via
a path of shared logvars, that may pass also through other conditions.
As aggregation functions, we consider min, max, avg, and �. Recall,
that �(U) simply returns the value of U in the data and that it is only
applicable if there is exactly one grounding substitution of U for each
grounding substitution θ of C for which Cθ is true in the data.

We construct candidate features of the form agg{(U1 op U2), C} in
an analogous manner. Both U1 and U2 must have continuous ranges.
We consider op ∈ {+,−, ∗, /} and the aforementioned aggregation
functions.

For all features that return a real value, we construct two variants:
1) the feature itself to be used as a parameter of the distribution, and
2) discretized version that can be used as a logical condition in the
body of a rule. The second alternative is implemented by discretizing
the feature into a number of different bins where bin widths are set
based on the training data. In the experiments we used five bins.

Example 4. To illustrate how to threshold a continuous value to cre-
ate a discrete feature, consider again the following feature

min{(posy(ID)t − posy(ID2)t), ID �= ID2}

which calculates the minimum distance in the y-plane between two
distinct objects. We also consider features with the following tem-
plate:

min{(posy(ID)t − posy(ID2)t), ID �= ID2} �� Thresh

where �� ∈ {<,>}, and Thresh is a threshold determined from the
training data. If �� is < and Thresh = 0.07, we get Feature F3 from
Example 2.

Score Function. In Algorithm 1 we use the loglikelihood as the
scoring function. The data consists of a set of traces of the form
(s0, a0, s1, a1, ..., sT−1, aT−1, sT ), and since we are interested in
learning the state transition model p(st+1|st, at) with the Markov
assumption, we split the traces into triples of the form (st, at, st+1).

Each triple can be viewed as an interpretation e that assigns val-
ues to each of the logical atoms and random variables that appear
in the triplet at times t + 1 and t. The loglikelihood of a triple

e = (st, at, st+1) for a DDC program P is

score(P, e) = logpP(st+1|st, at) =
∑

(ht+1∼D←bodyt)∈P

∑

θ:bodytθ∪ht+1θ⊆e

logpD(e(ht+1θ)|e(bodytθ)),

where e(a) denotes the value assignment of random variable a in
interpretation e. In this definition we assume that the transition prob-
ability factorizes as follows: p(st+1|st, at) =

∏
qi∈st+1

p(qi|st, at),
that is, every variable in the next state qi ∈ st+1 depends only on the
previous state and action.

Scoring a DDC program first requires estimating the parameters
for the CPDs D(fc(st)). For linear Gaussian distributions, parame-
ter learning requires estimating the weight vector for the linear re-
gression model. This can be done via standard maximum likelihood
techniques (e.g., ridge regression [1]). Similarly, softmax parame-
ter estimation requires learning the weight vectors for the logistic
regression model. We follow standard gradient ascent approach to
maximize the loglikelihood [1].

3.4 Related Work

In the literature there are several relational approaches that try to
learn a model and use it for planning. However, most approaches only
support relational (binary) random variables. For example, Pasula et
al. [17, 16] learn noisy indeterministic deictic (NID) rules that define
the state in terms of facts (true or false statements). Such representa-
tion has been used with the planner PRADA [8]. Similarly, Moldovan
et al. [10] learn relational affordance models in multi-object manip-
ulation tasks. In such works, the training data is discretized and the
model is relational, without the possibility to include continuous vari-
ables. This makes the model abstract but useful low level information
is lost. Moreover, in robotics applications the discretization is gen-
erally handcrafted. In contrast, our approach tries to learn the best
features for the prediction task.

Other approaches, based on RL, try to directly learn the Q-function
or the policy without learning the state transition model. Among
the works with a relational representation there is an approach for
performing policy gradient boosting [7], and approach for imitation
learning [12]. Both methods require a regression tree learner, thus
our approach can be easily used in such settings.

Few works consider learning hybrid relational domains. One sim-
plified attempt is the one of Moldovan at al. [9], that learns the struc-
ture of a Bayesian network to model two object effects and convert it
into DDC clauses. However, this fixed conversion might not general-
ize well on more than two objects. In contrast, our approach directly
learns a hybrid relational model, which allows to combine data col-
lected with a different number of objects, and thus provides a better
generalization. Moreover, their work considers only simple condi-
tional linear Gaussian models without aggregation or equational fea-
tures and they evaluate only plans of horizon one.

This work is based on the learner of local models (LLM), an ap-
proach for learning the structure of HRDNs [18]. Our approach dif-
fers from the LLM algorithm used for HRDNs in several crucial
ways. Most importantly, we provide support for automatically learn-
ing relationships that involve equational features. This is a key ca-
pability in terms of being able to model spatial relationships based
on low-level continuous data. Additional differences include that we
take into account time (and dynamics) and use a tree-based represen-
tation for the distributions/densities. Furthermore, the trees are rep-
resented using a set of DDCs, enabling their direct use for planning
with HYPE.

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models 1287



Beyond incorporating mathematical equations, our tree represen-
tation also differs from existing relational regression trees such as
TILDE [2] and its extension towards learning aggregate functions by
[21]. Another difference is that we use distributions in the leaves. Fi-
nally, there may be features on a path that are not used to “split” the
data but will be used as features in the distributions.

4 Experiments

This section empirically evaluates our approach for learning dynamic
hybrid transition models. Specifically we want to answer the follow-
ing questions:

Q1) How accurate are our learned state transition models for predic-
tion tasks?

Q2) How does DDC-TL compare to the propositional hybrid learn-
ers?

Q3) What is the performance of the planner that executes our
learned models?

To evaluate these questions, we consider a robotics scenario that con-
sists of a table with cubes and a Kinova MICO robot arm that can
manipulate the cubes as shown in Figure 2. The learner will only
have access to the x, y position of each object. Hence, the learned
model must automatically discover important intermediate concepts
like closeTo by constructing features that build upon the low-level
positional data. The learned model is then used for planning.

The learning was performed on Intel(R) Xeon(R) CPU 2.40GHz
machines with 128 Gb memory. The planning was performed on a
laptop Intel(R) i7 CPU 2.40GHz with 4 Gb memory.

4.1 Experimental Setup and Data Generation

To generate data, a sequence of actions is randomly generated and
executed on the objects and their effects (positions) are stored, that
is, (st, at, st+1) triples. The state is the x, y position of each ob-
ject. The number of objects used in the experiments are two, three
and four. The actions considered are grasping followed by moving
horizontally, grasping followed by moving vertically, pushing and
tapping. Each action refers to an object and is parameterized by the
displacement, a continuous value. The action might fail, e.g., when
the object is out of the range of the robot, or the object is too close to
other objects. In such cases, the objects will not move or move differ-
ently than expected from a successful action execution. The concept
of failure is not explicitly encoded and the learner must learn how to
distinguish the different effects according to the state and the action.

4.2 Methodology

We perform the experiments with the following learners:

• Basic Propositionalization. We propositionalize the state by con-
structing one feature for each fact. We denote these with B.

• Advanced Propositionalization. We propositionalize the state by
using exactly the candidate features considered by DDC-TL. We
denote these with A.

• DDC-TL. Our approach for learning hybrid dynamic state transi-
tion models as introduced in Section 3.

• DDC-TL-50. A version of DDC-TL using feature selection when
learning the tree. This means that when deciding on the split the
learner uses only the top 50 selected features.

Figure 2. MICO arm performing a left tap action of the object on the right.
This action moves the other object as well.

In Basic Propositionalization, each interpretation with n objects
is converted in n training examples, where the target is the next po-
sition of an object pos(x)t+1, and the features are the positions of
all objects at time t. In this scheme, we need to ensure that for each
training example with target pos(x)t+1, the features corresponding
to object x are in the same position.

Example 5. Given the triplet interpretation
{pos(1)t+1, pos(2)t+1, pos(3)t+1, pos(1)t, pos(2)t, pos(3)t}
(the values and the actions are omitted for compactness), the Basic
Propositionalization extracts three training examples:

pos(1)t+1 | pos(1)t, pos(2)t, pos(3)t
pos(2)t+1 | pos(2)t, pos(1)t, pos(3)t
pos(3)t+1 | pos(3)t, pos(2)t, pos(1)t

Note that the feature pos(x)t of the target object x is always the first
feature selected. The non-target object features do not have a fixed
order.

In DDC-TL we use all the available features for learning. In con-
trast, DDC-TL-50 uses feature selection in each node to overcome
some of the known issues of greedy search and control against over-
fitting. To select a subset of the features, we use Lasso regression,
ARD linear regression, and Random Forests for regression. We pick
the top 50 features according to the absolute value of the weights
in the linear models, and the feature importance metric of Random
Forests.

We use the following propositional learners for our experiments:
Lasso, regression trees, and gradient boosted regression trees. We
consider three different setups: the data only contains two objects,
the data only contains three objects, and the data containing two or
three objects. We also evaluate the models learned on two and three
objects by applying them to test data that contain four objects. In
each case, the goal of the model is to predict the x and y positions of
each object in the next time step.

4.3 Evaluation Settings

We consider two different evaluation setups. First, we perform
10-fold-cross-validation, and report the average root-mean-squared-
error (RMSE) over all held-out folds and learning time. For the

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models1288



propositional learners, hyper-parameter optimization is performed
using a grid search with internal cross-validated on the training set.

Second, we use the DDC-TL models with the best performance on
10-fold-cross-validation to perform planning using HYPE. We use a
reward of 100 if the goal is achieved and −1 otherwise, and consider
the following goals:

Region This requires moving any object in a specific region (dis-
tance around 20 cm from the closest object).

Swap This entails moving an object to the right (or left) side of an-
other object.

The presence of additional objects can make actions fail. Moreover, if
an object is out of reach it can be moved only indirectly by acting first
on the other objects that can influence its position. For this reason,
it is important that the action effects and the interactions between
objects are captured in the learned model. For each goal, a set of 15
experiments is performed from different starting positions and the
average number of steps is provided.

We assume that every action is applicable (i.e., executable), even
when the action does not provide an effect. Obviously, the planner
will need to select the actions that are useful to reach the goal. Ac-
tions that do not produce movement (i.e., fail) will probably not be
selected.

Videos of actions executed by the robot are available at https:
//dtai.cs.kuleuven.be/ml/systems/DC/

4.4 Results and Discussion

Table 1 presents the RMSE of the x and y positions for all ap-
proaches, and Table 2 summarizes the learning time. Note that the
basic propositionalization approach is not applicable when combin-
ing the two and three objects data as this approach only works for
a fixed number of input variables and hence a fixed number of ob-
jects. DDC-TL learns a model that has an error smaller than most
of propositional models tested (Q1). In the two objects case, DDC-
TL-50 beats all the propositional models (Q2). On the three objects
setting, DDC-TL has the best result. On the dataset combining the
data of both two and three objects, DDC-TL and Gradient Boosting
have the same performance. Note that Gradient Boosting has access
to the same features as DDC-TL and is an ensemble approach which
provides it with an advantage.

Moreover, for the propositional models learned with the advanced
feature set and DDC-TL, we used the models learned on data about
two and three objects data and evaluated them on test data containing
a number of objects (four) that was never seen in the training data.
The result for this setting is shown in the last column of Table 1. The
superior performance in this setting shows an important advantage of
our approach, which is that it is able to generalize to new scenarios
involving a different number of objects.

Table 2 shows the learning time. We report the time needed to cal-
culate the values of all the features in the feature space and the time to
actually learn the model. The calculated features are also used when
learning propositional approaches. The proposed DDC-TL is more
complex, thus generally slower than propositional learning methods.
However, our approach has not been optimized and there are number
of ways to improve performance (e.g., use feature selection, use a
beam search, etc.).

The models have been also qualitatively tested on some actions.
For example, Figure 3 shows the predicted positions of two objects
(based on sampling) after a tap action. The visual inspection confirms

Figure 3. Prediction of tap action with two objects. The object on the left
is tapped on the right, this moves the other object. 1000 samples of object

positions are shown with the mean in dark color.

that the model captures the interactions between objects. In particu-
lar, the model contains relevant features such as the closeness of an
object to the object being moved (as shown in Figure 1) and the con-
cept ‘not reachable’, that is, the object is far away from the arm.

Table 3 presents results about using the learned model with the
HYPE planner. For the experiments we use the model learned by
DDC-TL with the full feature set. For the Region task it has an av-
erage success rate of 61% and needs 3.4 steps on average (when it
succeeds); whereas for the Swap task, it has an average success rate
of 62% and needs 3.8 steps on average (Q3). These results confirm
that DDC-TL is able to learn a model that is sufficiently accurate for
performing simple planning tasks. However, the plans do not always
succeed for two reasons. First, there are some scenarios where the
objects interactions are not properly modeled. This is expected given
that we have a limited amount of training data (196 interpretations
for the setup with two objects, and 376 interpretations for the setup
with three objects). Second, to keep the planning time reasonable,
we limited the number of samples used by the planner to 250. Using
more samples could improve the planner’s performance.

RMSE

Num. of objects

Learners 2 3 2 + 3 2 + 3 → 4

DDC-TL 0.029 0.022 0.024 0.023
DDC-TL-50 0.027 0.026 0.026 0.019

Lasso-B 0.030 0.026 NA NA
Regression Tree-B 0.037 0.030 NA NA
Gradient Boosting-B 0.029 0.025 NA NA
Lasso-A 0.031 0.026 0.027 0.023
Regression Tree-A 0.037 0.029 0.032 0.030
Gradient Boosting-A 0.029 0.024 0.024 0.023

Table 1. The RMSEs of predicting the next x and y positions, based on the
learned models, averaged over 10 folds.

5 Conclusions

To the best of our knowledge, this paper is the first approach that can
learn a dynamic statistical relational state transition model in a hy-
brid domain and then apply an MDP planner to the learned model.
The central contributions of the paper are: adapting HRDN learning

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models 1289



Runtime (seconds)

Num. of objects

Learners 2 3 2 + 3

Feature computation 1072.5 2099.5 3186
DDC-TL 3501.5 58322.0 100159.0
DDC-TL-50 1436.0 14846.5 25646.0
Lasso-B 1.8 2.7 NA
Regression Tree-B 0.2 0.7 NA
Gradient Boosting-B 19.9 75.2 NA
Lasso-A 33.7 98.1 160.6
Regression Tree-A 7.2 19.6 26.6
Gradient Boosting-A 636.5 1824.5 2490.5

Table 2. The learning time measured in seconds for learning the models
for predicting the next x and y positions averaged over 10 folds. Feature
computation is the time DDC-TL needs to calculate the values of all the

features in the feature space. These calculated feature values are also used
for learning propositional models.

Avg. # steps (max 5) Avg. Reward Success Rate

Region 3.4 56.8 61%
Swap 3.8 57.3 62%

Table 3. Planning results using planner HYPE with the model learned by
DDC-TL. ‘Avg. # steps’ refers to the average number of steps when the plan

succeeds.

for learning dynamic distributional clauses, extending the rich rela-
tional feature space to include mathematical equations involving the
continuous variables, planning with the learned hybrid models, and
identifying a potential robotics application for SRL. Empirically, we
demonstrated the merits of our approach using scenario involving a
real robotic arm. One of the future directions is to perform learning
with partial observability or an unknown number of objects. Another
future direction is to explore whether the features that we select in
one scenario and that are deemed as interesting can be re-used in
future scenarios. This might speed up the learning and increase the
expressivity and compression of the models as the number of scenar-
ios grows.

Acknowledgements

This work has been supported by the Research Foundation Flanders,
by the Chist-Era ReGround project, and by the BOF funds of the
KULeuven.

References

[1] Christopher M. Bishop, Pattern Recognition and Machine Learning,
Springer, 2006.

[2] Hendrik Blockeel and Luc De Raedt, ‘Top-down induction of first-order
logical decision trees’, Artificial intelligence, 101(1), 285–297, (1998).

[3] Tom Croonenborghs, Jan Ramon, Hendrik Blockeel, and Maurice
Bruynooghe, ‘Online learning and exploiting relational models in re-
inforcement learning.’, in Proceedings of the 20th International Joint
Conference on Artificial Intelligence (IJCAI), pp. 726–731, (2007).

[4] Probabilistic Inductive Logic Programming — Theory and Applica-
tions, eds., L. De Raedt, P. Frasconi, K. Kersting, and S. Muggleton,
volume 4911 of Lecture Notes in Artificial Intelligence, Springer, 2008.

[5] B. Gutmann, I. Thon, A. Kimmig, M. Bruynooghe, and L. De Raedt,
‘The magic of logical inference in probabilistic programming’, Theory
and Practice of Logic Programming, 11(4-5), 663–680, (2011).

[6] Saket Joshi, Roni Khardon, Prasad Tadepalli, Alan Fern, and Aswin
Raghavan, ‘Relational Markov decision processes: Promise and
prospects.’, in AAAI Workshop: Statistical Relational Artificial Intel-
ligence, (2013).

[7] Kristian Kersting and Kurt Driessens, ‘Non-parametric policy gradi-
ents: A unified treatment of propositional and relational domains’, in
Proceedings of the 25th International Conference on Machine Learn-
ing, pp. 456–463, (2008).

[8] Tobias Lang and Marc Toussaint, ‘Planning with Noisy Probabilistic
Relational Rules’, Journal of Artificial Intelligence Research, 39, 1–49,
(2010).

[9] Bogdan Moldovan and Luc De Raedt, ‘Learning relational affordance
models for two-arm robots’, in Intelligent Robots and Systems (IROS
2014), 2014 IEEE/RSJ International Conference on, pp. 2916–2922.
IEEE, (2014).

[10] Bogdan Moldovan, Plinio Moreno, Martijn van Otterlo, José Santos-
Victor, and Luc De Raedt, ‘Learning relational affordance models for
robots in multi-object manipulation tasks’, in Proceedings of the 2012
IEEE International Conference on Robotics and Automation (ICRA),
pp. 4373–4378. IEEE, (2012).

[11] Thibaut Munzer, Bilal Piot, Matthieu Geist, Olivier Pietquin, and
Manuel Lopes, ‘Inverse reinforcement learning in relational domains’,
in Proceedings of the 24th International Joint Conference on Artificial
Intelligence (IJCAI), (2015).

[12] Sriraam Natarajan, Saket Joshi, Prasad Tadepalli, Kristian Kersting, and
Jude Shavlik, ‘Imitation learning in relational domains: A functional-
gradient boosting approach’, in Proceedings of the 22nd International
Joint Conference on Artificial Intelligence (IJCAI), volume 22, p. 1414,
(2011).

[13] Vien Ngo and Marc Toussaint, ‘Model-based relational reinforcement
learning when object existence is partially observable’, in Proceedings
of the 31st International Conference on Machine Learning (ICML-14),
pp. 559–567, (2014).

[14] Davide Nitti, Vaishak Belle, and Luc De Raedt, in Proceedings of the
European Conference on Machine Learning and Knowledge Discovery
in Databases (ECML/PKDD) 2015, Part II, volume 9285.

[15] Davide Nitti, Tinne De Laet, and Luc De Raedt, ‘A particle filter for
hybrid relational domains’, in Proceedings of the 2013 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS), pp.
2764–2771, (2013).

[16] Hanna Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling, ‘Learn-
ing probabilistic relational planning rules.’, in International Conference
on Automated Planning and Scheduling (ICAPS), pp. 73–82, (2004).

[17] Hanna M Pasula, Luke S Zettlemoyer, and Leslie Pack Kaelbling,
‘Learning symbolic models of stochastic domains’, Journal of Artifi-
cial Intelligence Research, 309–352, (2007).

[18] Irma Ravkic, Jan Ramon, and Jesse Davis, ‘Learning relational depen-
dency networks in hybrid domains’, Machine Learning, 100(2), 217–
254, (2015).

[19] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An
Introduction, MIT Press, 1998.

[20] Prasad Tadepalli, Robert Givan, and Kurt Driessens, ‘Relational rein-
forcement learning: An overview’, in Proceedings of the ICML-2004
Workshop on Relational Reinforcement Learning, pp. 1–9, (2004).

[21] Anneleen Van Assche, Celine Vens, Hendrik Blockeel, and Sašo
Džeroski, ‘First order random forests: Learning relational classi-
fiers with complex aggregates’, Machine Learning, 64(1-3), 149–182,
(2006).

[22] Luis Gustavo Rocha Vianna, Leliane N. de Barros, and Scott San-
ner, ‘Real-time symbolic dynamic programming’, in Proceedings of
the 29th Conference on Artificial Intelligence (AAAI), pp. 3402–3408,
(2015).

[23] Jue Wang and Pedro Domingos, ‘Hybrid Markov Logic Networks.’, in
Proceedings of the 23rd Conference on Artificial intelligence (AAAI),
volume 2, pp. 1106–1111, (2008).

[24] M. Wiering and M. van Otterlo, Reinforcement Learning: State-of-the-
Art, Adaptation, Learning, and Optimization, Springer, 2012.

D. Nitti et al. / Learning the Structure of Dynamic Hybrid Relational Models1290


