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Abstract. We investigate the parameterised model checking prob-
lem for specifications expressed in alternating-time temporal logic.
We introduce parameterised concurrent game structures representing
infinitely many games with different number of agents. We introduce
a parametric variant of ATL to express properties of the system irre-
spectively of the number of agents present in the system. While the
parameterised model checking problem is undecidable, we define a
special class of systems on which we develop a sound and complete
counter abstraction technique. We illustrate the methodology here
devised on the prioritised version of the train-gate-controller.

1 Introduction
In the past 15 years there has been considerable interest in logics
and techniques for reasoning about strategic play in multi-agent sys-
tems (MAS). Formalisms such as Alternating-Time Logic [4] enable
us to capture precisely what agents may bring about by cooperating
with one another. They also offer a game-theoretic angle to study
interactions within MAS that was missing in previous mainstream
formalisms, e.g., in the plain BDI approach [35].

Formalisms stronger than ATL have been put forward. The logic
ATL∗ [4] extends the cooperation modalities to the full power of
CTL∗ temporal modalities. More recently, a wide range of so called
“strategy logics” [10, 32] have been introduced to increase the ex-
pressiveness even further. For example, in a variant of strategy logic,
strategies can be explicitly named and bound to agents. This is useful
in many scenarios and results in being able to express, for example,
concepts such as Nash equilibria. Several underlying conditions on
MAS have been explored in this context, including complete and in-
complete information, perfect recall and memoryless strategies.

There is, however, a whole class of MAS that has not received
attention so far in terms of strategic reasoning. This concerns MAS
that are composed by an unbounded number of components. This
is a natural and general class of MAS not only of theoretical inter-
est, but of considerable relevance to applications. For example, open
MAS where components enter and leave the system at runtime may
be formalised by MAS with unbounded numbers of agents [7, 33].
Robotic swarms are also naturally assumed to be systems in which
the number of agents is unbounded [27, 28, 29]. This tradition dates
back to applications such as networking where protocols are often
analysed by considering the unbounded nature of the processes in
the system [8].

Specifications concerning strategic interplay naturally arise in
these application areas. For example, in swarm analysis the engi-
neer may be interested in establishing whether a small coalition in
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a swarm can influence the behaviour of the whole system in a certain
way (perhaps by forcing its direction of travel). In open MAS such
as auctions it may be of interest to establish whether a small set of
players can collude to force an unwanted state of affairs. Strategic
interplay on games with infinitely many players is also of theoretical
interest: many games are defined on arbitrarily many players includ-
ing game cutting, diner’s dilemma, etc. In all these scenarios it is of
interest to establish whether a strategic property holds on the game
irrespective of the number of players in the system. By establishing
the above we can deduce a strong property of the system, as the prop-
erty will have been guaranteed to hold irrespective of the particular
system instance under analysis.

In this paper we put forward a methodology to address this prob-
lem. We assume that our MAS is composed by arbitrarily many
agents. We express specifications of interest in a novel variant of
ATL, where we can naturally encode whether all players of a par-
ticular kind can, by establishing a coalition, force states of affairs
expressed as LTL formulas on the rest of the system. We define the
verification problem in terms of the verification of all realisations of
the system, and show the problem is undecidable in general. Our key
contribution is a technique based on counter abstraction that enables
us, in several cases of interest, to draw conclusions on all possible
system instances by analysing a single abstract model.

Related Work. We are not aware of any work addressing the prob-
lem above. Of course, the verification problem for ATL has received
much attention over the years, including various implementations
from the seminal jMocha model checker [2] to recent symbolic im-
plementations such as Verics [24] and MCMAS [31]. However, all
these techniques deal with a finite number of agents, and so can-
not address the general problem. Closer to our approach is recent
work on parameterised verification for MAS [25, 26, 30], where un-
bounded MAS are checked against epistemic specifications. In par-
ticular, [27, 28] present counter abstraction techniques to verify un-
bounded MAS against epistemic specifications. While our technique
is inspired by [27, 28], the specification language supported here is
based on strategies, and so it is not directly comparable.

Scheme of the Paper. In Section 2 we introduce parameterised
concurrent game structures (PCGS), a novel form of concurrent game
structures that can represent arbitrarily many agents; this is followed
by the introduction of PATL, a parameterised version of ATL. In
Section 3 we prove that the parameterised model checking prob-
lem for PCGS against PATL is undecidable and identify a class of
systems for which we give a method for parameterised verification
in Section 4. In Section 5 we encode an unbounded version of the
train-gate-controller in PCGS and express relevant specificactions in
PATL. We conclude in Section 6, where we discuss possible future
work.
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2 Parameterised Concurrent Game Structures

To reason about strategic interplay in unbounded MAS, we intro-
duce the formalism of parameterised concurrent game structures
(PCGS). PCGS extend concurrent game structures [4], the traditional
semantics for ATL, to represent an unbounded number of systems (or
games) with an unbounded number of agents. The behaviour of the
agents is given by templates which form part of the PCGS. We as-
sume a finite number of templates from which an unbounded number
of agents may be constructed. A vector of parameters specifies the
number of agents in the system that are built from the templates. In
other words, given a vector (n1, . . . , nk) and a PCGS of k templates,
the concrete concurrent game structure is constructed by composing
ni agents for each template i.

We consider concrete structures where: (i) the agents have incom-
plete information, i.e., the agents are only aware of their private (lo-
cal) state; (ii) the agents have imperfect recall, i.e., their strategies are
given as functions from local states to actions; (iii) the agents’ strate-
gies are uniform, i.e, a strategy always specifies the same action in a
given local state.

This is not the mainstream setting in which ATL was defined [4],
but it is widely considered in the literature [1, 9, 22]. Observe,
however, that assuming complete information, i.e., assuming that
the agents are fully aware of the system’s state, is problematic
for unbounded systems. In fact, under complete information, each
agent can be aware of the number of agents in each system in-
stance. This immediately leads to undecidability of the parameterised
model checking problem [17]. Similarly, observe that the plain model
checking problem under incomplete information and perfect recall is
undecidable [14]. It follows that the parameterised model checking
problem is also undecidable. Finally, in the context of incomplete in-
formation and memoryless strategies we assume that strategies are
uniform [23], i.e., when following a strategy the agents consistently
select the same action in the same local state. This is an intuitive
requirement that preserves the meaning of the ATL operators, only
causing a jump to ∆2

P [22].
We define parameterised concurrent game structures. Then we de-

fine the concrete structures that these generate.

Definition 1 (Parameterised concurrent game structure) A
parameterised concurrent game structure (PCGS) is a tuple
Ŝ =

〈
Σ̂, Q̂, q̂0, Â, Π̂, π̂, d̂, δ̂

〉
, where:

• Σ̂ = Σ̂T ∪ΣC , where Σ̂T =
{
1̂, . . . , k̂

}
is a finite, nonempty set

of agent templates and ΣC = {1, . . . , z} is a finite set of concrete
agents.

• Q̂ is a nonempty, and finite set of local states for the agents.
• q̂0 = Σ̂→ 2Q̂ describes a set of initial local states for each of the

agents.
• Â is a nonempty, and finite set of actions available to the agents.
• Π̂ is a finite set of propositional variables.
• π̂ : Q̂→ 2Π̂ is a labelling function on the states.
• d̂ : Σ̂ × Q̂ → 2Â determines the set of actions available to an

agent given its local state.
• δ̂ : Σ̂×Q̂×Â×2Â → Q̂ gives the temporal evolution of an agent

given its state, its action, and the projection of the joint action for
the other agents into a set.

As the above definition suggests, to account for the unbounded na-
ture of parameterised games, information regarding the identities of

the agents is abstracted away. In other words, as we will make precise
with the definition of a concrete system, the temporal evolution of an
agent depends on the agent’s local state, its action, and the actions
of the other agents, but it does not depend on how many and which
agents performed each action.

Assume a PCGS Ŝ defining k agent templates. Let n ∈ Nk

be a vector of parameters for the system. Consider n.i to be the
i-th component in n. We now define the n-st concrete instantia-
tion S(n) of Ŝ. S(n) is a concurrent game structure resulting from
the composition of the concrete agents ΣC with n̄.i instantiations
{(i, 1), . . . , (i, n.i)} of each agent template î. Let Σ denote the set
of all concrete agents. The global states of S(n) correspond to tu-
ples of local states for all the agents in the system. For a global
state q and an agent ag ∈ Σ, we write q.ag for the local state of
ag in q. The system’s temporal evolution from a state depends on
the joint action performed at the state. Given a joint action a and
an agent ag ∈ Σ, we write a.ag for the action of ag in a. By
Actions(a), we denote the set Actions(a) = {a.ag : ag ∈ Σ} of
actions for all the agents in a; by Actions−ag(a), we denote the set
Actions−ag(a) = {a.ag ′ : ag ′ ∈ Σ \ {ag}} of actions for all the
agents other than ag in a.

Definition 2 (Concrete concurrent game structure) Let
Ŝ =

〈
Σ̂, Q̂, q̂0, Â, Π̂, π̂, d̂, δ̂

〉
be a PCGS of k agent tem-

plates and z concrete agents. Let n ∈ Nk. A concrete concurrent
game structure (CCGS) is a tuple S(n) = 〈Σ, Q,Q0, A,Π, π, d, δ〉,
where:

• Σ = ΣT ∪ΣC , where ΣT = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n.i} is
the set of concrete agents instantiated from the templates.

• Q = Q̂|Σ| is the set of concrete states.

• Q0 =
(
q̂0(1̂)

)n.1 × . . .×
(
q̂0(k̂)

)n.k

× (q̂0(1))× . . . (q̂0(z)) is
the set of initial concrete states.

• A = Â|Σ| is the set of joint actions.
• Π = Π̂× Σ.
• π : Q→ 2Π is defined as (p, ag) ∈ π(q) iff p ∈ π̂ (q.ag).
• d : Q → 2A gives the set of joint actions available at a state of

the system: a ∈ d(q) iff

a.i ∈ d̂ (i, q.i) for every agent i ∈ ΣC , and

a.(i, j) ∈ d̂
(
î, q.(i, j)

)
for every agent (i, j) ∈ ΣT .

• δ : Q×A→ Q is the temporal transition function of the system:
δ(q, a) = q′ iff a ∈ d(q),

δ̂ (q.i, a.i,Actions−i(a)) = q′.i for every agent i ∈ ΣC , and

δ̂
(
q.(i, j), a.(i, j),Actions−(i,j)(a)

)
= q′.(i, j)

for every agent (i, j) ∈ ΣT .

So a PCGS generates different CCGS depending on the vector of
parameters for the system. Each CCGS is composed of a different
number of agents. The propositional variables in a CCGS are indexed
by each of the concrete agents. A propositional variable (p, ag) holds
in a global state if the agent ag is at a local state labelled with the non-
indexed propositional variable p by the template labelling function.
These assumptions are crucial in expressing collective specifications
that typically accommodate games with an unbounded number of
agents such as cooperative games [36] or agreement protocols [34].

A path in a CCGS is a sequence λ = q0q1 . . . such that for every
i ≥ 0 there is a joint action a with δ(qi, a) = qi+1. For a path λ and
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i ≥ 0, we write λi to denote the suffix qiqi+1 . . . of λ. We assume
that the transition relation for CCGS is serial 2.

Alternating-time temporal logic (ATL) generalises branching-time
temporal logic (CTL) by allowing selective quantification over paths
representing possible outcomes of a system [4]. Hence, ATL spec-
ifications can express strategic profiles of agents that can enforce a
certain outcome. More specifically, in addition to customary tempo-
ral modalities, ATL includes cooperation formulas such as 〈〈Γ〉〉ϕ,
where Γ is a group of agents, expressing that Γ has a cooperative
strategy to enforce an LTL formula ϕ irrespective of how the other
agents act.

Let VAR = VAR1 ∪ . . . ∪ VARk be the union of disjoint sets
of variable symbols, where each VARi is associated with agent tem-
plate î. To reason about unbounded groups of agents, we here define
parameterised alternating-time temporal logic (PATL), a variation of
ATL, where: (i) Γ is not a subset of agents from a predetermined set
as in ATL, but it is a subset ∆ ⊆ ΣC ∪ VAR of the union of the set
of concrete agents ΣC and the set of variables VAR; (ii) the atomic
propositions are indexed by the variables in VAR. The domain of a
variable v ∈ VARi appearing in a formula ϕ depends on the CCGS
on which ϕ is evaluated; if ϕ is evaluated on S(n), then the potential
set of values for v is {(i, 1), . . . , (i, n.i)}. Intuitively, PATL formulae
quantify over the concrete agents. For instance, ∀v〈〈{v}〉〉ϕ, where
v ∈ VARi , expresses that every concrete agent from template î can
enforce ϕ independently of the action performed by however many
other agents are instantiated from each template.

Given a set Σ of concrete agents, a set VAR = VAR1 ∪ . . . ∪
VARk of variable symbols, and a set Π̂ of propositional variables,
PATL formulae are defined by the following BNF grammar:

ϕ ::=> | (p, v) | ¬ϕ | ϕ ∧ ϕ | 〈〈∆〉〉Xϕ | 〈〈∆〉〉(ϕUϕ) | 〈〈∆〉〉Gϕ |
∀ϕ

where p is a propositional variable, v is a variable symbol, and ∆ ⊆
Σ ∪VAR.

We abbreviate 〈〈∆〉〉(>Uϕ) as 〈〈∆〉〉Fϕ. The formula 〈〈∆〉〉Xϕ is
read as “〈〈∆〉〉 has a strategy to enforce ϕ in the next state”; 〈〈∆〉〉Gϕ
denotes “〈〈∆〉〉 has a strategy to enforce ϕ forever in the future”; and
〈〈∆〉〉ϕ1Uϕ2 represents “〈〈∆〉〉 has a strategy to enforce that ϕ2 holds
at some point in the future and ϕ1 holds until then”.

A variable appearing in a PATL formula is said to be free if it is
not in the scope of a universal quantifier. A PATL formula is said
to be a sentence if there are no free variables appearing in the for-
mula. We here consider only PATL sentences. We say that a PATL
sentence is an m-indexed formula, where m is a k-tuple of natural
numbers, if there are precisely m.i variables from VARi appearing
in a cooperation modality or a propositional variable in the formula.

The key difference of PATL with respect to plain ATL is that while
a formula in ATL expresses what a concrete group can achieve irre-
spective of the actions of all other agents outside the group, a PATL
formula quantifies over the groups of concrete agents that can en-
force the property independently of how many concrete agents are
actually instantiated; i.e., in any system of any size.

Assume a CCGS S(n) = 〈Σ, Q,Q0, A,Π, π, d, δ〉. We now de-
scribe the evaluation of PATL sentences on S(n). This uses the no-
tion of a strategy. A strategy for a concrete agent i ∈ ΣC is a function
fi : Q̂

+ → Â such that for each finite sequence λ̂ ∈ Q̂+ we have that
fi(λ̂) ∈ d̂(i, q̂), where q̂ is the last state in λ̂. Similarly, a strategy for

2 A serial transition relation is induced by a given PCGS by assuming a serial
action such that serial ∈ d̂(ag, q) and δ̂(ag, q, serial ,X ) = q , for each
q ∈ Q̂, ag ∈ Σ̂, and X ⊆ Â.

a concrete agent (i, j) ∈ ΣT is a function f(i,j) : Q̂
+ → Â such that

for each finite sequence λ̂ ∈ Q̂+ we have that f(i,j)(λ̂) ∈ d̂(̂i, q̂),
where q̂ is the last state in λ̂. A strategy is said to be memoryless if it
only depends on the last state, i.e., fag(q̂1, . . . , q̂x, q̂) = fag(q̂), for
any x ∈ N. In the following we consider memoryless strategies.

Given a set Γ of concrete agents, a concrete state q ∈ Q, and
an indexed set of strategies FΓ = {fag : ag ∈ Γ}, the outcomes of
FΓ from q is defined as the set of infinite paths out(q, FΓ), where
q0q1 . . . ∈ out(q, FΓ) iff q0 = q, and for every x ≥ 0 there is a joint
action a such that: (i) a.ag = fag(q0.ag . . . qx.ag) for all agents
ag ∈ Γ; (ii) δ(qx, a) = qx+1.

We now define the satisfaction relation. We write (S(n), q) |= ϕ
to mean that a formula ϕ is true at state q in S(n). If S(n) is clear,
then we simplify the notation to q |= φ.

Definition 3 (Satisfaction of PATL) Let S(n) be a CCGS, q a state
in S(n), (p, ag) a propositional variable, and v ∈ VARi a variable
symbol. The satisfaction relation |= is inductively defined as follows:

q |= (p, ag) iff (p, ag) ∈ Π(q);
q |= ¬ϕ iff q 6|= ϕ;
q |= ϕ1 ∧ ϕ1 iff q |= ϕ1 and q |= ϕ2;
q |= 〈〈Γ〉〉Xϕ iff for some FΓ and all λ ∈

out(q ,FΓ ) we have that λ1 |= ϕ;
q |= 〈〈Γ〉〉ϕ1Uϕ2 iff for some FΓ and all λ ∈

out(q ,FΓ ), there is i ≥ 0 with
λi |= ϕ2 and λj |= ϕ1 for all
0 ≤ j < i;

q |= 〈〈Γ〉〉Gϕ iff for some FΓ and all λ ∈
out(q ,FΓ ) and for all i ≥ 0 we
have that λi |= ϕ;

q |= ∀vϕ iff for all ag ∈ {(i, 1), . . . , (i, n.i)},
q |= ϕ[v 7→ ag].

A PATL formula ϕ is said to be true in S(n), denoted S(n) |= ϕ,
if (S(n), q) |= ϕ for every q ∈ Q0.

PATL generalises indexed CTL [12], a parametric variant of CTL
that introduces quantification operators over the system components.
In addition to the next-time operator, the unrestricted nesting of the
quantification operators can be used to represent the actual num-
ber of participants in the system [12], thereby making the param-
eterised model checking problem undecidable [11]. To circumvent
this, indexed CTL typically excludes the next-time operator and is
restricted to its prenex fragment in which all the quantifiers appear at
the front of the formula [5]. In light of this, for the rest of the paper,
we consider m-indexed PATL formulae that comply to the following
schema:

∀v(1,1) . . . ∀v(k,m.k)((∧
i,j

¬(v(1,i) = v(1,j)) ∧ . . . ∧
∧
i,j

¬(v(k,i) = v(k,j))

)
→ ϕ

)

where ϕ is a PATL formula with no quantifiers and without
the next-time operator that is built from precisely the variables
v(i,1), . . . , v(i,m.i), for each agent template î. We simply write ϕ to
denote an m-indexed formula of the above schema.

The evaluation of an m-indexed formula on a CCGS is de-
termined by evaluating the conjunction of all its ground instanti-
ations under any assignment for the variables. For example, as-
sume a resource sharing protocol encoded as a PCGS with one
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agent template, and consider that want to check the property: “ev-
ery agent has a strategy so that they eventually take the lock on
the shared resource”. We can express this property in PATL by
the 1-indexed formula 〈〈{v}〉〉F (lock , v). When evaluated on a con-
crete system with two participants, the formula denotes the formula
〈〈{(1, 1)}〉〉F (lock , (1 , 1 )) ∧ 〈〈{(1 , 2 )}〉〉F (lock , (1 , 2 )). Follow-
ing the symmetric nature of these conjuncts, an m-indexed formula
can be evaluated by considering only its ground instantiation ob-
tained by assigning pairwise distinct values to the variables in each
VARi from the domain {(i, 1), . . . , (i,m.i)} [30]. For example,
〈〈{v}〉〉F (lock , v) can be evaluated by simply considering its ground
instantiation 〈〈{(1, 1)}〉〉F (lock , (1 , 1 )). For the rest of the paper, an
m-indexed formula equivalently refers to its aforementioned ground
instantiation.

3 Parameterised Model Checking
We now introduce a procedure to assess the correctness of a MAS
with respect to a given PCGS independently of the number of agents
in the system. This decision problem is generally known as the pa-
rameterised model checking problem [8].

Definition 4 (PMCP) Given a PCGS Ŝ and an m-indexed PATL
formula ϕ, the parameterised model checking problem (PMCP) is
the decision problem of determining whether the following holds:

S(n) |= ϕ for every n ≥ m 3.

The PCMP is known to be undecidable for arbitrary systems [6].
However, restrictions can be imposed on the systems leading to de-
cidable problems; these have been exploited in a variety of applica-
tions ranging from networking to MAS against temporal or epistemic
specifications [13, 18, 30].

We prove below that the PMCP for PCGS is undecidable. To
achieve this, we show that PCGS can simulate broadcast proto-
cols [16], whose PMCP has been shown undecidable for liveliness
properties [19]. This result shows the generality of systems that can
be described by PCGS. Additionally, it will give us the intuition to
define a special class of PCGS that enjoys a decidable PMCP.

A broadcast protocol is a tuple B = (S, S0,Λ, R), where S is a
finite set of states, S0 ⊆ S is a set of initial states, Λ = L×{!!}∪L×
{??} is the union of finite sets of output broadcast labels (L × {!!})
and input broadcast labels (L × {??}), and R ⊆ S × Λ × S is a
transition relation [16]. A concrete broadcast system B(n) can be
constructed from B and a parameter n ∈ N representing the number
of processes in the system. The processes communicate via broadcast
primitives, i.e., processes send messages that are received by all other
processes. Formally, there is a transition from a global state g to a
global state g′ by means of label a if there is a process i such that
(g.i, a!!, g′.i) ∈ R, and for all processes j 6= i, (g.j, a??, g′.j) ∈ R.

Theorem 1 The PMCP for PCGS is undecidable.

Proof sketch. Let B = (S, S0,Λ, R) be a broadcast protocol. We

construct a PCGS Ŝ =
〈
Σ̂, Q̂, q̂0, Â, Π̂, π̂, d̂, δ̂

〉
that simulates B

(see Figure 1):

• ΣC = ∅, Σ̂T =
{
1̂
}

; Q̂ = S; q̂0(1̂) = S0; Â = Λ; Π̂ and π̂ can
be arbitrarily defined.

• d̂ is defined as follows: for each q ∈ S and a ∈ Λ with (q, a, q′) ∈
R, for some q′, we have that a ∈ d̂(1̂, q).

3 n ≥ m is a shortcut for n.i ≥ m.i, for each 1 ≤ i ≤ k.

q r

q1 r1

qx rx

a!!

a??

a??

(a)

q r

q1 r1

qx rx

1, a!!, {a??}

1, a??, {a!!, a??}

1, a??, {a!!, a??}

(b)

Figure 1: Simulation of broadcast protocols by PCGS.

• δ̂ is given by the following 4: for each (q, a!!, q′) ∈ R, we have
that δ̂(1̂, q, a!!, {a??}) = q′; and for each (q, a??, q′) ∈ R, we
have that δ̂(1̂, q, a??, {a!!, a??}) = q′.

It follows that for every n ∈ N, and for every sequence of states
λ ∈ (Sn)+, λ is a path in B(n) iff λ is a path in S(n). But the
PMCP for broadcast protocols against liveliness properties is unde-
cidable [16]. Since liveness can be expressed in PATL, it follows that
the PMCP for PCGS against PATL specifications is also undecidable.
�

In the proof above note the crucial role of the transition
δ̂(1̂, q, a!!, {a??}) = q′. By the concrete semantics, the transition
is enabled for a concrete agent if the agent exclusively performs a!!,
and all other agents perform a??. Intuitively this encodes a situation
where the agent takes the lock on the shared resource q′. We define
the class of mutual exclusion PCGS on the basis of this interpretation.

We write q →a q′ to mean that there is a template transition
δ̂(âg, q, a,X) = q′ such that a ∈ X for some agent template âg.
That is, if q →a q′, then an arbitrary number of agents from a certain
template may perform the action a and move from state q to state
q′. Assume q 99Ka q′ to denote the latter, but with a /∈ X . That
is, if q 99Ka q′, then precisely one agent following a certain tem-
plate may perform the action a and move from state q to state q′.
Call a template state q initialisable if for every template transition
δ̂(âg, q, a,X) = q′ we have that q′ ∈ q̂0(âg).

Definition 5 (Resource state) A template state q is said to be a re-
source state if: (i) @(q′, a). q′ →a q; (ii) ∃!(q′, a). q′ 99Ka q; (iii) q
is initialisable.

Definition 6 (Non-resource state) A template state q is said to be a
non-resource state if q′ →a q by means of agent template âg implies
q′ 99Ka q by means of âg, and q′ 99Ka q by means of an agent
template âg implies q′ →a q.

Intuitively, a template state is a resource state if: by conditions (i)
and (ii), exactly one agent (in a concrete system) can take the lock on
the shared resource represented by the state at any given time-step;
by condition (iii) an agent always releases the lock on a shared re-
source. Differently, a non-resource state is a template state in which
an arbitrary number of agents can move into at any given time step.
Clearly, there may be template states that are neither resource states
nor non-resource states.

Definition 7 (Mutual exclusion property) A PCGS is said to sat-
isfy the mutual exclusion property if the following conditions hold:
(i) every state is either a resource state or a non-resource state; (ii)
every initial template state is a non-resource state.
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q1

q2 q3

b, {a, b, c}

a, {b, c} c, {a, b, c}

b, {a, b, c}
a, {a, b, c}

c, {a, b}

Figure 2: A PCGS violating the starvation freedom property. For clar-
ity several transitions to non-resource states required by the mutual
exclusion property are ommited in the figure.

A PCGS satisfying the mutual exclusion property may violate the
so called starvation freedom property [21]. More specifically, the
number of times an agent can access a shared resource may depend
on the number of agents present in a concrete system. For exam-
ple, consider the PCGS of one agent template 1̂ and zero concrete
agents depicted in Figure 2. In a concrete system all agents are ini-
tially in state q1. Assume that the concrete agent ag wants to access
the shared resource represented by the resource state q2. The agent
has to perform the action a, and all other agents have to collectively
perform the actions b and c. So, the agent ag goes to state q2 and all
the other agents move to states q1 and q3. Note that the agents in q3
remain forever in q3. To release the lock on the shared resource, the
agent ag has to perform the action c and all the other agents have
to collectively perform the actions a, b. Then, ag can take again the
lock on the shared resource as described above. However, each time
it does so it causes other agents to move from q1 to q3. Thus, eventu-
ally, no agents are left in q1. At this point, ag cannot move from q1
to q2 since no agent can perform the action c. Hence, ag can access
the shared resource only a finite number of times, the precise number
depending on the number of agents in a concrete system.

The above behaviour is particularly problematic for parameterised
model checking techniques. In counter abstraction it generates spu-
rious paths that can be hard to identify [15, 28]. We thus restrict the
analysis of PCGS to the class of PCGS that satisfy the mutual ex-
clusion property and the starvation freedom property. The latter is
defined as follows. Call a template transition δ̂(̂i, q, a, A) = q′ bad
on action b if q 6= q′, b ∈ A, and δ̂(̂i, q, a, A \ {b}) 6= q′. In other
words, a template transition from a state q to a different state is bad
on an action b if a different action cannot be performed at the state
without b being performed at the state. For example, the transition
δ̂(1̂, q1, a, {b, c} , q2) of the PCGS shown in Figure 2 is bad on ac-
tions b and c. The starvation freedom property insists on these actions
to be reflexive on the state they are performed, thereby “eliminating”
the behaviour described above.

Definition 8 (Starvation freedom property) A PCGS is said to
satisfy the starvation freedom property if the following condition
holds: if a transition δ̂(̂i, q, a, A) = q′ is bad on an action b and
δ̂(ĵ, r, b, A) = r′, for any ĵ, r, then r = r′.

Definition 9 (ME class of PCGS) The ME class of PCGS is the
class of all PCGS that satisfy the mutual exclusion property and the
starvation freedom property.

Intuitively, the ME class describes resource allocation protocols
in which every agent can eventually access a shared resource after
requesting to do so. The importance of the ME class of systems is

4 Note that the undecidability result in [19] is drawn under the assumption
that for each q ∈ S, a ∈ Λ, there is exactly one state q′ with (q, a, q′) ∈ R.

particularly significant and goes well beyond these protocols. Indeed,
in the next section we show that the PMCP for ME MAS against
PATL specifications is decidable.

4 Verifying the ME Class of PCGS
In this section we show the significance of the ME class of PCGS
identified above. Specifically we give a procedure that solve. the
PMCP for ME PCGS against PATL formulas. Given an ME PCGS
and an m-indexed formula, the method involves checking a partic-
ular abstract model S(m) against the formula. We show below that
the abstract model S(m) finitely encodes all concrete instantiations
of a given PCGS. It follows that the satisfaction of the formula on
the abstract model implies the satisfaction of the formula on every
concrete instantiation of the original PCGS. Conversely, if the spec-
ification is not satisfied on the abstract model S(m), there exists a
concrete instantiation of the original PCGS that falsifies the formula.

Fix a PCGS Ŝ =
〈
Σ̂, Q̂, q̂0, Â, Π̂, π̂, d̂, δ̂

〉
∈ ME of z concrete

agents ΣC = {1, . . . , z} and k agent templates Σ̂T =
{
1̂, . . . , k̂

}
.

Let ϕ be an m-indexed PATL formula. For x ∈ Nk, let ΣT (x) de-
note the set ΣT (x) = {(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ x.i} of concrete
agents.We now construct the abstract model S(m). An abstract state

γ =
(
(q(1,1), . . . , q(k,m.k), q1, . . . , qz), (X1, . . . , Xk)

)
consists of a concrete component γ.c = (q(1,1), . . . , q(k,m.k),
q1, . . . , qz) and an abstract component γ.ab = (X1, . . . , Xk). The
abstract state γ represents any concrete state g in an arbitrarily large
system S(n) in which: each concrete agent (i, j) ∈ ΣT (m) is at lo-
cal state q(i,j); each concrete agent i ∈ ΣC is at local state qi; for
each agent template î, Xi = {g.(i, j) : (i, j) ∈ ΣT (n) \ ΣT (m)} is
the set of states for the agents not in ΣT (m). We write γ.c.ag for
the local state of the agent ag in γ. By γ.ab.i we denote the abstract
component associated with the agent template î in γ.

Definition 10 (Abstract model) Given a PCGS Ŝ of k agent tem-
plates and z concrete agents, and an m-indexed PATL specification
ϕ, the abstract model S(m) is defined as the tuple S = 〈G, I, T ,V〉,
where:

• G ⊆ Q̂|ΣT (m)| × Q̂z × (2Q̂)k is the set of abstract states.

• I =
(
q̂0(1̂)

)m.1 ×
(
q̂0(k̂)

)m.k

× q̂0(1) × . . . q̂0(z) × 2q̂0(1̂) ×

. . .× 2q̂0(k̂) is the set of initial abstract states.
• T ⊆ G × Λk × G is the abstract transition relation, where Λ =

2Q̂×Â×2Â×Q̂ is a set of transition labels.
• V : G → 2(Π̂×ΣC)∪(Π̂×ΣT (m)) is the labelling function defined

by (p, ag) ∈ V(γ) iff p ∈ π̂(γ.c.ag).

The concrete component γ.c encodes the atomic propositions from
which ϕ is built, whereas the abstract component γ.ab encodes the
ways an arbitrary number of agents may interfere with the state of
γ.c. We make this precise with the definition of the abstract transi-
tion relation. Transitions from an abstract state represent transitions
enabled from any concrete state represented by said abstract state.
Each abstract transition is labelled by the template transitions taking
place in a concrete representative transition. Specifically, for an ab-
stract transition (γ, (Ξ1, . . . ,Ξk), γ

′), a label (q, a,A, q′) ∈ Ξi indi-
cates that in a global transition at least one agent in ΣT (n) \ΣT (m)
is in state q; the agent performs the action a and moves to the state
q′, and all other agents perform the set of actions A.
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Let Ξ = Ξ1 ∪ . . . ∪ Ξk. We write Actions(Ξ ) =
{a : ∃q , q ′,A. (q , a,A, q ′) ∈ Ξ} for the set of actions performed by
Ξ. We now define the abstract transition relation.

Definition 11 (Abstract transition relation) The abstract transi-
tion relation T is defined as (γ, (Ξ1, . . . ,Ξk), γ

′) ∈ T iff there is a
joint action a ∈ Â|ΣT (m)|+|ΣC | such that:

• for every concrete agent ag = (i, j) ∈ ΣT (m), we have
a.ag ∈ d̂(̂i, γ.c.ag) and δ̂(̂i, γ.c.ag, a.ag,Actions−ag(a) ∪
Actions(Ξ )) = γ′.c.ag .

• for every concrete agent i ∈ ΣC , we have a.i ∈ d̂(i, γ.c.i) and
δ̂(i, γ.c.i, a.i,Actions−i(a) ∪Actions(Ξ )) = γ′.c.i .

• for each agent template î, for all l = (q, a,A, q′) ∈ Ξi, we have
q ∈ γ.ab.i, q′ ∈ γ′.ab.i, a ∈ d̂(̂i, q), δ̂(̂i, q, a, A) = q′, and
either A = Actions(a) or A = Actions(a)∪Actions(Ξ \{l});

• for each agent template î, for every q ∈ γ.ab.i, there is a transi-
tion label in Ξi to a state q′ ∈ γ′.ab.i, and for every q′ ∈ γ′.ab.i,
there is a transition label in Ξi from a state q ∈ γ.ab.i.

A path in S(m) is a sequence γ0γ1, . . . such that for every
i ≥ 0 there is a k-tuple of transition labels (Ξ1, . . . ,Ξk) with
(γi, (Ξ1, . . . ,Ξk), γi+1) ∈ T .

The satisfaction of an m-indexed formula ϕ on S(m) implies the
satisfaction of ϕ on every concrete system S(n) with n ≥ m.

Lemma 1 Let Ŝ ∈ ME be a PCGS of k agent templates and z con-
crete agents. Let ϕ be an m-indexed formula. Then, S(m) |= ϕ
implies S(n) |= ϕ for every n with n ≥ m.

Proof sketch. Let n ≥ m. Define a mapping ζ from the set of con-
crete states in S(n) to the set of abstract states in S(m):

ζ(q) = (q.(1, 1), . . . , q.(k,m.k), q.1, . . . , q.z,Ξ1, . . . ,Ξk) ,

where Ξ1 = {q.(1, j) : m.1 + 1 ≤ j ≤ n.1} , . . . ,Ξk =
{q.(k, j) : m.k + 1 ≤ j ≤ n.k}. For each agent template î,
define a mapping ξi from concrete transitions to abstract tran-
sition labels as follows: for a concrete transition δ(q, a) = q′,
(r, a, A, r′) ∈ ξi((q, a, q

′)) iff there is a j with m.i + 1 ≤ j ≤ n.i
such that q.(i, j) = r, a.(i, j) = a, A = Actions−(i,j)(a), and
q′.(i, j) = r′.

We show that if ζ(q) = γ and γ |= ϕ, for an m-indexed formula
ϕ, then q |= ϕ. We do this by induction on ϕ.

Assume (p, ag) ∈
(
Π̂× ΣC

)
∪
(
Π̂× ΣT (m)

)
and γ |= (p, ag).

Then, (p, ag) ∈ V(γ). Therefore, (p, ag) ∈ π̂(γ.c.ag), and there-
fore (p, ag) ∈ π(q). Hence, q |= p.

The cases of ϕ = ¬ϕ1, and ϕ1 ∧ ϕ2 are straightforward.
Suppose that ϕ = 〈〈Γ〉〉(ϕ1Uϕ2) for a group of agents Γ ⊆ ΣC ∪

ΣT (m). Let γ |= ϕ. Consider a strategy FΓ = {fag : ag ∈ Γ} such
that for all σ ∈ out(γ, FΓ), there is i ≥ 0 with σi |= ϕ2 and σj |=
ϕ1 for all 0 ≤ j < i. Choose the same strategy FΓ for the group Γ
of agents in S(n). Let λ = q0q1 . . . ∈ out(q, FΓ), where q0 = q.
Assume a sequence a0a1 . . . of joint actions enabling the path λ; i.e,
for each i ≥ 0, δ(qi, ai) = qi+1. It can be checked that for each
i ≥ 0, (δ(qi), (ξ1((qi, a, qi+1)), . . . , ξk(qi, a, qi+1)) , qi+1) ∈ T .
Therefore, δ(λ) = δ(q0)δ(q1) . . . is a path in S(m). Moreover, since
λ ∈ out(FΓ, q), it follows that δ(λ) ∈ out(FΓ, γ). Thus, there is
i ≥ 0 with δ(λ)i |= ϕ2 and δ(λ)j |= ϕ1 for all 0 ≤ j < i. By
the inductive hypothesis, λi |= ϕ2 and λj |= ϕ1 for all 0 ≤ j < i.
Hence, q |= φ.

The case of ϕ = 〈〈Γ〉〉Gϕ1 can be shown similarly to the case of
ϕ = 〈〈Γ〉〉(ϕ1Uϕ2).

Therefore, we have shown that δ(q) = γ and γ |= ϕ implies that
q |= ϕ. As for every initial state q in S(n), δ(q) is an initial state in
S(m), it follows that S(m) |= ϕ implies S(n) |= ϕ. �

Conversely, the falsification of an m-indexed formula on S(m)
implies the existence of a concrete system falsifying the formula.

Lemma 2 Let Ŝ ∈ ME be a PCGS of k agent templates and z con-
crete agents. Let ϕ be an m-indexed formula. Then, S(m) 6|= ϕ
implies that there is n ≥ m with S(n) 6|= ϕ.

Proof sketch. Given an agent template î, let δ̂i ={
(q, a,A, q) : δ̂(̂i, q, a, A) = q

}
. For a tuple t = (q, a,A, q),

t ∈ δ̂i, let λt be a finite concrete path such that there is an agent in
state q in the last state of the path. Denote the concrete system in
which λt occurs by S(nt); denote the agent that is in state q in λt

by agt. Let n = m +
∑

t∈δ̂1∪...∪δ̂k
nt, where nt1 + nt2 denotes

(nt1.1 + nt2.1, . . . , nt1.k + nt2.k). Given an agent template î,
let
⋃

t Agi,t be a partition of the set {(i,m.i+ 1), . . . , (i, n.i)} of
agents in S(n) such that |Agi,t| = nt.i for each t ∈ δ̂1 ∪ . . . ∪ δ̂k.
Assume a bijective mapping ζi,t : Agi,t → {(i, 1), . . . , (i, nt.k)}
from the set Agi,t of agents in S(n) to the set {(i, 1), . . . , (i, nt.k)}
of agents in S(nt). Define a relation R between the states in
S(m) and the states in S(n) as follows: (γ, q) ∈ R if: (i)
γ.c.(i, j) = q.(i, j) for each (i, j) ∈ ΣC ∪ ΣT (m); (ii) for each î,
t, every agent ag ∈ Agi,t is in local state equal to the local state of
the agent ζi,t(ag) in the last state of λt.

We show that if (γ, q) ∈ R and γ 6|= ϕ, for an m-indexed formula
ϕ, then q 6|= ϕ. We do this by induction on ϕ. The atomic case and
the cases of ϕ = ¬ϕ1, and ϕ1 ∧ ϕ2 are straightforward. Suppose
that ϕ = 〈〈Γ〉〉(ϕ1Uϕ2) for a group of agents Γ ⊆ ΣC ∪ ΣT (m).
Let γ 6|= ϕ. Then, for every strategy FΓ = {fag : ag ∈ Γ}, there
is σ ∈ out(γ, FΓ) that falsifies ϕ1Uϕ2. Choose a strategy FΓ and a
path σ = γ0γ1 . . . ∈ out(γ0, FΓ), where γ0 = γ, falsifying ϕ1Uϕ2.
Choose the same strategy FΓ for the group Γ of agents in S(n). We
show that there is a path λ = q0q1 . . ., where q0 = q, in out(FΓ, q)
such that (γi, qi) ∈ R, for every i ≥ 0. For each i ≥ 0, consider
(γi, (Ξ

i
1, . . . ,Ξ

i
k), γi+1) ∈ T by means of the joint action ai for

the agents in ΣC ∪ ΣT (m). Then, λ results from the following joint
actions at every time step i:

• Every agent ag in ΣC ∪ ΣT (m) performs the action ai.ag.
• Let Ξ = Ξi

1 ∪ . . . ∪ Ξi
k and A = Actions(Ξ) ∪ Actions(ai).

Consider Bad = {a : ∃t ∈ Ξ. t is bad on a}. Then, for each a ∈
Bad, choose a transition label t = (q, a,A, q) ∈ δ̂i (since
a ∈ Bad, by the starvation freedom property, such a transition
label exists for a state q and an agent template î), and let the agent
ζ−1
i,t (agt) perform the action a.

• All the rest of the agents perform the serial action.

It can be checked the λ is as required. It follows that λ falsifies
ϕ1Uϕ2. Thus, q 6|= ϕ. The case of ϕ = 〈〈Γ〉〉Gϕ1 can be shown
similarly to the case of ϕ = 〈〈Γ〉〉(ϕ1Uϕ2).

Therefore, we have shown that (γ, q) ∈ R and γ 6|= ϕ implies
q 6|= ϕ. Now for every initial state γ in S(m), there is an initial state
q in S(n) where: γ.c.(i, j) = q.(i, j) for each (i, j) ∈ ΣC∪ΣT (m);
for each î, t, every agent ag ∈ Agi,t is in local state equal to the local
state of the agent ζi,t(ag) in the initial state of λt. From q there is
a path to a state q′ such that (γ, q′) ∈ R. This path is defined as
◦t∈δ̂1∪...∪δ̂k

λ′
t, where ◦ denotes string concatenation, and λ′

t is the
path in which: for every agent template î, each agent ag in Agi,t
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performs the sequences of actions that the agent ζi,t(ag) performs in
S(nt); every other agent performs the serial action. Consequently,
as the agents in ΣC ∪ΣT (m) stutter at their initial states in the path
from q to q′, S(m) 6|= ϕ implies S(n) 6|= ϕ. �

Theorem 2 Let Ŝ ∈ ME be a PCGS and ϕ an m-indexed formula.
Then, the PMCP returns true iff S(m) |= ϕ.

Proof (⇒) If S(m) 6|= ϕ, then, from Lemma 2, the PMCP returns
false, which is a contradiction. (⇐) From Lemma 1.

Theorem 2 is the main result of the paper. It states that, for a
given m-indexed PATL formula ϕ, the abstract model from Defi-
nition 10 is powerful enough to capture every possible instantiation
of the PCGS that it is defined from. Since Definition 10 is entirely
constructive, this gives us an immediate methodology for verifying
any ME PCGS against any PATL specification: we simply construct
the abstract model following Definition 10 and verify it against the
specification ϕ. The result of this check is the result of the PMCP for
the given PCGS against the PATL ϕ.

5 Prioritised Train-Gate-Controller

We exemplify the use of the methodology introduced in this paper on
the prioritised train-gate controller (PTGC) [30], a parametric variant
of the untimed version of the train-gate-controller [4, 20]. The system
of PTGC is composed of a controller and an arbitrary number of two
types of trains: prioritised trains and normal trains. Each train runs
along a circular track and all tracks pass through a narrow tunnel.
The tunnel can accommodate only one train to be in it at any time.
Both sides of the tunnel are equipped with traffic lights, which can
be either green or red. The controller operates the colour of the traffic
lights to let the trains enter and exit the tunnel while complying with
the following protocol: a normal train is given permission to enter
the tunnel only when there is no pending request from a prioritised
train to enter the tunnel.

We now model the PTGC as a PCGS G =〈
Σ̂, Q̂, q̂0, Â, Π̂, π̂, d̂, δ̂

〉
, where (see Figure 3):

• ΣC = {1} and Σ̂T =
{
1̂, 2̂
}

. Template agent 1̂ represents the
prioritised trains, template agent 2̂ represents the normal trains,
and concrete agent 1 represents the controller.

• Q̂ = {/∈, ?p, ?n,∈p,∈n,⊥,>}, where:

– /∈ represents that a train is not in the tunnel and it has not re-
quested to enter the tunnel.

– ?p (?n, respectively) represents that a prioritised (normal, re-
spectively) train has requested to enter the tunnel.

– ∈p (∈n, respectively) represents that a prioritised (normal, re-
spectively) train is in the tunnel.

– ⊥ represents the traffic lights having colour red.

– > represents the traffic lights having colour green.

• q̂0 =
{
1̂ 7→ {/∈} , 2̂ 7→ {/∈} , 1 7→ {>}

}
.

• Â = {null , a ?p , a ?n , a Xp , a Xn , a ×, a →, a ←}, where:

– a ?p (a ?n, respectively) represents a prioritised (normal, re-
spectively) train making a request to enter the tunnel.

– a × represents a train relinquishing its request to enter the tun-
nel.

/∈

?p

∈p

null ,A1

a ?p, A1

a ?p, A1

a →, A2

a ×, A1

a ←, A1

(a) Template prioritised train.

/∈

?n

∈n

null ,A1

a ?n, A1

a ?n, A1

a →, A3

a ×, A1

a ←, A1

(b) Template normal train.

>

?p ?n

⊥

null ,A4

null ,A5 null ,A6

a Xp, A7 a Xn, A8

null ,A4

null ,A1null ,A1

null ,A5 null ,A5

(c) Controller.

Figure 3: The PCGS of the PTGC.

– a Xp (a Xn, respectively) represents the controller accepting
a prioritised (normal, respectively) train’s request to enter the
tunnel.

– a → (a ←, respectively) represents a train entering (exiting,
respectively) the tunnel.

• Π̂ = {tp, np}, π̂(∈p) = {tp}, and π̂(∈n) = {tn}. A prioritised
(normal, respectively) train has entered the tunnel.

• – d̂(1̂, /∈) = {null, a ?p}. Whenever a prioritised train is not in
the tunnel, it can choose to do nothing or it can make a request
to enter the tunnel.

– d̂(1̂, ?p) = {a ?p, a ×, a →}. The train has already made
a request to enter the tunnel but the request has not yet been
granted. The train can relinquish its request, or make a new re-
quest, or, if the controller grants access to the tunnel, enter the
tunnel.

– d̂(1̂,∈p) = {a ←}. Whenever a train is in the tunnel, it can
only exit the tunnel.

– d̂ is similarly defined for normal trains.

– d̂(1,>) = d̂(1,⊥) = {null}.
– d̂(1, ?p) = {null, a Xp}, d̂(1, ?n) = {null , a Xn}. The con-

troller can either delay a request from a train to enter the tunnel,
or it can accept it.

• – δ̂(1̂, /∈,null ,A1 ) = /∈ and δ̂(1̂, /∈, a ?p, A1) =?p, where
A1 ⊆ Â. A prioritised train may choose to remain out
of the tunnel or it may choose to request to enter the
tunnel irrespectively of the other agents’ actions. Simi-
larly, δ̂(1̂, ?p, a ?p, A1) =?p, δ̂(1̂, ?p, a ×, A1) = /∈, and
δ̂(1̂,∈p, a ←, A1) = /∈. These transitions are similarly de-
fined for normal trains.

– δ̂(1̂, ?p, a →, A2) = ∈p, where {a Xp} ⊆ A2 ⊆ Â\{a Xn}.
A prioritised train can enter the tunnel if the controller accepts
a prioritised request and no other train is entering the tunnel
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/∈, /∈,> ?p, ?n, ?p ∈p, ?n,⊥

/∈p, ?n, ?n?p,∈n,⊥

a ?p, a ?n,null a →, a ?n, a Xp

a ←, ?n,null

a ?p, a →, a Xn

Figure 4: Fragment of the CCGS G((1, 1)).

/∈, /∈, /∈,> ?p, ?p, ?n, ?p ∈p, ?p, ?n,⊥

/∈, ?p, ?n, ?p?p,∈p, ?n,⊥?p, /∈, ?n, ?p

a ?p, a ?p, a ?n,null a →, a ?p, a ?n, a Xp

a ←, ?p, ?n,null

a ?p, a →, ?n, a Xpa ?p, a ←, ?n,null

a →, a ?p, ?n, a Xp

Figure 5: Fragment of the CCGS G((2, 1)).

at the same time. Similarly, δ̂(2̂, ?n, a →, A3) = ∈n, where
{a Xn} ⊆ A3 ⊆ Â \ {a Xp}.

– δ̂(1,>,null ,A4 ) = >, where A4 ⊆ Â \ {a ?p, a ?n}.
– δ̂(1,>,null ,A5 ) =?p , where {a ?p} ⊆ A5 ⊆ Â. If both

prioritised and normal trains have requested to enter the tun-
nel, then the controller can only accept prioritised requests.
Otherwise, if only normal requests have been made, then the
controller can accept normal requests: δ̂(1,>,null ,A6 ) =?n ,
where {a ?n} ⊆ A6 ⊆ Â \ {a ?p}.

– δ̂(1, ?p,null ,A1 ) =?p , δ̂(1, ?n,null ,A1 ) =?n). The con-
troller can delay handling a request irrespectively of the other
agents’ actions.

– δ̂(1, ?p, a Xp, A7) = ⊥ and δ̂(1, ?n, a Xn, A7) = ⊥, where
{a →} ⊆ A7 ⊆ Â.

– δ̂(1,⊥,null ,A4 ) = >, δ̂(1,⊥,null ,A5 ) =?p , and
δ̂(1,⊥,null ,A6 ) =?n .

Any concrete system is generated by considering copies of the
templates above. For example, a fragment of the concrete system of
one prioritised train and one normal train is depicted in Figure 4;
a fragment of the concrete system of two prioritised trains and one
normal train is shown in Figure 5. In the figures each concrete state
represents, from left to right, the local states of the prioritised trains,
the local state of the normal train, and the local state of the controller.
The tuples of actions are similarly read.

We now exemplify the use of PATL to reason about MAS with ar-
bitrary many agents. We refer to [3, 4, 20] for several specifications
of interest in plain ATL concerning the train-gate-controller. Differ-
ently from these works, where the overall system is composed of two
trains, we can here represent specifications concerning the strategic
properties of an unbounded number of trains. In particular, we are
interested in formulating whether exactly one prioritised train can
ensure that no normal trains can enter the tunnel irrespective of how
many other trains (normal or prioritised) compose the system. This
is expressed by the PATL formula

ϕPTGC1 = ∀v 1∀u 2〈〈{v}〉〉G¬(tn, u),

where v i indicates that the variable v is in VARi . Further, we would
like to check whether at least two prioritised trains have a joint strat-
egy to enforce the above property. This is expressed by the PATL
formula

ϕPTGC2 = ∀v 1∀u 1∀z 2〈〈{v, u}〉〉G¬(tn, z).

{/∈} , {/∈} ,> {?p} , {?n} , ?p {∈p, ?p} , {?n} ,⊥

{/∈, ?p} , {?n} , ?p{?p,∈p} , {?n} ,⊥{?p, /∈} , ?n, ?p

Figure 6: Fragment of the abstract model for the PTGC.

Finally, we would like to assess whether the controller has a strategy
to ensure that precisely one train can be in the tunnel at any time, as
expressed by the following PATL formula:

ϕPTGC3 =∀v 1∀u 1∀z 2∀w 2G〈〈{1}〉〉
((tp, v)→ (¬(tp, u) ∧ ¬(tn, z))∧
(tn, z)→ (¬(tp, u) ∧ ¬(tn, w)))

It is easy to check that G satisfies the mutual exclusion property
and the starvation freedom property. Therefore, G ∈ ME, and there-
fore we can assess the correctness of the PTGC against the formulae
ϕPTGCi, 1 ≤ i ≤ 3, as per Theorem 2. A fragment of the abstract
model that represents the fragment of the concrete system G((2, 1))
(Figure 5) is shown in Figure 6. A state in the figure depicts, from left
to right, the abstract component of the prioritised train, the abstract
component of the normal train, and the local state of the controller.
For brevity, the concrete components, of both the trains, and the tran-
sition labels are ommited in the figure.

The abstract model and the specifications can be checked by an
ATL model checker; this would return false for ϕPTGC1, and true
for ϕPTGC2 and ϕPTGC3. Indeed, as it can be observed in Figures 5
and 6, any pair of prioritised trains can ensure that no normal trains
can enter the tunnel: they can simply request access to the tunnel;
since they are prioritised over normal trains, one of them will enter
the tunnel while the other continues on requesting access to the tun-
nel, thus preventing a normal train to enter the tunnel. A single train,
however, does not have a strategy to ensure this property, as it can be
observed by the counterexample shown in Figure 4.

6 Conclusions
In this paper we put forward a technique for the parameterised verifi-
cation of MAS against specifications expressing strategic behaviour
of the agents. To achieve this we introduced PCGS, a novel param-
eterised extension of CGS (the usual semantics of ATL); PATL, a
parameterised version of ATL; and defined the parameterised model
checking problem for MAS given in PCGS against specifications ex-
pressed in PATL. The proof of undecidability of the PMCP for PCGS
against PATL specifications enabled us to identify an expressive class
of PCGS for which a decidable counter abstraction methodology
could be given. This enabled us to verify unbounded MAS against
strategic specifications, as the example of the prioritised train-gate-
controller demonstrated.

In future work we would like to extend the specifications sup-
ported by the technique here introduced. For example [26, 27] ad-
dress parameterised verification against epistemic specifications. It
would be of interest to develop a technique that can account for both
epistemic and strategic specifications such as those discussed here.
However, the counter abstraction technique presented in [27] cannot
seemingly be extended to ATL modalities. Moreover, the one here
devised for ATL cannot be applied to epistemic modalities. More
work is required to solve this problem.
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