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Abstract. Hierarchical Task Networks (HTNs) are a common

model for encoding knowledge about planning domains in the form

of task decompositions. We present a novel algorithm that uses in-

variant analysis to construct an HTN from the PDDL description of a

planning domain and a single representative instance. The algorithm

defines two types of composite tasks that interact to achieve the goal

of a planning instance. One type of task achieves fluents by traversing

invariants in which only one fluent can be true at a time. The other

type of task applies a single action, which first involves ensuring that

the precondition of the action holds. The resulting HTN can be ap-

plied to any instance of the planning domain, and is provably sound.

We show that the performance of our algorithm is comparable to al-

gorithms that learn HTNs from examples and use added knowledge.

Introduction

Hierarchical Task Networks, or HTNs, are a popular tool for encod-

ing hierarchical structure into planning domains. In the past, HTNs

have been successfully used in a variety of planning applications:

military planning [26], Web service composition [32], unmanned air

vehicle control [24], strategic game playing [30, 23], personalized

patient care [29] and business process management [9], to name a

few.

Although HTNs are at least as expressive as STRIPS planning

[6], the main reason for their popularity is that they restrict actions

choices. By excluding portions of the state space, search proceeds

more quickly towards the goal, or in HTN terminology, towards gen-

erating a valid expansion of the initial task list. In the extreme case,

each task has a single possible expansion, and planning is reduced to

a simple traversal of the task hierarchy. Properly designing an HTN

can be a time-consuming task for a human expert, but once this work

is done, there is little need to optimize search.

Another powerful characteristic of HTNs is that tasks are parame-

terized, making it possible to encode knowledge about an entire plan-

ning domain, not just individual planning instances. Although identi-

fying effective decomposition strategies for all instances of a domain

can be arduous, once an HTN has been constructed for a planning

domain, it can be used to solve an entire family of instances more

efficiently.

Thus, the main reason that HTNs are frequently used in real-world

applications is that they offer a potent mechanism for reducing the

search effort required to solve a family of large-scale planning in-

stances. This is also the reason that HTNs were so successful in the

hand tailored track of early incarnations of the International Plan-

ning Competition (IPC): the participants were given access to the
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planning domains beforehand and designed HTNs that effectively

narrowed the search to a tiny portion of the state space. It is not a co-

incidence that the HTN planner that achieved the largest coverage at

IPC-2002 and was for a long time regarded as the state-of-the-art in

HTN planning, SHOP2 [27], performs blind search in the task space

to compute a valid expansion. Most of the work required to reduce

the search effort is performed while designing the HTN, and once

this work is done, there is little need to optimize search to solve each

instance efficiently.

In summary, HTNs offer a mechanism for human experts to en-

code prior knowledge about a planning domain. Typically, this re-

quires many hours of fine-tuning, debugging and testing. This is fine

for specific planning applications in which the initial effort is com-

pensated by the subsequent reduction in search time during succes-

sive applications of the planner. However, a large body of research in

the planning community is dedicated to finding domain-independent

approaches to planning. Traditionally, HTNs have not found a place

in this body of research because of their domain-dependent empha-

sis.

A key motivation for this work is to explore whether it is possible

to generate HTNs automatically in a domain-independent way. We

also want to investigate whether such HTNs offer benefits similar to

those designed by human experts. In the literature there exist two

techniques that construct HTNs automatically [11, 35]. These tech-

niques rely on annotated traces of plans that solve a set of instances

from a domain.

In this paper we present a novel algorithm for generating HTNs

automatically. Our algorithm takes as input the PDDL description

of a planning domain and a single representative instance. Unlike

previous approaches, the algorithm does not require solution plans

for a subset of instances of the domain. Instead, our approach is to

generate HTNs that encode invariant graphs of planning domains.

An invariant graph is similar to a lifted domain transition graph, but

can be subdivided on types. To traverse an invariant graph we define

two types of tasks: one that reaches a certain node of an invariant

graph, achieving the associated fluent, and one that traverses a single

edge of an invariant graph, applying the associated action. These two

types of tasks are interleaved, in that the expansion of one type of

task involves tasks of the other type.

In experiments we test our approach on planning benchmarks from

the International Planning Competition (IPC) and on the instances

used in experiments with HTN-MAKER [11]. To solve the instances

we use the SHOP2 planner [27], which performs blind search in the

task space to compute a valid expansion. We show that the HTNs

constructed by our algorithm solve all training and test set instances

used to evaluate HTN-MAKER.

The rest of the paper is organized as follows. We first provide a
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background on planning and HTNs. We then introduce the concept

of invariant graphs, and show how to generate invariant graphs for

a given planning domain. We then describe our base algorithm for

constructing HTNs. Next, we describe several optimizations on top

of the base algorithm, and present experimental results. We conclude

with a discussion of related work and possible directions for future

work.

Planning

We consider the fragment of PDDL 2.1 [7] that models typed STRIPS

planning domains with positive preconditions and goals. To represent

planning domains we adapt a definition based on function symbols

[1]. Given a set X , let Xn denote the set of vectors of length n whose

elements are symbols in X . Given such a vector x ∈ Xn, let xk ∈
X , 1 ≤ k ≤ n, denote the k-th element of x.

We distinguish between typed and untyped function symbols. An

untyped function symbol f has associated arity α(f). In addition, a

typed function symbol f has an associated type list β(f) ∈ T α(f),

where T = {τ1, . . . , τn} is a set of types. Let F be a set of function

symbols, and let Σ = Σ1 ∪ · · · ∪ Σn be a set of objects, where

Σi, 1 ≤ i ≤ n, is a set of objects of type τi. We define FΣ =
{f [x] : f ∈ F, x ∈ Σα(f)} as the set of new objects obtained by

applying each function symbol in F to each vector of objects in Σ of

the appropriate arity. If f is typed, f [x] has to satisfy the additional

constraint xk ∈ Σβk(f) for each k, 1 ≤ k ≤ α(f), i.e. the type of

each element in x is determined by the type list β(f) of f .

Let f and g be two function symbols in F . An argument map from

f to g is a function ϕ : Σα(f) → Σα(g) mapping arguments of f to

arguments of g. An argument map ϕ allows us to map each object

f [x] ∈ FΣ to an object g[ϕ(x)] ∈ FΣ. In PDDL, argument maps

have a restricted form: each element in ϕ(x) is either an element

from x or a constant object in Σ independent of x. WLOG we assume

that argument maps are well-defined for typed function symbols.

A planning domain is a tuple d = 〈T , <, P,A〉, where T =
{τ1, . . . , τn} is a set of types, < is an inheritance relation on types,

P is a set of typed function symbols called predicates, and A is a set

of typed function symbols called actions. Each action a ∈ A has a

set of preconditions pre(a), a set of add effects add(a) and a set of

delete effects del(a). Each element in these three sets is a pair (p, ϕ)
consisting of a predicate p ∈ P and an argument map ϕ from a to p.

Given d, a planning instance is a tuple p = 〈Ω, init, goal〉, where

Ω = Ω1∪ . . .∪Ωn is a set of objects of each type. The instance p im-

plicitly defines a set of fluents PΩ and a set of grounded actions AΩ.

A grounded action a[x] ∈ AΩ has a set of preconditions pre(a[x]),
a set of add effects add(a[x]) and a set of delete effects del(a[x]).
Each element in these sets is a fluent p[ϕ(x)] ∈ PΩ, where (p, ϕ) is

the associated precondition or effect of the action a. The initial state

init ∈ PΩ and goal state goal ∈ PΩ are both subsets of fluents. We

often abuse notation by dropping the argument x of elements in PΩ

and AΩ.

A state s ⊆ PΩ is a subset of fluents that are true, while fluents

in PΩ \ s are false. A grounded action a ∈ AΩ is applicable in s if

and only if pre(a) ⊆ s, and the result of applying a in s is a new

state s � a = (s \ del(a)) ∪ add(a). A plan for p is a sequence of

grounded actions π = 〈a1, . . . , am〉 such that aj , 1 ≤ j ≤ m, is

applicable in init� a1 � · · ·� aj−1, and π solves p if it reaches the

goal state, i.e. if goal ⊆ init� a1 � · · ·� am.

We use the LOGISTICS domain to illustrate the PDDL definition

of a planning domain and instance. The types and predicates of LO-

GISTICS are given by

(:types truck airplane − vehicle

package vehicle − physobj

airport location − place

city place physobj − object)

(:predicates (incity ?loc − place ?city − city)
(at ?obj − physobj ?loc − place)
(in ?pkg − package ?veh − vehicle)).

An example action for LOGISTICS is given by

(:action loadtruck
:parameters (?p − pkg ?t − truck ?l − place)
:precondition (and (at ?t ?l) (at ?p ?l))
:effect (and (not (at ?p ?l)) (in ?p ?t))).

We use the following LOGISTICS instance as a running example:

(:objects a1 − airplane ap1 ap2 − airport

c1 c2 − city l1 l2 − location

t1 t2 − truck p1 − package)

(:init (at p1 l1) (at a1 ap2)
(at t1 l1) (incity l1 c1) (incity ap1 c1)
(at t2 l2) (incity l2 c2) (incity ap2 c2))

(:goal (and (at p1 ap1)))).

Hierarchical Task Networks

Our HTN definition is inspired by Geier and Bercher [8]. However,

just as for STRIPS planning, we separate the definition into a domain

part and an instance part. We also impose additional restrictions: a

task network can contain at most one copy of each task, and task

decomposition is limited to progression, always decomposing tasks

with no predecessor.

An HTN domain is a tuple h = 〈P,A,C,M〉 consisting of four

sets of untyped function symbols. Specifically, P is the set of predi-

cates, A is the set of actions (i.e. primitive tasks), C is the set of com-

pound tasks and M is the set of decomposition methods. Predicates

and actions are defined as for STRIPS domains but, unlike STRIPS

domains, HTN domains are untyped and we allow negative precon-

ditions.

Each method m ∈ M has an associated tuple 〈c, tnm, pre(m)〉
where c ∈ C is a compound task with the same arity as m, tnm is

a task network and pre(m) is a set of preconditions, defined as for

actions. The task network tnm = (T,≺) consists of a set T of pairs

(t, ϕ), where t ∈ A ∪ C is a task and ϕ is an argument map from m

to t, and a partial order ≺ on the tasks in T .

Given an HTN domain h, an HTN instance is a tuple s =
〈Ω, init, tnI〉, where Ω is a set of objects and init is an ini-

tial state. The instance s induces sets PΩ and AΩ of fluents and

grounded actions, and sets CΩ and MΩ of grounded compound tasks

and grounded methods, respectively. A grounded method m[x] ∈
MΩ has associated tuple 〈c[x], tnm[x], pre(m[x])〉, where c[x] is

a grounded compound task and the precondition pre(m[x]) is de-

rived as for grounded actions. The grounded task network tnm[x] =
(Tx,≺) is defined by Tx = {t[ϕ(x)] : (t, ϕ) ∈ T}. The initial

grounded task network tnI = ({tI}, ∅) contains a single grounded

compound task tI ∈ CΩ.

An HTN state (s, tn) consists of a state s ⊆ PΩ on fluents and

a grounded task network tn. We use (s, tn) →D (s′, tn′) to de-

note that an HTN state decomposes into another HTN state, where

tn = 〈Tx,≺〉 and tn′ = 〈Ty,≺
′〉. A valid progression decomposi-

tion consists in choosing a grounded task t ∈ Tx such that t′ �≺ t for

each t′ ∈ Tx, and applying one of the following rules:
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1. If t is primitive, the decomposition is applicable if pre(t) ⊆ s,

and the resulting HTN state is given by s′ = s� t, Ty = Tx \ {t}
and ≺′= {(t1, t2) ∈≺| (t1, t2) ∈ Ty}.

2. If t is compound, a grounded method m = 〈t, tn, pre(m)〉 with

tn = (Tm,≺m) is applicable if pre(m) ⊆ s, and the resulting

HTN state is given by s′ = s, Ty = Tx \ {t} ∪ Tm and

≺′ = {(t1, t2) ∈≺ | (t1, t2) ∈ Ty}

∪ {(t′, t1) ∈ Tm × Ty | (t, t1) ∈≺} ∪ ≺m .

The first rule removes a grounded primitive task t from tn and

applies the effects of t to the current state, while the second rule

uses a grounded method m to replace a grounded compound task

t with tnm while leaving the state unchanged. If there is a finite

sequence of decompositions from (s1, tn1) to (sn, tnn) we write

(s1, tn1) →
∗

D (sn, tnn). An HTN instance s is solvable if and only

if (init, tnI) →
∗

D (sn, 〈∅, ∅〉) for some state sn, i.e. the initial HTN

state (init, tnI) is decomposed into an empty task network. Let π be

the sequence of grounded actions extracted during such a decompo-

sition; π corresponds to a plan that results from solving s.

Invariants

In STRIPS planning, an exactly-1 invariant is a subset of fluents

F ′ ⊆ PΩ such that exactly one fluent in F ′ is true at any moment.

Formally, |F ′∩ init| = 1 and any grounded action a ∈ AΩ that adds

a fluent in F ′ deletes another. The Fast Downward planning system

[10] uses the domain description of a STRIPS domain to detect lifted

invariant candidates. Unlike Fast Downward, which grounds lifted

invariants on actual instances, our algorithm operates directly on the

lifted invariants.

In LOGISTICS, Fast Downward finds a single lifted invariant can-

didate {(in ?o ?v), (at ?o ?p)}, i.e. a set of predicates with asso-

ciated arguments. In the given invariant, variable ?o is bound while

variables ?v and ?p are free. To ground the lifted invariant on an

instance p, we should create one mutex invariant F ′ for each assign-

ment of objects to the bound variables, obtaining each fluent in F ′

by assigning objects to the free variables. In our running example, as-

signing the package p1 to ?o results in the following grounded mutex

invariant:

{(at p1 ap1),(at p1 ap2),(at p1 l1),(at p1 l2),
(in p1 t1),(in p1 t2),(in p1 a1)}.

The meaning of the invariant is that across all LOGISTICS instances,

a given object ?o is either in a vehicle or at a location.

If a predicate p ∈ P is not part of any invariant but there are

actions that add and/or delete p, we create a new lifted invariant

{(p ?o1 · · · ?ok),(¬p ?o1 · · · ?ok))}. In this invariant, all vari-

ables ?o1, . . . , ?ok are bound and an associated fluent can either be

true or false.

Given a lifted invariant, our algorithm generates one or several

invariant graphs. We do so by iterating over the actions of the do-

main and identifying which actions add and delete predicates in the

same lifted invariant. When grounded, such actions have the effect

of changing the fluent of an exactly-1 invariant that is currently true.

An invariant graph is a representation of a lifted invariant in which

the nodes are the predicates of the invariant and the edges are the

actions used to change the predicate that is currently true. We use

invariant graphs to infer which actions to perform in order to achieve

a particular fluent of an exactly-1 invariant.

The reason why a given lifted invariant can generate multiple in-

variant graphs is that the type of the bound objects may be differ-

G1

G2

G3

(in ?p ?t) (at ?p ?l) (in ?p ?a)

(unloadtruck ?p ?t ?l) (loadplane ?p ?a ?ap)

(unloadplane ?p ?a ?ap)(loadtruck ?p ?t ?l)

(at ?t ?l)
(drivetruck ?t ?l1 ?l2 ?c)

(at ?a ?ap)
(flyplane ?a ?ap1 ?ap2)

Figure 1. Invariant graphs G1, G2 and G3 in LOGISTICS.

ent for different actions. For example, in the LOGISTICS domain, all

actions affect the lone invariant above. However, in the actions for

loading or unloading a package, the bound object ?o is a package,

in the action for driving a truck ?o is a truck, and in the action for

flying an airplane ?o is an airplane. Moreover, we can either load a

package into a truck or an airplane. We use the actions to differenti-

ate between types, possibly generating multiple invariant graphs for

each lifted invariant.

To generate the invariant graphs induced by lifted invariants we

go through each action, find each transition of each invariant that it

induces (by pairing add and delete effects and testing whether the

bound objects are identical), and map the types of the predicates

to the invariant. We then either create a new invariant graph for the

bound types or add nodes to an existing graph corresponding to the

mapped predicate arguments.

Figure 1 shows the invariant graphs that we generate in LOGIS-

TICS. In the top graph (G1), the bound object is a package ?p, in the

middle graph (G2) it is a truck ?t, and in the bottom graph (G3) it is

an airplane ?a. Note that the predicate in is not actually part of the

two bottom graphs, since trucks and planes cannot be inside other

vehicles. Nevertheless, the invariant still applies: a truck or plane can

only be at a single place at once.

Each edge of an invariant graph corresponds to an action that

deletes one predicate of the invariant and adds another. To do so,

the arguments of the action have to include the arguments of both

predicates, including the bound objects. In the figure, the invariant

notation is extended to actions on edges such that each argument of

an action is either bound or free.

Even if actions preserve the invariant property, the initial state of a

planning instance may violate the condition |F ′∩init| = 1, in which

case F ′ is not an exactly-1 invariant. To verify that a lifted invariant

candidate corresponds to actual exactly-1 invariants, our algorithm

needs access to the initial state of an example planning instance p of

the domain. If this verification fails, the lifted invariant is not consid-

ered by the algorithm.

Generating HTNs

In this section we describe our algorithm for automatically generat-

ing HTN domains. The idea is to construct a hierarchy of tasks that

traverse the invariant graphs to achieve certain fluents. In doing so

there are two types of interleaved tasks: one that achieves a fluent

in a given invariant (which involves applying a series of actions to
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traverse the edges of the graph), and one that applies the action on

a given edge (which involves achieving the preconditions of the ac-

tion).

Formally, our algorithm takes as input a STRIPS planning domain

d = 〈T , <, P,A〉 and a planning instance p = 〈Ω, init, goal〉 and

outputs an HTN domain h = 〈P ′, A′, C,M〉. The HTN domain h

can then be used to solve any other instance of the domain. Specifi-

cally, for each instance p′ of the planning domain d, we construct an

HTN instance s. Solving the HTN induced by d and s returns a plan

that can be adapted to solve p′.

The input planning instance p is used for three purposes:

1. To verify that an invariant candidate is actually an invariant by

testing the condition |F ′ ∩ init| = 1.

2. To extract a subset of predicates PG ⊆ P that are part of the goal.

3. To perform goal ordering as described in a subsequent section.

The algorithm first constructs the invariant graphs G1, . . . , Gk de-

scribed above. In what follows we describe the components of the

HTN domain h.

The set P ′ ⊇ P extends P with the following predicates:

• For each predicate p ∈ P , a predicate visited-p with arity α(p)
indicating that p has already been visited during search.

• For each predicate p ∈ P , a predicate achieving-p with arity

α(p) indicating that p or another predicate in the same invariant

are already being achieved.

• For each goal predicate p ∈ PG, a predicate goal-p with arity

α(p) indicating that a fluent derived from p is a goal state.

• For each type τ ∈ T , a type predicate τ with arity 1.

The set A′ contains the following actions:

• Each action a ∈ A. For each element βk(a) ∈ T of the type list

of a, we add an additional precondition (βk(a), ϕk). where the

argument map ϕk maps the argument xk of a to the lone argument

of the type predicate βk(a), ensuring that argument xk has the

correct type.

• For each p ∈ P , an action visit-p with arity α(p) that marks p

as visited by adding visited-p.

• For each invariant graph Gi, an action occupy-i whose arity

equals the number of bound objects in Gi, and that marks each

predicate in Gi as being achieved.

• For each invariant graph Gi, an action clear-i whose arity equals

the number of bound objects in Gi, and that deletes visited-p

and achieving-p for each predicate p of Gi.

• For each goal predicate p ∈ PG, an action test-p with arity 0
and no effects, whose precondition tests if all goal fluents derived

from p hold.

Note that only actions in A add or delete predicates in the original

set P . The set C contains four types of compound tasks:

• For each predicate p ∈ P , a task achieve-p with arity α(p).
• For each invariant graph Gi and each p ∈ P that is positive in Gi,

a task achieve-p-i with arity α(p).
• For each invariant graph Gi, each predicate p in Gi, and each

outgoing edge of p (corresponding to an action a ∈ A), a task

do-p-a-i with arity α(a).
• A task solve with arity 0.

The task achieve-p is a wrapper task that uses a task achieve-p-i

to achieve p by traversing the edges of the invariant graph Gi. To

traverse each edge of Gi, achieve-p-i has to use a task of type do-

p-a-i, which in turn uses tasks of type achieve-p′ to achieve the

preconditions of a. The task solve serves as the root task of the

HTN and recursively achieves the goal by applying one task of type

achieve-p at a time.

Finally, the set M contains the following decomposition methods.

We describe methods in pseudo-SHOP2 syntax in the following for-

mat:

(:method (〈name〉[〈arguments〉])
(〈precondition〉)
(〈tasklist〉))

For each method in the first line we specify name and arguments,

in the second line we give precondition list, and finally in the third

we specify task list to which method decomposes. For clarity, we

add an exclamation mark in front of primitive tasks. The first type

of compound task, achieve-p, has one associated method for each

invariant graph Gi in which p appears. An outline of this method is

given by

(:method (achieve-p[x])
((¬achieving-p[x]))
((!occupy-i[ϕi(x)]) (achieve-p-i[x]) (!clear-i[ϕi(x)]))).

The argument map ϕi maps the arguments of p to the bound variables

of the invariant graph Gi. Intuitively this method delegates achieving

p to the task achieve-p-i for some invariant graph Gi. The method

first adds achieving-p′ for each predicate p′ in Gi, and clears the

flags after achieving p. The precondition (¬achieving-p[x]) pre-

vents us from achieving p if it is part of an occupied invariant graph,

which could potentially lead to an infinite recursion.

The second type of compound task, achieve-p-i, has one associ-

ated method for each predicate p′ in the invariant graph Gi and each

outgoing edge of p′ (corresponding to an action a):

(:method (achieve-p-i[x])
((p′[ϕ′(x)]) (¬visited-p′[ϕ′(x)]))
((!visit-p′[ϕ′(x)]) (do-p′-a-i[ϕa(x)]) (achieve-p-i[x]))).

Action a appears on an outgoing edge from p′, i.e. a deletes p′. In-

tuitively, one way to achieve p in Gi, given that we are currently

at some different node p′, is to traverse the edge associated with a

using the compound task do-p′-a-i. Before doing so we mark p′ as

visited to prevent us from visiting p′ again. After traversing the edge

we recursively achieve p from the resulting node. The argument map

ϕ′ should set the bound objects of p′ while leaving other arguments

of p′ as free variables. Likewise, the argument map ϕa should set

the bound objects of a. The precondition (¬visited-p′[ϕ′(x)]) pre-

vents us from visiting the same node p′ twice. In essence, the result

is a depth-first search through the invariant graph Gi, which stops

when we reach p. Recall that the flags visited-p and achiveing-p

are cleared by the parent method once we reach p.

To stop the recursion we define a “base case” method:

(:method (achieve-p-i[x])
((p[x]))
().

This method is applicable when p already holds and has empty task

list.

The third type of compound task, do-p-a-i, has only one associ-

ated method. The aim is to apply action a to traverse an outgoing

edge of p in the invariant graph Gi. To do so, the task list has to en-

sure that all preconditions p1, . . . , pk of a hold (excluding p, which

holds by definition, as well as any static preconditions of a). We de-

fine the method as
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(:method (do-p-a-i[x])
((p[ϕ(x)]))
(((achieve-p1[ϕ1(x)]) · · · (achieve-pk[ϕk(x)])) (!a[x]))

Here, (p, ϕ) is the precondition of a associated with p, while (pi, ϕi),
1 ≤ i ≤ k, are the remaining preconditions of a. The decomposition

achieves all preconditions of a, then applies a. Note that if action a

has no preconditions except p, the mutual recursion stops since the

decomposition does not contain any task of type achieve-pi. In this

case our approach is to simplify the definition of other methods by

replacing any instance of do-p-a-i with the action a itself.

The fourth type of compound task, solve, has one method for

each predicate p ∈ PG that appears in the goal state:

(:method (solve)
((goal-p[x])(¬(p[x])))
((achieve-p[x])(solve))

Here, x are free parameters. Whenever a predicate in the goal state

does not hold, we achieve it and recursively call solve. Again, we

need a base case method to stop the recursion:

(:method (solve)
()
((!test-p1) · · · (!test-pk))

Here, p1, . . . , pk are the predicates in PG, i.e. those that appear in the

goal state. Since each action test-pi, 1 ≤ i ≤ k, checks whether all

goal fluents associated with pi hold, this method is only applicable

when the goal state holds. The reason this check is not made in the

precondition of the method itself is that SHOP2 only supports forall

clauses in action preconditions, not method preconditions.

To restrict the choices made when traversing the HTN, we impose

a total order on all task lists of methods, except the tasks for achiev-

ing the preconditions of a in do-p-a-i. The reason is that it may be

difficult to determine in which order to achieve the preconditions of

an action.

Planning Instances

Once we have generated the HTN domain h we can apply it to any

instance of the domain. Given a STRIPS instance p = 〈Ω, init, goal〉,
we construct an HTN instance s = 〈Ω, init′, 〈solve, ∅〉〉 as follows.

The set of objects Ω = Ω1 ∪ · · · ∪ Ωn is identical to that of p. The

initial state init′ is defined as

init′ = init∪{τj [ω] : τj ∈ T , ω ∈ Ωj}∪{goal-p[x] : p[x] ∈ goal}.

We thus mark the type τj of each object ω using the fluent τj [ω], and

we mark all fluents p[x] in the goal state using the fluent goal-p[x].
The initial task network contains the single grounded compound task

solve.

We show that the HTN translation is sound. The translation is only

complete if we allow goals and preconditions to be achieved in any

order; we violate this condition below.

Theorem 1 Let π be a plan that results from a valid decomposition

for s, and construct π′ by removing grounded actions of type visit-

p, test-p, occupy-i and clear-i. Then π′ solves p.

Proof sketch Recall that an HTN state is given by (s, tn) for a plan-

ning state s and task network tn. When we decompose an HTN state,

s is only changed if we use primitive tasks, i.e. changes to s are

caused precisely by the elements of π. Consider the fluent set PΩ in-

duced by p. The grounded actions of the types removed do not add

or delete fluents in PΩ. Conversely, the grounded actions that remain

in π′ are those of the original action set AΩ, which only add or delete

fluents in PΩ.

Let π′ = 〈a1, . . . , am〉 be the sequence of grounded actions from

AΩ. We can only decompose an HTN state (s, tn) using a primitive

task aj , 1 ≤ j ≤ m, if the precondition of aj holds in s. It follows

that pre(aj) ⊆ init�a1� · · ·�aj−1 for each j, 1 ≤ j ≤ m. Hence

π′ is a plan for p.

To prove that the plan π′ solves p, it remains to show that the

goal state goal of p holds after applying π′ in init. Since solve

is recursively applied during HTN decomposition, the sequence π

has to have suffix 〈test-p1, . . . , test-pk〉, the decomposition of the

only base case method for solve. This action sequence has no effects

and is only applicable if goal holds. Hence goal has to hold after the

last action in π′ since the removed actions have no effects on fluents

in PΩ.

Example

In LOGISTICS, our algorithm generates two wrapper tasks achieve-

in and achieve-at, and four tasks achieve-in-1, achieve-at-1,

achieve-at-2, and achieve-at-3, corresponding to the predicates

in the three invariant graphs. The task achieve-at-1 has five associ-

ated methods: one for each edge of the graph G1, plus the base case

method.

The algorithm also generates six tasks do-at-loadtruck-1, do-

at-loadplane-1, do-at-unloadtruck-1, do-at-unloadplane-1,

do-at-drivetruck-2, and do-at-flyplane-3, corresponding to the

six edges of the graphs. The latter two do not have preconditions be-

sides at (the predicate incity in the precondition of drivetruck is

static). The remaining four tasks each achieve a single precondition:

the truck or plane being at the associated place.

To illustrate the tasks and associated methods we sketch the task

expansions of the HTN instance generated from our running exam-

ple. The only goal is (at p1 ap1), so the task solve has a single

valid decomposition that contains the task (achieve-at p1 ap1).
Table 1 shows the first five task expansions of the HTN instance. In

each case, the compound task to be decomposed is underlined, and

the new tasks inserted as a result of the decomposition are colored in

the next step.

The second decomposition is produced by the lone method

for (achieve-at p1 ap1). The current node associated with

p1 in G1 is (at p1 l1), with two outgoing edges, cor-

responding to actions loadtruck and loadplane. Apply-

ing the method for (achieve-at-1 p1 ap1) associated with

(at p1 l1) and loadtruck produces the third expansion. The only

method for (do-at-loadtruck-1 p1 t1 l1) expands to (achieve-

at t1 l1), which in turn expands to (achieve-at-2 t1 l1) (the last

expansion shown).

Optimizations

In this section we discuss several optimizations of the base algorithm

for generating HTNs.

Ordering Preconditions

Achieving the preconditions of an action a in any order is inefficient

since an algorithm solving the HTN instance may have to backtrack

repeatedly to find a correct order. For this reason, we include an ex-

tension of our algorithm that uses a simple inference technique to

compute a partial order in which to achieve the preconditions of a.
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(solve) (achieve-at p1 ap1) (!occupy-1 p1) (!occupy-1 p1) (!occupy-1 p1) (!occupy-1 p1)
(solve) (achieve-at-1 p1 ap1) (!visit-at p1 l1) (!visit-at p1 l1) (!visit-at p1 l1)

(clear-1 p1) (do-at-loadtruck-1 p1 t1 l1) (achieve-at t1 l1) (!occupy-2 t1)
(solve) (achieve-at-1 p1 ap1) (!loadtruck p1 t1 l1) (achieve-at-2 t1 l1)

(!clear-1 p1) (achieve-at-1 p1 ap1) (!clear-2 t1)
(solve) (!clear-1 p1) (!loadtruck p1 t1 l1)

(solve) (achieve-at-1 p1 ap1)
(!clear-1 p1)
(solve)

Table 1. The first five task expansions of the HTN instance generated from the running example in LOGISTICS. The colored tasks are those added by the
decomposition of the underlined task in the previous step.

1: function ORDER(a, p)

2: V ← pre(a) \ {p}, Z ← 〈〉
3: repeat

4: for p′ ∈ V do

5: W ← {p} ∪ V \ {p′}
6: for each invariant graph Gj containing p′ do

7: Perform a backwards BFS in Gj from p′

8: Test if paths applicable when W persists

9: end for

10: if each path achieving p′ is applicable then

11: V ← V \ {p′}
12: Z ← 〈p′, Z〉
13: end if

14: end for

15: until V , Z converge

16: return (V, Z)
17: end function

Figure 2. Algorithm ordering all preconditions of a except p.

We define a subset of predicates whose value is supposed to per-

sist, and check whether a path through an invariant graph is applica-

ble given these persisting predicates. While doing so, only the values

of the bound variables are known, while free variables can take on

any value. Matching the bound variables of predicates and actions

enables us to determine whether an action allows a predicate to per-

sist.

Consider a task of type do-p-a-i, i.e. the purpose of the task is to

apply action a in order to delete p. Figure 2 shows how to order all

preconditions of action a except p. In the algorithm, V is the set of

preconditions to be ordered, while Z is a sequence of preconditions,

initially empty. The algorithm considers one precondition p′ ∈ V at

a time and checks if it is possible to achieve p′ while all remaining

preconditions persist. If so, we remove p′ from V and place it first in

Z. We then iterate until no more preconditions can be removed from

V , and return (V, Z). In the method m associated with do-p-a-i, the

preconditions in Z can be achieved in order. On the other hand, we

cannot say anything about the order of preconditions that remain in

V .

Goal Ordering

Just as for preconditions, achieving goals in any order results in sig-

nificant backtracking. To order the goals we implement an algorithm

similar to the one for ordering preconditions. While the ordered pre-

conditions are coded into the HTN, the goals are different for each

instance of the domain. Since HTNs are instance-independent, our

approach is to define new tasks that compute a goal ordering as a

preprocessing step.

To accomplish this, we first order the goals of the representative

planning instance p passed as input to the algorithm. We run the pre-

condition ordering algorithm on the set of goal predicates PG ⊆ P ,

i.e. predicates whose associated fluents appear in the goal. Given an

ordering of the predicates in PG, we then order the set of fluents of

each predicate p ∈ PG using a similar algorithm. To do so, the in-

variant graphs need to be partially grounded on each pair of fluents

to be ordered.

For each p ∈ PG and each pair of fluents p[x] and p[y], we check if

p[y] is achievable when p[x] persists (i.e. we are not allowed to delete

p[x]). Each invariant graph that contains p is partially grounded on

p[x], while the preconditions of actions that directly achieve p are

grounded on p[y]. If this grounding violates the invariant, p[y] should

be ordered before p[x]. Once the invariant is invalidated by partial

grounding, the algorithm stores the indices of the parameters of p

that invalidated the invariant.

As an example, in the BLOCKS domain, PG = {on}, so the

method for solve always decomposes to achieve-on. Figure 3

shows one of the invariant graphs in BLOCKS that contains the predi-

cate on. We test each pair of goal fluents to establish an order among

them. Consider two goal fluents (on a b) and (on b c) that both refer

to block b. If we fix (on a b) and attempt to achieve (on b c), the

only operator (stack b c) that directly achieves (on b c) has pre-

condition (holding b), which violates the invariant since the fluent

(on a b) should persist. Thus fluent (on b c) should be ordered be-

fore fluent (on a b). We can generalize this knowledge and derive a

rule that whenever two goal fluents of type on have the same object

as the first and second parameter, respectively, the former should be

ordered before the latter.

To implement the goal ordering mechanism we introduce a new

compound task order with arity 1 whose associated method uses

the ordering rule from above to order the goal fluents of a single

predicate p ∈ PG. The argument of order is a new object that en-

codes a counter that starts at 0, and the result of decomposing order

is assigning a count to each fluent in the goal. We force order to

be the first task expanded. We then add an argument to the solve

task that represents a counter, and change the initial task network to

contain (solve 0), i.e. the initial count is 0. The recursive method

for solve requires us to always achieve the goal fluent correspond-

ing to the current count, and we are only allowed to increment the

count whenever the current goal fluent already holds. To ensure that

all goal fluents are eventually achieved we reset the counter to 0 each

time we achieve a goal fluent.
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(on ?x ?b) (clear ?b) (holding ?b)

(unstack ?x ?b)

(stack ?x ?b)

(pickup ?b)

(putdown ?b)

(unstack ?b ?y)

(stack ?b ?y)

Figure 3. Invariant graph in the BLOCKS domain.

Sorting the Bindings of Free Variables

Apart from deciding which method to use to decompose a compound

task and in which order to decompose partially ordered tasks in a task

network (whenever the task network does not impose a total order on

tasks), another non-deterministic choice made by SHOP2 is how to

assign objects to the free variables of a method (e.g. the argument

x of the predicate p in the recursive method for decomposing the

solve task). Since SHOP2 performs blind search, it backtracks over

all possible bindings to these free variables.

In the recursive method for decomposing the task achieve-p-i,

the free variables determine which action to perform from the current

node of the corresponding invariant graph. If we do not impose any

order on variable bindings, SHOP2 iterates over such actions in an

arbitrary fashion. As a consequence, the decompositions of do-p-a-i

tasks do not immediately aim for the target node, even if this node

is just one step away. We exploit the ability of SHOP2 to order the

bindings of free variables by imposing an order that first attempts to

traverse an edge to the target node. If this is not possible, blind search

later explores all other possibilities.

Results

We ran our algorithm on all instances in the training and test set

of HTN-MAKER (LOGISTICS, SATELLITE and BLOCKS). We also

tested the algorithm in other STRIPS planning domains from the IPC-

2000 and IPC-2002. The experiments were performed with two ver-

sions of our algorithm. The base algorithm that achieves the pre-

conditions and goals in any order was slow in testing, so we acti-

vated precondition ordering in both versions. The first version, HT-

NPrec, achieves the goals in the order they appear in the PDDL defi-

nition. The second version, HTNGoal, implements our goal ordering

and free variable sorting strategies in addition to precondition or-

dering. In all experiments we used JSHOP (the Java implementation

of SHOP2), which uses blind search to compute a valid expansion.

We used a memory limit of 4GB and a timeout of 1,800 seconds.

We compare to the latest results of HTN-MAKER (WeakS), which

uses a C++ implementation of SHOP2 and one hour of CPU time to

solve the instances [12]. However, the instances from that paper are

not publicly available, so we could not compare directly, and we just

show their reported coverage results for reference.

Table 2 shows the coverage results on instances from HTN-

MAKER’s experiments. We tested HTN-MAKER’s output domains

from the fifth and final trial [11] and we ran it over the test set only,

while we ran our algorithm over both the test and training sets of the

experiment instances. To achieve the reported results, HTN-MAKER

needed 420 training instances in BLOCKS and 75 training instances

HTNPrec HTNGoal HTN-MAKER WeakS

LOGISTICS 100 % 100% 100% 93,6%

SATELLITE 100 % 100% 92% 100%

BLOCKS 100 % 100% 63,5% 99%

ROVERS 100 % * 100% * - 100%

ZENOTRAVEL 20% * 100% * - 99,8%

Table 2. Coverage of instances from HTN-MAKER’s experiments. Scores
marked with an asterisk (*) are taken from IPC instances.

in LOGISTICS and SATELLITE, while our algorithm used the domain

and a single example instance with no need to solve the instance

or annotating a plan beforehand. For ROVERS and ZENOTRAVEL

we report coverage over the IPC-2002 instances for HTNPrec and

HTNGoal. The improvement of HTNGoal over HTNPrec in ZENO-

TRAVEL is due to free variable sorting (since airplanes can fly di-

rectly to the target destination). HTNGoal performs better in other

domains as well; however, in terms of coverage of HTN-MAKER’s

instances there is little difference.

The instances used in HTN-MAKER’s experiments are generated

by a random generator with very few objects (e.g. a maximum of

five blocks in BlocksWorld), while our HTNs can be used to solve

much larger instances. Therefore we ran both the HTNPrec and

HTNGoal versions of our algorithm on other benchmark instances

from IPC-2000 and IPC-2002. The results from these experiments

appear in Table 3. For example, in BLOCKS, IPC benchmark in-

stances include up to 50 blocks. On those benchmark instances

HTNGoal achieves full coverage of BLOCKS, SATELLITE, ROVERS,

LOGISTICS, ZENOTRAVEL and MICONIC. The improvement in av-

erage number of backtracks is most clearly visible in the BLOCKS

domain, and is due to our goal ordering strategy. It also allowed for

an increase in number of instances solved in the DEPOTS domain, as

these two domains are the most sensitive to goal ordering. The com-

bination of goal ordering and free variable sorting shows an increase

in performance in other domains as well. This allows HTNGoal to

solve all instances in many domains, with very few backtracks. These

domains however tend to be the ones with a lower branching factor

in the invariant graphs.

It is important to note that unsolved instances are not due to failed

decompositions. Rather, the alloted time was insufficient to complete

the search. While the results of our approach are comparable to those

of HTN-MAKER, in some domains the generated HTNs do not per-

form well due to excessive backtracking (e.g. we do not solve any

instances of the IPC-2002 FREECELL domain, which is more puzzle-

like and therefore harder to serialize as our HTNs do by achieving

one goal fluent at a time). On the other hand in DRIVERLOG, the al-

gorithm does not solve many instances due to our goal ordering strat-

egy. In this domain, using the lifted invariant graphs finds only goal

predicate orderings, which is insufficient, and thus achieved goals of-

ten have to be unachieved by the solve task. Apart from that, in this

domain, a system of ”link-paths” is used for both drivers and trucks,

which means that a path needs to be found (if one exists) for each

location that happens to be a goal or subgoal location.

Related Work

Our approach to generating HTNs from a single planning instance

and using them to solve larger instances of the same planning domain

can be viewed as a form of generalized planning, which has received
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HTNPrec HTNGoal

Domain Instances #s t #b #s t #b

Freecell 60 0 - - 0 - -

Blocks 103 24 91 8118 103 0.6 0.4

Rovers 20 20 0.6 1.2 20 0.5 1.1

Logistics 80 80 2.9 44 80 2.4 23.7

Driverlog 20 0 - - 3 0.4 1.3

Zenotravel 20 4 25.6 4101 20 0.5 0.3

Miconic 150 150 0.66 0 150 0.63 0

Satellite 20 7 0.59 1.2 20 0.37 0.04

Depots 22 8 22.6 1867 17 88.4 8108

Table 3. Results in the IPC-2000 and IPC-2002 domains, with the total number of instances of each domain shown in brackets. For each solver we report
number of solved instances (#s), average time in seconds (t) and average number of backtracks in thousands (#b) respectively

a lot of recent attention, most notably in the form of the learning track

of the IPC. One popular approach to generalized planning is to iden-

tify macros [2, 20, 25, 28], i.e. sequences of operators that frequently

appear in the solutions to example instances. Once identified, such

macros can then be inserted into the action space of larger instances

in order to speed up search. However, even though macros can be pa-

rameterized, they do not offer the same flexibility as HTNs in terms

of representing a solution to all instances of a planning domain.

Another approach to generalized planning is to learn reactive poli-

cies for planning domains [15, 17, 22, 33]. A third approach is to

learn domain-specific knowledge in order to improve heuristic esti-

mates computed during search [4, 34]. In contrast to most of these

techniques, which are inductive, ours is a generative approach, as we

construct HTNs directly by analyzing the domain model.

Achieving fluents by traversing the edges of domain transition

graphs is the strategy used by DTGPlan [3] and similar algorithms.

There also exist other inference techniques that can solve many indi-

vidual instances backtrack-free [18, 19]. The novelty of our approach

compared to previous work is the ability to do this in an instance-

independent way.

The most popular approaches for generating hierarchical task

models are learning from examples. However these approaches not

only need to learn from examples but also rely on some given task-

subtask decompositions [14], annotated plans [11], or added con-

cepts [16]. In contrast, our algorithm requires less semantic informa-

tion, and although we could use the representative instance (or mul-

tiple instances) to generate solution plans for learning, these plans

would still have to be annotated to be used by HTN-MAKER.

A basic compilation from STRIPS to HTN was defined by Erol et al

[6]. This compilation constructs primitive tasks for each STRIPS op-

erator and a single compound task. However this compilation is used

only for theoretical purposes, as it does not impose more restrictions

on the task network. Our work is also related to other approaches to

hierarchical planning [13, 21, 5], with the difference that we generate

the hierarchies automatically.

Conclusion

In this paper we present a domain-independent algorithm for gen-

erating HTNs. All the algorithm needs is a PDDL description of

the planning domain and a single representative instance, which is

needed for three reasons: 1) to validate invariant candidates; 2) to

determine which predicates appear in the goal state; and 3) to es-

tablish a goal ordering. While other approaches learn from solved

instances, ours can be viewed as a form of compilation. We show

that our algorithm is competitive with state-of-the-art algorithms for

automatically learning HTNs from solved instances. The algorithm

is not complete if we do not allow for preconditions and goals to be

achieved in any order, which is the case in our experimental setting.

While the results of our approach are comparable to those of HTN-

MAKER, in some domains due to the branching factor of the invari-

ant graphs the generated HTNs do not perform well. In FREECELL,

apart from a high branching factor, the domain used in the competi-

tion is encoded so that it uses auxiliary predicates like number and

successor. This causes a high arity of the actions (implying that

there are more possible bindings of objects to the argument of ac-

tions), and is used to impose an order for many different stacks. It is

possible that our approach would solve at least a few instances if a

different representation were used.

Although the success of the algorithm is limited in some domains,

we believe that there are still many potential benefits. The algorithm

takes a fraction of a second to generate HTNs given a PDDL domain

and a single example instance. The example instance does not need

to be solved, and no plan traces are required. Since the algorithm is

domain-independent it does not require any intervention and is easy

to run. Therefore the resulting HTN could potentially be useful even

in cases where it does not perform well right after the compilation,

e.g. by extracting useful subtasks.

The avenue for future research that we find most promising is to

test different restrictions on the invariant graphs. If the representative

instance can still be solved under some restriction, the resulting HTN

may still be able to solve other instances, and the restriction has the

effect of reducing the branching factor. In essence, this mechanism

would reduce the number of ways to traverse the invariant graphs.

Another possible extension is to identify and prune methods that are

not needed to solve the HTN instances.

User specified heuristics for HTNs have shown useful for auto-

matically generated HTNs [31]. For example such heuristic would

easily resolve path-finding problems in domains like DRIVERLOG.

Therefore another option is to construct heuristics, which would be

used to guide task-subtask decompositions and sort the bindings of

free variables in order to direct search more efficiently.
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