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Abstract. With the continuous growth of freely accessible knowl-
edge bases and the heterogeneity of textual corpora, selecting the
most adequate knowledge base for named entity recognition is be-
coming a challenge in itself. In this paper, we propose an unsuper-
vised method to rank knowledge bases according to their adequacy
for the recognition of named entities in a given corpus. Building on
a state-of-the-art, unsupervised entity linking approach, we propose
several evaluation metrics to measure the lexical and structural ad-
equacy of a knowledge base for a given corpus. We study the cor-
relation between these metrics and three standard performance mea-
sures: precision, recall and F1 score. Our multi-domain experiments
on 9 different corpora with 6 knowledge bases show that three of
the proposed metrics are strong performance predictors having 0.62
to 0.76 Pearson correlation with precision and 0.96 correlation with
both recall and F1 score.

1 Background

With the tremendous growth in the amount of textual data, extract-
ing semantic information from unstructured texts has become critical
in several applications such as information retrieval, marketing, con-
tent management and question answering. Named entity recognition
(NER), the task of identifying and categorizing textual mentions into
pre-defined semantic categories, plays a key role in such applications.
It is also often a prerequisite for other text mining processes such as
relation extraction, keyword identification and document clustering.

The range of named entities covered by the NER task has grown
continuously since the first MUC conference3. Starting with a few
named entity categories, such as PERSON, LOCATION, and ORGA-
NIZATION; nowadays, the entity linking task [22] addresses linking
of textual mentions to entities from a reference database or knowl-
edge base (KB) with no semantic restrictions on the type of entities.
Besides their role as reference data, KBs are also increasingly used
in NER methods. For instance, they have been used in designing fea-
tures for supervised learning [24], as labeling sources in constructing
training corpora [10, 28], and as resources for named entity disam-
biguation in both unsupervised [17] and supervised [25] approaches.

With the exponential growth of domain-specific KBs and the in-
creasing heterogeneity in open-domain KBs, it becomes important
to assess which KB is suitable to extract named entities in a given
text or corpus. Qualitative assessments, while useful, can be time-
consuming and require domain expertise [8, 4]. On the other hand,
an automatic, quantitative evaluation based on KB and corpus char-
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acteristics can assist significantly in assessing suitability. We refer
to this type of automatic evaluation as knowledge base ranking for
named entity recognition (KB ranking).

The term knowledge base ranking is often used in the literature to
refer to fact ranking or entity ranking, the task of finding the facts or
entities that are the most relevant for a keyword query or a structured
query [5, 2]. In this paper, we do not address this task.

Our work can be situated within the wider field of ontology evalu-
ation (see [27] for a review). However, most works in this area cover
tasks that are out of the scope of our study. These tasks include, for
instance, the evaluation of the general representational (or domain)
adequacy of a KB [8, 4], the inner cohesion of an ontology [31], find-
ing relevant criteria for ontology design [18, 30], or checking logical
consistency [9]. These criteria are constant for a given knowledge
base and do not change according to different contexts of applica-
tion.

As we are primarily interested in the use of knowledge bases for
NER, only a few related studies stand out. Lozano-Tello et al. [15]
proposed a generic framework called OntoMetric to evaluate the suit-
ability of an ontology for a given application. They defined manually
160 generic features related to ontologies and designed an interface
to help users decide which ontology is more relevant to their use case.
The users have to manually enter their objective and criteria accord-
ing to the defined vocabulary. This manual approach is limited and
can not be applied to more complex applications such as NER, where
we need to take into account the corpus characteristics in addition to
ontology features. More generally, manual approaches are not suited
to learning relevant features when several empirical observations are
needed (e.g., observations on different NER corpora).

Gangemi et al. [8] proposed a formal model to evaluate ontolo-
gies, including a component for intended use situation. In particular,
they considered the use of natural language processing to evaluate
ontologies according to annotated corpora. However, the goal of the
comparison was to evaluate the general usefulness (or quality) of an
ontology: e.g., the frequency of occurrence of an ontology concept
in the annotated corpus is used to measure the importance of the
concept. In the same line, they also proposed to use the hierarchy
of concepts and entropy to have an estimation of the usefulness of
ontology concepts.

Their objective is basically different from ours; we want to eval-
uate the adequacy of a KB for NER in a given corpus. For the same
KB, this evaluation is expected to give different results on differ-
ent corpora. More precisely, the question that we want to answer is:
“if we want to use a KB to find and disambiguate named entities in
a given text, how could we know which KB will provide better re-
sults?”.

Baseline approaches to KB ranking for NER could be derived from
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KB indexes such as the Linked Open Vocabulary4, by selecting the
KBs that have more candidate entities for a given textual mention;
however, such an approach does not allow ranking of the KBs by
their suitability for NER as other aspects come into play. These as-
pects include, for example, the ambiguity of the text to be annotated
from the KB point-of-view, and the contextual similarity between
the textual context of the named entities and the KB graph linking
the corresponding (or candidate) KB concepts.

To the best of our knowledge, no automatic solution has been pro-
posed previously to rank KBs according to their suitability for NER.
This can be partly explained by the lack of KB-agnostic annotation
tools for NER; most of the existing tools rely on a specific combina-
tion of a learning corpus and a KB.

In this paper, we propose a novel KB ranking method based on an
unsupervised NER method. We formally define several evaluation
metrics related to the lexical ambiguity of textual corpora and to the
structural similarity between the knowledge base and the text to be
annotated.

We studied the relevance of the proposed evaluation metrics in
ranking 6 different KBs from both the open and biomedical domains
for NER in 9 different corpora. Our results show that the proposed
metrics are strongly correlated with precision, recall and F1 measures
and that they can be used as predictors of the adequacy of a KB
for NER in a given textual corpus. This finding paves the way to
automatic and fine-grained selection and combination of knowledge
bases for named entity recognition.

The remainder of the paper is structured as follows. In the next sec-
tion, we describe the KB-agnostic named entity recognition method
that underlies our approach and the evaluation metrics in more detail.
We discuss the motivation behind the different metrics. In Section
3, we present our experiments. Finally, we discuss and analyze the
results and perspectives in Section 4 before giving our concluding
remarks.

2 Methods

In the current work, we consider a KB to consist of a set of concepts,
instances, relations and a set of labels representing natural language
expressions of concepts and instances. To ensure the required porta-
bility for our approach, we built an unsupervised NER method from
an existing, KB-agnostic tool for entity linking called KODA [17]. In
this section, we present the overall NER process and the evaluation
metrics proposed to rank the KBs.

2.1 Named entity recognition

KODA is a KB-agnostic entity linking tool. It exploits TF-IDF index-
ing of the KB labels, and KB relations to disambiguate the entities in
the input text. In the course of this study, we modified and extended
KODA to build a NER method and used the extended tool as the ba-
sis of our experiments. Given a text t and a knowledge base k, our
NER process follows the steps outlined below.

• Split t into sentences and perform part-of-speech tagging.
• For each sentence, select textual mentions corresponding to a se-

quence of allowed part-of-speech tags (e.g., noun, adverb, adjec-
tive).

• Use each textual mention as a keyword query to look up KB enti-
ties based on TF-IDF search. If no exact match is found between

4 http://lov.okfn.org/dataset/lov/

the mention and the KB entities, select all subsequences of words
as potential candidates. The mentions recognized at this step are
referred to as candidate textual mentions.

• Disambiguate ambiguous mentions (i.e., those that have more than
one corresponding KB entity with the maximum TF-IDF score).
Disambiguation is performed according to global coherence: i.e.,
select the entity that has more KB relations with the entities ob-
tained from other textual mentions in t. This step is accomplished
using Integer Linear Programming [17]. The generic disambigua-
tion process can be viewed as the selection of the subgraph of the
KB that is the most similar to the textual context being annotated.

• Determine the semantic category of the disambiguated textual
mention, by using mappings of KB concepts, as detailed below.

• Filter the entities to keep only the semantic categories considered
in the corpus.

• In the case of nested entities or overlapping entities with the same
type (e.g., “San Francisco, CA” vs. “San Francisco”), keep only
the entity with the best TF-IDF score.

In order to classify these named entities according to the consid-
ered semantic types (e.g., PERSON, LOCATION, ORGANIZATION),
we built manual mappings between the concepts of the KBs and
the semantic types considered in the target corpora. As large and
dense concept hierarchies might be difficult to browse, we first com-
puted the transitive closure offline by considering only the subset of
instantiation facts (e.g., RDF type relation) and subsumption facts
(e.g., RDFS subClassOf relation). Next, we sorted the concepts ac-
cording to their frequency in the closure and extracted manually the
relevant concepts, i.e., those that can be mapped to a named en-
tity category according to the corpus. For example, dbpedia:Place
was mapped to LOCATION in the CoNLL 2003 corpus [23], and
yago:wordnet illness 114061805 was mapped to DISEASE in the
I2B2 corpus [32].

In the online NER step, we collect all the classes associated with
the KB entities linked to the disambiguated textual mentions then
use the mappings to associate these mentions with a semantic type.
If one mention is associated with more than one semantic type, it is
considered as ambiguous and discarded from the results of the NER
process.

Figure 1 shows an example of named entities recognized by
our NER method using DBpedia on a sentence from a New York
Times corpus [14]. In this example, there are multiple candidates
with the same (best) TF-IDF score for the term ”Malone” in the
KB. Global coherence led to the selection of only one candi-
date (dbpedia:Kevin Malone) because it is linked with the entities
dbpedia:Carlos Perez (pitcher) and dbpedia:San Fransisco in DB-
pedia triples.

2.2 Evaluation of KB Adequacy for NER

We propose several evaluation metrics by defining and combining
three elementary principles:

1. Ambiguity: How ambiguous is the text with respect to a KB?
2. Coverage: How much of the text has been annotated and disam-

biguated with the KB?
3. Structure: To what extent did KB relations participate in the dis-

ambiguation?

To define relevant metrics taking into account these 3 aspects, we
make the distinction between mentions recognized lexically with the
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Figure 1. Example of named entity recognition using DBpedia. The numbers on the edges are TD-IDF scores. L indicates that disambiguation was
performed lexically. R indicates that disambiguation was performed using KB relations.

best TF-IDF score and the ambiguous mentions disambiguated us-
ing the KB relations. We denote the set of all candidate mentions
in a corpus C according to a KB k as Mk(C) and the set of dis-
ambiguated mentions as Dk(C). Figure 2 presents the mentions sets
that are generated by our KB-agnostic recognition process.

Figure 2. Named Entity Sets as recognized with Knowledge Base k in
corpus C

We propose and study 10 evaluation metrics. These metrics are
Coverage (V ), Disambiguation Ratio (D), Lexical Disambiguation
Ratio (L), Relation Disambiguation Ratio (R), Average Corpus
Ambiguity (A), Average TF-IDF Score (S), Lexical Adequacy
(LEXQ), Graph Adequacy (GQ), Weighted Quality (WQ) and
Overall PERformance IndicAtor (OPERA). They are described
below.

Coverage (Vk(C)): This metric indicates the percentage of corpus
tokens that have been annotated and disambiguated with the knowl-

edge base k for corpus C.

Vk(C) =

∑
m∈Dk(C) |tokens(m)|

|tokens(C)| (1)

Disambiguation Ratio (dk(C)): This metric indicates the ratio of
textual mentions that have been disambiguated among the set of de-
tected (annotated) mentions.

dk(C) =
|Dk(C)|
|Mk(C)| (2)

Lexical Disambiguation Ratio (Lk(C)): This metric indicates the
ratio of mentions that are disambiguated using only their TF-IDF
score. Low Lk(C) values indicate a bigger disambiguation problem.
For a given mention m ∈ Mk(C) it is computed as follows:

Lk(C) =
|{m ∈ Mk(C) s.t. Nmax(m, k) = 1}|

|Mk(C)| (3)

Where Nmax(m, k) is the number of entities in k that share the
maximum TF-IDF score for the mention m.

Relation Disambiguation Ratio (Rk(C)): This feature indicates the
ratio of textual mentions from Dk(C) that have been disambiguated
using KB relations (cf. section2.1). Higher values of Rk(C) indicate
a stronger participation of the KB graph in disambiguation.

Rk(C) =
|{m ∈ Dk(C)s.t.Nmax(m, k) > 1}|

|Mk(C)| = 1− Lk(C)

(4)
Average Score (Sk): This is the average best TF-IDF score for men-
tions in Mk(C). A high TF-IDF average would indicate that the cor-
pus targets specific subsets of the KB that use highly informative
terms. Sk is computed as follows:

Sk(C) =

∑
m∈Mk(C) score(m, k)

|Mk(C)| (5)

Average Corpus Ambiguity (Ak,T (C)): This metric represents the
average ambiguity level in a corpus C according to a KB k (cf. equa-
tion 7). It is the average of the Lexical Ambiguity of each mention
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m in Mk(C). Highly ambiguous mentions are likely to be unclassi-
fiable or wrongly classified by the KB. The formula for Lexical Am-
biguity (ak,T (m)) is presented in equation 6 below. T is the obser-
vation threshold, i.e., ak,T (m) is computed against the first T search
results and r ≥ Nmax(m, k) is the actual number of results from the
KB index.

ak,T (m) =
Min(Nmax(m, k), T )

Min(r, T )
(6)

Ak,T (C) =

∑
m∈Mk(C) ak,T (m)

|Mk(C)| (7)

From these elementary metrics, we derive several composite eval-
uation metrics to predict both the quantity and the quality of the dis-
ambiguation provided by one KB for for a given corpus.
Lexical Adequacy (LEXQk(C)): This metric represents the abso-
lute ratio of named entities that have been disambiguated with TF-
IDF search.

LEXQk(C) = Lk(C)× Vk(C) (8)

Graph Adequacy (GQk(C)): This metric indicates how useful the
KB graph is in disambiguating named entities in a given corpus. Cov-
erage is used as a coefficient to take into account the discrepancies in
size and coverage between different KBs.

GQk(C) = Rk(C)× Vk(C) (9)

Weighted Quality (WQk(C)): This metric is a weighted combina-
tion of:

• A quality indicator for lexical disambiguation (Norm(Sk(C))
1+Ak,T (C)

),
which uses the normalized value of average TF-IDF score
(Norm(Sk(C))), and the average corpus ambiguity (Ak,T (C)).
The motivation here is (i) that a high average of TF-IDF values
w.r.t. other KBs indicate that the textual mentions in the corpus
are using (highly) informative terms from the KB and (ii) the more
ambiguous the mentions are, the riskier is the selection of the one
mention with best TF-IDF score.

• A quality indicator for relational disambiguation, consisting in the
average corpus ambiguity Ak,T (C). The motivation here is that
having more candidate KB entities to chose from increases the
odds of finding relations between the good candidates. However,
if ambiguity is too high, it can lead to relations between the wrong
KB entities. In practice, such high-ambiguity threshold would de-
pend (i) on the considered knowledge base, (ii) on the targeted
corpus, and (iii) on the observation threshold T used to compute
ak,T (m). Therefore, for relational disambiguation, finding a bal-
anced estimation between the positive and negative impact of am-
biguity is not straightforward. In this paper, we chose to consider
only the positive aspect of ambiguity for relational disambiguation
and to analyze the impact of this choice in our experiments.

We use the contribution of lexical disambiguation Lk(C) to
weight the quality indicator for lexical disambiguation, and the con-
tribution of relational disambiguation Rk(C) to weight the quality
indicator for relation-based disambiguation (we have from equation
4 that Lk(C) = 1−Rk(C)). The final formula for the overall quality
indicator WQk(C) is:

WQk(C) = (Lk(C)× Norm(Sk(C))

1 +Ak,T (C)
) + (Rk(C)×Ak,T (C))

(10)

Overall PERformAnce Predictor (OPERAk(C)): This metric
combines quality metrics (weighted quality) with quantitative mea-
sures (coverage) to account for the size of the knowledge bases and
the amount of lexical matches between the corpus and the KB. It
also uses dk(C) as a factor indicating how successful the KB was in
disambiguating the automatically detected mentions.

OPERAk(C) = WQk(C)× dk(C)× Vk(C) (11)

For comparison, we defined two baseline metrics. The first metric
uses the average TF-IDF score (Sk(C)). The second baseline metric
is Sk(C)× dk(C)× Vk(C), which takes into account the coverage
of the knowledge base to combine both basic quality and quantity
factors.

3 Experiments

We applied our unsupervised named entity recognition method to
extract named entities from 4 open-domain corpora and 5 biomedi-
cal corpora using 3 open-domain knowledge bases and 3 biomedical
knowledge bases. The corpora used in the experiments are described
below.

• TREC corpus [21] consists of sentences extracted from TREC
documents. Similar to the CoNLL03 corpus, this corpus includes
the following entity types: PERSON, ORGANIZATION, LOCATION,
and OTHER.

• NYT corpus [14] consists of 8,000 named entities (PERSON, OR-
GANIZATION, LOCATION) from a random subset of New York
Times articles (1998-2000) in the TREC corpus [26]. The doc-
uments were pre-annotated with a named entity tagger and then
manually corrected by two annotators.

• WikiNER corpus [1] was created by manual annotation of the
body text of 145 Wikipedia articles describing various named enti-
ties, with a roughly equal proportion of article topics from each of
the four CoNLL03 entity types. Initial annotation was performed
using a fine-grained inventory of 96 entity types (e.g., CITY, COM-
PANY) which were then mapped to CoNLL03 classes. Three an-
notators were involved in the annotation task and inter-annotator
agreement was measured on a portion of the corpus.

• CoNLL03 named entity corpus [23] consists of English and Ger-
man documents. The English portion of the corpus, used in our ex-
periments, is taken from the Reuters Corpus5 and consists of news
stories from August 1996 to August 1997. The corpus was manu-
ally annotated, mostly following the MUC guidelines. In addition
to MUC named entity types (PERSON, ORGANIZATION, LOCA-
TION), an additional category (MISC) was also annotated. The an-
notated entities are non-overlapping and non-nested.

• AZDC (Arizona Disease Corpus) [12] consists of 2,783 sentences
from 793 PubMed abstracts annotated with disease mentions. One
annotator performed the annotation. A textual mention was anno-
tated if it could be mapped to a unique concept with a relevant se-
mantic type (e.g., Disease of Syndrome, Neoplastic Process) in the
UMLS Metathesaurus [3]. Acronyms and negated/hedged men-
tions were annotated, while symptoms, general disease classes
(e.g., infection) and overlapping mentions were ignored.

• i2b2 corpus [32] consists of discharge summaries contributed by
Partners Healthcare, Beth Israel Deaconess Medical Center, and
the University of Pittsburgh Medical Center as well as progress
reports from University of Pittsburgh Medical Center. The named

5 http://trec.nist.gov/data/reuters/reuters.html
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entity annotation was performed manually and focuses on three
categories: PROBLEM, TEST, TREATMENT. All documents were
de-identified.

• NCBI disease corpus [6] consists of 793 PubMed abstracts also
used in AZDC; however, in this corpus, all sentences in these ab-
stracts were annotated. Pre-annotations from an automatic classi-
fier were used as the basis of annotation. The annotations guide-
lines were similar to those of AZDC. Nested and non-continuous
mentions were not annotated.

• CDR corpus [29] consists of 1500 PubMed abstracts discussing
chemical-induced diseases and side effects, annotated for DIS-
EASE and CHEMICAL categories. The corpus was manually anno-
tated by the CTD (Comparative Toxicogenomics Database)6 staff.

• Berkeley04 corpus [20] consists of the first 100 titles and the first
40 abstracts from 59 MEDLINE 2001 data files. No keywords
were used to retrieve the documents. Named entities of PROBLEM

and TREATMENT categories were annotated by a single annotator.

In the open-domain experiments, we considered only PERSON, OR-
GANIZATION, and LOCATION as semantic types and discarded MISC

and OTHER, as they are too ambiguous from a knowledge-base per-
spective and strongly biased according to different corpora.

We tested our approach in both the open-domain and biomedical
domain using 6 knowledge bases: DBpedia, Yago, OpenCyc, UMLS,
Snomed-CT and MeSH, described below.

• DBpedia[13] is a community-curated RDF knowledge base con-
structed semi-automatically from Wikipedia. Each Wikipedia ar-
ticle is interpreted as an entity in DBpedia and articles’ infoboxes
are used to extract automatically raw RDF triples, using the ar-
ticle entity as subject, the first column of the infobox as predi-
cate and the second column as object. Manual mappings are then
performed by the DBpedia community to reconcile the predicate
names with the RDF properties in the reference DBpedia schema.
DBpedia entities are also linked to other datasets in the Linked
Open Data cloud7 such as YAGO or Freebase. In the scope of our
experiments we used the English DBpedia 2014 version. After
indexing, the DBpedia database consisted of 6,921,894 entities,
25,864,784 relations and 12,782,266 terms.

• YAGO3 [16] is a large open-domain knowledge base built from
Wikipedia, WordNet and GeoNames. It describes more than 10
million entities described by more than 120 million facts. How-
ever, most facts are type statements and RDFS subClassOf links.
After indexing the Yago3 database consisted of 19,081,230 terms,
5,216,294 relations and 5,327,864 entities.

• OpenCyc8 is an open-domain knowledge base. It is a freely avail-
able version of the Cyc database. The 4.0 release of OpenCyc used
in our experiments includes 800K terms as lexical descriptions of
240K concepts. Overall, the knowledge base contains about 1 mil-
lion triples.

• UMLS[3] Metatesaurus 2015-AA consists of more than 100
biomedical vocabularies and contains more than 800K biomedical
concepts with millions of relations between them. These relations
are mostly lexical relations (e.g., synonymy, meronymy) and not
domain relations9. Each concept in the UMLS Metathesaurus is
associated with a set of semantic types from the UMLS semantic
network. In the scope of our approach, we need to have domain

6 http://ctdbase.org
7 http://linkeddata.org
8 http://sw.opencyc.org/
9 http://www.ncbi.nlm.nih.gov/books/NBK9684/\#ch02.
sec2.4

relations; we consider the semantic network classes (e.g. Disease
or Syndrome, Drug) as entities instead of concepts, and the se-
mantic network relations (e.g., causes, treats) as potential facts
between the concepts. By extending the potential relations using
the classes hierarchy (e.g., considering the potential link type 2 di-
abetes, treats, antibiotics from the general link Drug, treats, Dis-
ease or Syndrome, we obtain a set of 2,408 potential links that
we use as knowledge base relations. After indexing, the UMLS
database consists of 133 entities, 2,408 relations and 3,693,095
terms.

• MeSH10 (Medical Subject Headings) is a hierarchically-organized
terminology designed mainly for indexing biomedical informa-
tion. We use the 2016 RDF version of MeSH11 as a knowledge
base for biomedical entities. After indexing, the MeSH database
contains 792,775 terms for 348,278 concepts, and 953,640 rela-
tions.

• Snomed-CT12 (Systematized Nomenclature of Medicine – Clin-
ical Terms) is a standardized clinical vocabulary used by health
professionals for the exchange of clinical health information. It
encompasses 806,831 terms, 421,308 concept and 1,836,908 rela-
tions.

The statistics from each knowledge base are presented in Table
113.

We used relaxed position-based matching to evaluate the perfor-
mance of our unsupervised NER method. Different corpora often
adopt different criteria for named entity boundaries; for example,
some may include adjectives and determiners, while others ignore
them. These variations make exact named entity boundaries unsuit-
able for correlation studies. Table 2 presents the precision, recall and
F1 score based on relaxed position-matching (values for exact match-
ing F1 scores are 5% to 21% lower for individual corpora).

DBpedia outperformed the other open-domain knowledge bases
on all open-domain corpora. This can be explained by the fact that
DBpedia benefits from Wikipedia disambiguation pages and redi-
rections, and consequently has a richer set of domain relations than
YAGO and richer lexicalization than OpenCyc.

On the biomedical corpora, UMLS obtained the best recall but
lower precision than DBpedia. The fact that UMLS has a better re-
call was expected due to its broader coverage for medical terms. The
fact that DBpedia obtatined better precision than UMLS can be ex-
plained by the fact that DBpedia has lower ambiguity for medical
terms, which enhances the quality of both TF-IDF based search and
relational disambiguation. Aside from these two general behaviours,
there are no noticeable regularities where some KBs do consistently
better than others on different corpora.

We study the correlation between the proposed unsupervised eval-
uation metrics and the standard performance measures for NER,
namely, Precision, Recall and F1 score. We use the Pearson’s corre-
lation factor, ρ, to study the correlation between the metrics and the
performance measures. More precisely, ρC(μ, α) is expressed as:

N
∑

i μi(C)× αi(C)− (
∑

i μi(C)
∑

i αi(C))
√

N
∑

i μi(C)2 − (
∑

i μi(C))2
√

N
∑

i αi(C)2 − (
∑

i αi(C))2

(12)

10 https://www.nlm.nih.gov/mesh/
11 https://id.nlm.nih.gov/mesh/
12 https://www.nlm.nih.gov/research/umls/Snomed/
snomed_main.html

13 The number of relations here is considered to be the number of distinct
subject-object pairs
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KB Domain Entities Relations Labels Density

DBpedia2014 [13] Open 6,921,894 25,864,784 12,782,266 5.39 10−7

YAGO3 [16] Open 5,327,864 5,216,294 19,081,230 1.83 10−7

OpenCyc 14 Open 238,443 754,792 829,203 1.32 10−5

UMLS Lite [3] Biomedical 133 2,408 3,693,095 0.13

Snomed CT 15 Biomedical 421,308 1,836,908 806,831 1.03 10−5

MeSH 16 Biomedical 348,278 953,640 792,775 7.86 10−6

Table 1. Knowledge Bases

Corpus
DBpedia YAGO OpenCyc UMLS MeSH Snomed-CT

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

TREC 82.9 49.0 61.6 80.3 29.9 43.5 66.7 30.3 41.6 – – – – – – – – –

NYT 69.7 42.8 53.1 68.5 27.9 39.7 48.9 20.5 28.9 – – – – – – – – –

WikiNER 82.1 49.0 61.4 81.3 31.7 45.6 63.2 26.5 37.3 – – – – – – – – –

CoNLL 03 69.1 49.3 57.6 65.7 31.4 42.5 48.5 31.4 38.1 – – – – – – – – –

AZDC 74.3 65.5 69.6 69.7 50.0 58.2 78.4 34.3 47.8 67.0 70.2 68.6 76.8 61.0 68.0 70.2 54.2 61.2

I2B2 65.3 31.5 42.5 56.8 16.0 24.9 51.1 23.7 32.3 60.5 35.8 45.0 74.7 20.6 32.3 53.6 15.3 23.8

NCBI 73.5 70.7 72.0 67.9 55.4 61.0 77.9 40.8 53.6 62.8 72.4 67.2 75.9 62.2 68.4 71.5 59.5 65.0

CDR 74.1 64.2 68.8 70.7 19.1 30.1 64.3 38.4 48.1 66.3 64.9 65.6 71.5 25.8 37.9 60.7 36.7 45.8

Berkeley04 71.3 65.1 68.1 64.5 38.1 47.9 59.3 39.9 47.7 62.6 69.8 66.0 78.6 50.2 61.3 67.0 39.9 50.0

Table 2. Precision (P), Recall (R) and F1 score for unsupervised NER. Best results are highlighted per row (corpus)

Where N is the number of knowledge bases, μi(C) represents
the value of a performance measure (i.e., precision, recall, F1) when
using knowledge base ki to extract named entities from corpus C.
αi(C) represents the value of an annotation metric, α (e.g., graph
adequacy, lexical adequacy) when knowledge base ki is used to ex-
tract named entities from corpus C.

The values of the Pearson factor range from -1 (perfect negative
correlation) to +1 (perfect positive correlation), with 0 indicating the
absence of correlation. The Pearson factor is the most relevant for
our study as it relies on the actual values of the variables, instead of
their rank. A strong Pearson correlation would therefore suggest the
portability of our method to additional corpora and knowledge bases.
In contrast, the Spearman’s rank correlation factor will not use the
actual values of precision, recall and F1, but rather an integer rank
value (e.g., a difference of 50% in F1 between 2 KBs could become
equivalent to a difference of 1%), which does not allow assessing the
scalability of the approach. Table 3 presents the Pearson correlation
values for each metric.

4 Findings and Discussion

Our results show strong correlations between the proposed metrics
and Recall, Precision and F1. Recall was naturally correlated with
tokens coverage with 0.96 average Pearson factor on all corpora, 0.92
minimum correlation and 0.001 variance.

Precision was positively correlated with our Weighted Quality
(WQ) metric with 0.59 average Pearson factor on all corpora, and

0.14 variance. One outlier behavior was observed for 2 corpora out
of 9 (NCBI Disease corpus and Arizona Disease corpus), where WQ
was not correlated with precision. These two corpora use the same
document set. The NCBI corpus annotation extends AZDC annota-
tions by annotating all sentences. When we studied these two corpora
more closely with an error analysis, we observed that a disease name
is often annotated only once in an abstract even if it occurs multi-
ple time, which leads to a random behaviour for precision. From this
perspective, our method was able to detect the bias of the manual
annotation. If these two corpora are not included, the correlation of
WQ with precision reaches an average of 0.76 with a variance of
0.001.

F1 scores were strongly correlated with the OPERA metric
(WQ × D × V ) on all corpora: average correlation of 0.96, min-
imum 0.88 and variance of 0.001, which follows the observations on
the elementary metrics; i.e., WQ is a strong predictor of precision
and V is a strong predictor of recall.

Our evaluation metric outperformed the TF-IDF baselines by
+0.09 Pearson value for F1 and recall and +0.21 Pearson value for
precision. The TF-IDF baseline had also a high variance of 0.22 for
an average correlation value of 0.41, which shows that the quality of
lexical matches does not provide a reliable indicator of precision. Our
Lexical Disambiguation Ratio (L) had the best correlation for preci-
sion (0.62) with a relatively low variance of 0.107. L indicates the
difficulty of the disambiguation problem as it represents the number
of non-ambiguous mentions. This also shows that ambiguity, which
is derived from TF-IDF scores, is more useful than the raw TF-IDF

Y. Mrabet et al. / Unsupervised Ranking of Knowledge Bases for Named Entity Recognition 1253



Precision Recall F1

Correlation Average Range Variance Average Range Variance Average Range Variance

Baselines

TF-IDF + 0.41 [-0.43, +0.86] 0.217 + 0.180 [-0.12, +0.62] 0.060 + 0.26 [-0.01, +0.60] 0.04

TF − IDF × V + 0.32 [-0.71, +0.99] 0.409 +0.87 [+0.76, +0.94] 0.002 + 0.87 [+0.76, +0.96] 0.004

Composite Metrics

OPERA (WQ×D × V ) + 0.27 [-0.52, +0.81] 0.196 0.96 [+0.90, +0.99] 0.001 + 0.96 [+0.88, +0.99] 0.001

Weighted Quality (WQ) + 0.59 [+0.00, +0.99] 0.146 + 0.22 [-0.23, +0.59] 0.063 + 0.32 [-0.10, +0.75] 0.071

Disambiguation Coverage (D × V ) - 0.08 [-0.73, +0.53] 0.170 + 0.88 [+0.70, +0.95] 0.005 + 0.80 [+0.53, +0.93] 0.014

Lexical Adequacy (L× V ) + 0.30 [-0.49, +0.85] 0.221 +0.94 [+0.81, +0.99] 0.004 + 0.94 [+0.79, +0.99] 0.004

Graph Adequacy (R× V ) -0.51 [-0.99, +0.56] 0.224 + 0.23 [-0.79, +0.95] 0.31 + 0.10 [-0.85, +0.90] 0.31

Elementary Metrics

Tokens Coverage V + 0.06 [-0.80, +0.73] 0.29 + 0.96 [+0.92, +0.99] 7e−4 + 0.90 [+0.78, +0.99] 0.005

Average Ambiguity - 0.61 [-0.99, +0.58] 0.229 -0.02 [-0.66, +0.96] 0.227 - 0.13 [-0.85, +0.91] 0.23

Disambiguation Ratio (D) -0.20 [-0.54, +0.26] 0.04 + 0.65 [+0.31, +0.84] 0.02 + 0.57 [+0.10, +0.84] 0.03

Lexical Ratio (L) +0.62 [-0.05, +0.99] 0.107 +0.21 [-0.66, +0.95] 0.26 + 0.31 [-0.55, +0.98] 0.23

Table 3. Range, Variance and Average Pearson correlation factors between annotation metrics and Precision, Recall and F1 score. Best results are
highlighted, second best are underlined.

values.
Including the Disambiguation Ratio (d) in the formula of

OPERA (WQ × d × V ) led to a better correlation for F1 score.
We also observe that Disambiguation Coverage (d × V ) is less cor-
related for recall than V (0.90 vs 0.80 Pearson values, respectively) .
From additional experiments, we also found that WQ×V had an av-
erage correlation of 0.88 only (compared to 0.96 with WQ×d×V ).
Therefore, we can conclude that the elementary metric d had a posi-
tive impact for the prediction of precision values.

Our study is not exhaustive with regards to the number of metrics
that might be considered. However, our results show that the pro-
posed, general annotation metrics can predict, to a large extent, the
adequacy of a KB for annotating named entities in a given corpus.

We limited our named entity recognition approach to commonly
used methods. TF-IDF scores and global coherence maximization
with KB relations are used in many related studies, including super-
vised classification approaches [19, 7, 11]. Therefore, we think that
our observations can benefit other named entity recognition methods,
provided that they use these two general principles.

We have no evidence at the current stage that our evaluation met-
rics would be relevant for recognition methods that do not rely on
global coherence and TF-IDF scores. This includes token classifica-
tion methods such as conditional random fields, which rely primarily
on annotated corpora. A potential future direction is to use our un-
supervised annotations to provide KB-derived semantic features at
token level to study the performance of supervised classifiers.

Another potential future direction is to extend our method to evalu-
ation of training corpora for supervised classification. In this setting,
a training corpus can be seen as a knowledge base where the manual
annotations are knowledge base entities and the co-occurrences of
two annotations in the same sentence or context indicate the knowl-
edge base relations.

5 Conclusions

We presented a new ranking approach to assess the suitability of
knowledge bases for named entity recognition in a given corpus.
More precisely, we proposed several unsupervised annotation met-
rics and studied their correlation with performance measures such as
precision, recall and F1 score. Our results show that these metrics
can be strong predictors of NER performance and that they signifi-
cantly improve ranking relevance when compared to TF-IDF base-
lines. With the important increase in scope of named entities, our ap-
proach can play a key role in large-scale NER as it allows selecting
relevant knowledge bases for a given textual context. It can also be
applied to the selection of sub-graphs from the same (large) knowl-
edge base. Our short-term goal is to deploy a web service that takes
natural language texts as input and ranks all indexed knowledge bases
according to the performance predictors proposed in this paper. This
also includes the integration of other KBs deemed to be of sufficient
interest. We also plan to study the performance of supervised classi-
fiers according to these metrics when they use unsupervised knowl-
edge base annotations as training features.
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